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Abstract—A system capable of being a low-cost, FPGA-based 

wavetable synthesizer with digital wave-blending effects and 

digital effects chain including multi-voice unison, distortions, and 

reverb. While there are many inexpensive wavetable synthesizers 

that include basic digital effects, wave-blending effects are only 

found on expensive full-featured hardware synthesizers or 

software synthesizers. Our goal is to create a system targeting a 

platform competitive with other low-cost synthesizers on the 

market while capable of unique and interesting wave-blending 

effects not found in this price segment. 

 
Index Terms— FPGA, Music, Synthesizers, Wavetable 

Synthesis 

 

I. INTRODUCTION 

N this project, our team aims to develop an FPGA-based 

wavetable musical synthesizer that targets wave-blending 

and wave-shaping effects along with other standard digital 

effects found in synthesizers at comparable price points. 

Although we are developing the system on an FPGA, we 

envision this project as a prototype for evaluation on the track 

to create a dedicated chip for musical synthesis. From a market 

perspective, we are targeting the prosumer audio/music market, 

where people are interested in unique effects and sounds but are 

not willing to spend upwards of $4000-5000 for a professional 

synthesizer kit. Other devices in the market range typically 

either have simple oscillators combined with effects or 

wavetables that focus on instrument sound reproduction. While 

software solutions do exist, they are not self-contained and 

require a digital audio workstation, a MIDI controller, and some 

other software for the system to work in, meaning that although 

the wavetable synthesizer may not be extremely expensive, the 

combined workflow can be both high cost and limiting. Our 

goals for our synthesizer focus on having a polyphonic 

synthesizer with unique wavetable synthesis effects in addition 

to standard effects found on low-cost synthesizers such as 

distortion, delay, unison, and delay. On a more technical side, 

we want to have pitch accuracy within 5 cents of standard 

tunings, minimal harmonic distortion, and even frequency 

response. Finally, an important goal is to keep the total parts 

cost of the project as low as possible, to show that these effects 

can be had at a low cost. 

II. DESIGN REQUIREMENTS 

The requirements of the project will be split into two parts: 

features and audio fidelity. Other metrics we will be measuring, 

but without a hard requirement, are FPGA usage (chip area) and 

price. Power consumption is of a lesser concern because the 

system will be designed to plug into a wall outlet. 
For features, we will first discuss traits of the synthesizer. The 

synthesizer will support four note polyphony, where four notes 

can be played through the synthesizer simultaneously. 

Polyphony is a feature found on some, but not all low-cost 

synthesizers, but we believe it to be a valuable feature to have 

in order to support being able to play chords. The synthesizer 

should have at least four different wave shapes stored in the 

wavetables; we anticipate the shapes to be two simple ones, 

such as a sine and a sawtooth, and two complex waveforms 

which can make interesting sounds when blended with others. 

The synthesizer can support user-controlled blending any two 

wave shapes together. For user-controlled synthesizer effects, 

we plan on implementing distortion (sample reduction and bit-

depth reduction), delay, and reverb. the analog side, we will 

have an analog equalizer doing a final filtering step. For the 

digital synthesis and effects components, we will test them 

using Verilog testbenches, and for the analog filtering, we will 

generate frequency response plots by passing in noise. 
For audio fidelity, we have determined several technical 

requirements that the project should meet. As a musical 

instrument, we want our synthesizer to be in tune, so we want 

our synthesizer to produce sounds within five cents of standard 

tunings. This will be tested with a regular instrument tuner and 

the synthesizer outputting an undistorted sine. We want the total 

harmonic distortion to be less than 5%, a property we will test 

by generating sine waves of different frequencies, running an 

FFT on the output, and calculating how much distortion exists 

at higher harmonics. Similarly, we want the frequency response 

to be even across all levels (<5%), and make sure no effect or 

filter behaves differently at different frequencies. This will be 

tested by observing output response over a range of frequencies 

and looking for deviations. 
Our soft metrics, area and power, will be measured using the 

FPGA synthesis tools and measured for the analog components. 

Price will be measured by the total cost of components that we 

purchase, as well as the cost of the FPGA board, which is 

provided by the university. We aim to minimize these metrics 

overall but are not working with a hard requirement. 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

The way that the overall architecture is designed is that first 

the player interacts with the MIDI controller that we have 

purchased. This controller includes the keyboard for playing 

notes and each of the control knobs. The control knobs each 

have two functions controlled by a function key on the 

keyboard. Additionally, active wavetable selection will be 

controlled by the switches on the FPGA board. 

From the MIDI controller, a MIDI control message is sent to 

the FPGA via serial UART and decoded into a format that the 

rest of our architecture can read. The MIDI control messages 

can either be a control knob, which controls the strength of 

different effects, or a keypress message, which signals that a 

key was pressed or released, as well as how fast the key was 

pressed. 

The first stage is the wavetable synthesis stage which takes 

the MIDI control signals for the notes and converts them into 

samples to feed through the rest of the pipeline. It also takes in 

the controls to choose which two active wavetables to fetch 

samples from. The last input control that this stage takes in is 

the unison control knob which controls the distance from in-

tune each of the unison voices is. The samples are generated 

from traversing the wavetable, containing multiple different 

wave shapes, and the stride of the traversal determines the 

frequency or pitch of the sound. These samples are mixed 

together according to the desired amount of wave blending and 

then fed through into the effects chain. The number of samples 

mixed together is dependent on the amount of wave-blending, 

the number of voices from the polyphony, as well as the degree 

of unison effect. 

Next is the stage of digital effects applied to the samples. 

These begin with the distortion module. The distortion comes 

in two flavors, one that reduces bit depth (bit crushing) and 

another that reduces the sample rate. The bit crushing effect 

uses a control knob value that adjusts between a value from 0 

to 15 that determine how many of the bits will be truncated to 

zeros from the sample. The sample rate reduction module is 

similarly controlled by a control knob and discards some 

number of samples to reduce the effective sample rate. 

Following the distortion effect is the delay effect. This operates 

by taking a control knob value to determine the length of the 

delay and another control knob value to determine the loudness 

of the repeated sound and then plays back all samples a second 

time that delay length later. Lastly in the effects chain is the 

reverb effect. This effect is very similar in operation to delay 

however, the control knob for reverb controls how strong the 

reverb is, adjusting the amount of attenuation between “wall 

reflections”. Once the digital effects have been applied the 

sample is adjusted to be compatible with the DAC interface and 

then converted to an analog signal. 

After the sample has been converted to analog through the 

DAC support circuitry, it is sent to a bank of filters that act as 

an 8-band equalizer with high pass and low pass filters as the 

outside bands. Each of these bands can be mixed at a different 

level using potentiometers and the overall amplification level 

can also be controlled. Finally, this signal goes through one 

final stage of amplification in preparation for being fed into a 

speaker. 

The wavetable synthesis itself will all be done on-board the 

FPGA, with the analog filtering done only as a final step. This 

is quite different than most comparable synthesizers, which do 

very little in the digital space and do most of the effects 

processing using analog components. While many music-

makers place a lot of value on the idea of the “analog sound,” 

we seek to give our synthesizer output some of these qualities 

by having the final output stage be fully analog. 

The FPGA board that we have chosen for the project is a 

Terasic DE0-CV board with an Altera Cyclone V FPGA chip 

on-board. The full details of why this board was chosen will be 

expanded on in the later sections of this paper, but the key 

benefits of this platform were its relatively low cost as well as 

the large amount of on-board block ram to facilitate the easy 

storage and retrieval of the wavetables themselves, as well as 

making the design of the delay and reverb effects much simpler. 

While we ultimately see this project as a potential prototype for 

a production model using a dedicated chip, the benefits of using 

a cheap FPGA platform allow the option of going into 

production with the FPGA platform in the future while staying 

cost-competitive. 

  

Figure 1. System Block Diagram 
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IV. DESIGN TRADE STUDIES 

In order for us to meet our system specifications, we had to 

make several key tradeoffs throughout our design. Our goal in 

creating this synthesizer was to create a low-cost musical 

synthesis platform that could incorporate features from many 

high-end synthesizers, but in the pursuit of keeping costs low, 

we could not design everything the way we had wanted. 

A. Memory and Block RAM 

One of the biggest constraints that we had to work around 

was the amount of memory available in our system. Memory 

turned out to be a large bottleneck throughout our design, 

especially in the effects chain, given the size of each sample and 

the number of samples per second that had to be stored in the 

reverb and delay effects. Each wavetable requires several 

kilobits of block RAM as well. While we investigated other 

memory options, such as using DRAM, those options turned out 

to be infeasible both because of the amount of time and 

resources that would be required to develop and test a memory 

controller that suited our needs, as well as our need to be able 

to access many words in the memory at once. Block RAM on-

board the FPGA suited this purpose well, because each block 

RAM unit is small at 10 kilobits per bank but could easily be 

combined together to form arbitrarily large memory banks. 

Memory is used all throughout our design independently; for 

example, each of the wavetables needs to be accessed in 

parallel, as well as the memories used in the many FIFOs 

throughout the effects chain. The amount of parallelism 

inherent to these memory accesses made on-board block RAM 

the only reasonable choice. 

 Our original FPGA board selection, the Terasic DE0 with an 

Altera Cyclone III, was chosen because of its very low cost and 

ease of development. However the block RAM issue forced us 

to reevaluate and we settled on the Terasic DE0-CV board, with 

an Altera Cyclone V instead. With this board, we had 3 

megabits of total block RAM available, which according to 

basic calculations using the estimated block RAM usage of each 

module would be sufficient. The overall pipeline ended up 

coming in at just under 50% of the total block RAM usage, 

which was important to us because we needed the area to add a 

second, identical pipeline to handle a recording and looping 

feature. While it would have made things easier with an even 

larger board, given our priority in keeping the overall cost of 

the synthesizer low, we did not want to have to use an even 

larger board which would be significantly more expensive and 

contain more logic cells than were necessary for the project. 

 The block RAM limitation did force us to make some 

compromises in certain effects. The two major users of block 

RAM were delay and reverb: the delay module needed enough 

block RAM to store all the samples it needed to delay and the 

reverb module needed block RAM to simulate reflections and 

delay from different reflections around the room. In order to 

have a more natural and fuller sounding reverb, we needed to 

simulate many reflections happening at many different times. 

This was accomplished by our early reflection network with the 

tapped shift register and our late reflection network using the 

four parallel comb filters. The compromise was made to use 

only four comb filters because of the memory demands for each 

filter, as well as using a uniform-tapped shift-register. The 

uniform tap spacing that we used would cause a downgrade in 

the quality of the reverb effect, since it is preferable for the taps 

to be spaced in very different intervals, but doing so would stop 

the synthesis tools from using a minimal amount of memory 

and would force us to have a lot of block RAM units sitting 

partly unused. We tested this tradeoff with a software 

simulation of the reverb network and compared the outputs of 

the different configurations we experimented with subjectively 

to see how much of a difference the more natural reverb designs 

we could actually hear. This tradeoff did allow us to have a 

longer possible delay, since we originally had only intended for 

the delay FIFO to store 32,768 samples, using 60 block RAM 

units and allowing for a .75 second maximum delay, but saving 

block RAM in the reverb allowed us to double the delay FIFO 

to 64556 samples, using 120 block RAM units and allowing for 

a 1.5 second delay. Since we thought the longer delay effect 

would be a much more impactful change for the end user 

compared to the marginally better-sounding reverb, we decided 

to opt for more delay and slightly more artificial reverb. 

B. Multipliers and Dividers 

Multipliers and dividers synthesize to very large blobs of 

logic, and it was important for us to minimize the amount we 

used to keep the total logic usage within reason. While we had 

66 DSP units on-board the FPGA that we had chosen to use, our 

synthesis and effects pipeline used a significantly larger number 

of multipliers than were available. We tried mitigating the 

potentially large amount of logic that could be generated by 

optimizing for the sizes of the values that needed to be 

multiplied. For example, while the math for a lot of the mixer 

operations and effects chain required a lot of fractions and 

floating-point math, we tried to do as much as possible with a 

simplified fixed-point system to scale the sample values. One 

way we optimized was to try to reduce the granularity of the 

scaling factors. Since the scaling factors were largely a product 

of the control knob configuration, which by the MIDI standard 

has a range from 0-127, we experimented with different 

granularities to see how few bits we could get away with 

actually using in our calculations. In the end, optimizing the 

mathematical operations within the system also helped with a 

lot of timing and critical path issues that we ran into. 

C. Analog Filter Design 

One tradeoff we had to make was in the decision on the 

amplifier and filter gains. The analog stage was originally 

designed to run entirely off the 5V output of the FPGA GPIO 

pins, and the gains for all the op-amps were set accordingly. 

Unfortunately, because the op-amps take 2V from the top and 

bottom of the rails, it meant that our effective rails for 

amplifications was only 1V peak-to-peak. This greatly limited 

the volume we could output at without causing clipping issues, 

and was a tradeoff made in the design to keep the overall 

physical end-product clean and compact. While we ended up 

running out of time to fix issues related to the FPGA voltage 

output being too unstable to use, we did not have the bandwidth 

to redesign the system to be used with arbitrary rails, and stuck 

with the 5V rails. However, this design does allow us to utilize 

the FPGA board’s on-board power supply in the future if we 

were to find a good way to stabilize the output.  
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V. SYSTEM DESCRIPTION 

A.  MIDI controller to FPGA interface 

The first stage of the synthesizer system is the MIDI 

keyboard to FPGA interface. This stage consists of the MIDI 

keyboard, the support circuitry to convert the MIDI serial out 

to UART, the UART receiver module on the FPGA, and finally 

a UART decoder to convert the raw bytes into control signals 

sent into the main synthesis and effects pipeline. 

    The MIDI keyboard we decided to use for the project, the 

Stage Right by Monoprice 49-Key MIDI controller, was chosen 

for several reasons, the three most important reasons being the 

availability of rotary encoders, MIDI serial output, and low 

price. First was the number of rotary encoder knobs on the 

keyboard. The effects that we have on the synthesizer are all 

adjustable, for example, like the degree of blending between 

two wave shapes, the decay of the reverb, or the length of the 

delay, and we decided that leveraging on-keyboard rotary dials 

to control the effects would be the simplest method of control. 

Second was the availability of a MIDI out port. While the 

official MIDI standard specifies a 5-pin DIN connector as the 

primary connector, almost all modern MIDI controllers use a 

USB output instead, allowing the keyboard to connect easily to 

the desktop computer-based digital audio workstations instead. 

We wanted the MIDI controller we used to have the MIDI DIN 

output, since the signal sent out can easily converted into UART 

with some simple support circuitry, and we wanted to avoid 

falling into a trap of either designing a hardware USB controller 

from scratch or having to use a pre-made USB controller IP 

block, which could bring its own set of compatibility and 

integration issues. Unfortunately, this constraint severely 

restricted the pool of MIDI controllers we could use, since 

lower-end controllers only supported USB output and eschewed 

the legacy DIN connector. Finally, price was a major factor as 

well. Obviously, we need to stay under the $600 project budget, 

and one of the goals with our project is the keep the total parts 

cost as low as possible to stay in the same price/cost range as 

similar synthesizers. Many higher-priced MIDI controllers 

come with lots of unnecessary bells and whistles as well, and 

for our synthesizer, we only needed the most basic features 

along with the other requirements above. In the end, the 

Monoprice MIDI controller was the one of the only keyboards 

under $100 that satisfied the other requirements and did not 

have atrocious reviews on Amazon. 

The next component of the chain is the MIDI support 

circuitry. The DIN connector outputs a serial data stream using 

current on and off to represent zeros and ones, so support 

circuitry is required to convert this into a voltage-based signal. 

Luckily, specific circuitry for this is detailed in the MIDI 

specification, requiring a specific opto-isolator chip with some 

other passive components. Although the exact opto-isolator 

chip used in the specification is no longer produced, equivalent 

circuitry was easily available online, using an alternative model 

of opto-isolator chip (6N139) that was mentioned in the MIDI 

specification. The details for the circuitry are shown in the 

block diagram. The output of this support circuitry is a UART 

input line that is connected to the GPIO pins on the FPGA 

board. 

B. MIDI Message Decoder 

From here on out, the “components” of the synthesis and 

effects pipeline will be Verilog modules synthesized on board 

the FPGA until the DAC interface with the final analog filtering 

component of the pipeline. 

The first module of the pipeline is the UART receiver 

module. This module is fairly straightforward: it takes in the 

raw 1-bit UART serial signal as input and outputs a 8-bit data 

byte along with a 1-bit byte data ready signal. The baud rate of 

the MIDI transmission is specified in the MIDI specification as 

31.25 kbaud, very slow compared to the system clock frequency 

we will be running the FPGA on. This module consists of a state 

machine to detect when the UART line drops low, signaling the 

beginning of the start bit, waiting half of a UART bit to start 

sampling in the middle of each bit, and then proceeding to 

sample again every UART bit. We anticipate to be running the 

system clock at 44.1 MHz in order to simplify the interface with 

the DAC later in the pipeline, so each UART bit will be slightly 

more than 1411 clock cycles. There is no worry of drifting out 

of sync due to the very large number of clock cycles per bit and 

that there will only be 10 bit per message before 

resynchronizing. The state machine will then proceed to read 

the 8 data bits, the one stop bit, and then either return to an idle 

state or detect a new incoming byte. The bits are pushed through 

an 8-bit serial in, parallel out shift register with the output 

connected to the output of the module. The format specified in 

the MIDI specification does not contain any parity bits, just one 

start and one stop bit per 8-bit data byte. Although MIDI 

messages are never just a single byte, this module is format 

agnostic and will only process a single byte through UART, 

asserting a ready signal after every byte. We will see in the next 

module how the full message is constructed. 

    The next module of the pipeline assembles the MIDI message 

from the individual bytes received by the first module. MIDI 

messages that we will care about for this project will come in 

two flavors, a two-byte message for sending rotary encoder 

information and a three-byte message for sending keypress 

data. Because the goal of this module is to assemble the whole 

MIDI message to pass on to the full MIDI message decoder, 

this module will need to decode the first byte of the message, 

the header byte, to determine which type of message is being 

received and how many bytes the message is. Each byte coming 
Figure 2. MIDI Support Circuitry 
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into the assembly module from the receiver is pushed through 

another serial in, parallel out 32-bit shift register which shifts in 

8-bits at a time. The inputs to this module are the byte output 

and byte ready of the previous module, while the outputs of this 

assembly module are a 32-bit MIDI message bit-vector as well 

as a two-bit one-hot signal that signals both that the message is 

ready and how many bytes the message contains. A value of 

2’b00 will mean that the output is invalid, 2’b01 means the 

output is a valid two-byte message, and 2’b10 means the output 

is a valid three-byte message, with 2’b11 being an unused, 

illegal output. The 32-bit MIDI message bit-vector will have the 

bottom 8 bits be zeroes if the message is only two bytes long. 

This assembly module will also take an acknowledgement 

signal from downstream modules signaling that the MIDI 

message on the output has been consumed. 
    The next phase of MIDI message decoding is translating this 

3- or 2-byte signal into a more readable format for the purpose 

of digital synthesis. This decoder module ingests a MIDI 

message and translates it out into note name, octave, note 

control, control knob value, and velocity. Note name is the 

name of the note desired using the standard musical note 

naming scheme of A to G. All half-steps between notes will be 

named as sharps. The octave output is the octave that the note 

falls under ranging from 0 to 7. If the MIDI message that is 

being decoded is not a note message the default values for these 

two signals are C, and 0 respectively. Note control is a two-bit 

signal where the high bit represents if the message is a note 

control message, and the low bit is a 0 if the message is a note 

off message and is 1 if the message is a note on message. 

Control knob value is an enum encoding of the names of the 

various control knobs that control effects on the synthesizer. 

There is a bank of registers that represent the control knobs if 

the control knob value matched the name of the control knob 

velocity is stored in that register and it represents the level of 

that knob. For a note message velocity represents the volume of 

the note.  

C. Digital Synthesis System 

    The second major subsystem of the synthesizer pipeline is 

the wavetable digital synthesis subsystem. This is the portion of 

the pipeline which takes in the control data sent by the MIDI 

messages and outputs a stream of 16-bit samples that are to be 

run through the effects chain. This MIDI control data comes 

into this portion of the pipeline in a format which has taken the 

3-byte or 2-byte MIDI signal and translated it into the more 

readable format generated at the end of the MIDI control 

subsystem.  

 The beginning of this chain receives the decoded MIDI 

messages. These decoded MIDI messages are then fed into the 

polyphony control module which manages the storage of the 

values for up to four simultaneous notes. The polyphony 

module requires a certain amount of cooperation with the 

ADSR module because it adjusts the way in which polyphony 

removes its stored notes. In order for ADSR to properly 

implement the release portion of its envelope polyphony needs 

to maintain the stored values for a note even after that note is 

released, only evicting a note if there is a new incoming note 

and no more non playing slots available. Additionally because 

ADSR is applied individually for each note support logic to 

keep track of the age of each slot of the polyphony module for 

the purpose of evicting the oldest note is also required. Therefor 

the polyphony module behaves as such. Until there have been 

four notes pressed it fills in the four slots from slot one to slot 

four with each note. As the notes are added they are also given 

a priority to determine in which order they should be replaced 

should more than 4 notes be played. They are also given a flag 

that says whether or not the note is currently being held so that 

releasing the same note twice will not cause the system to only 

remove one of the notes from the four slots. When notes are 

released they are not removed from the slots as the ADSR 

module requires the note values to remain buffered to play the 

release. So when a note is released it changes its flag and 

becomes the highest priority to be replaced by a new incoming 

note. When a note is replaced the new values are buffered into 

the slot and the slot is given the lowest priority for replacement. 

Logic checks the priority of all of the other notes against the 

priority of the note that was replaced. If the note that was 

replaced was of higher priority than another note then that notes 

priority increases by one and if not that notes priority does not 

change. This implementation of the polyphony module allows 

for the use of four simultaneous notes to be played with the user 

not needing to lift any of the currently held notes in order to 

play more notes. This results in the smoothest possible four 

voice playing experience. The only drawback to this 

Figure 3. MIDI Message Decoding Diagram 
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implementation is that it requires an ADSR module to control 

when held notes that have been released should stop sounding. 

From the polyphony module comes the names of the notes that 

are going to determine the incrementor values. Each of the four 

note voices gets its own incrementor module which outputs the 

wavetable addresses for each of the two unison voices for that 

note. The incrementor module operates by taking in the value 

of the name of the note on the twelve-tone scale being played 

and the value of the octave that it is being played in and the 

velocity with which the note has been pressed. It first takes the 

value for the name of the note being played and calculates the 

incrementation value of the lowest version of this note in the 

MIDI specification. For example, if the note being played was 

C8 the first step would be calculating the incrementation value 

for C-1 the lowest C in the MIDI specification. This is done by 

computing the fundamental frequency of the wavetable running 

at the full 50 mHz system frequency. From this the value which 

the wavetable increments by is determined and expressed as a 

30 bit number where the bottom 20 bits are treated as a decimal 

and the top 10 bits are treated as the address to the wavetable 

for the desired sample. Each clock cycle this incrementation 

value is added to the current address, and when a new note is 

pressed the current address resets to address 0 and the 

incrementation value is recomputed for the new note. Once the 

base increment value of the note is found it is then multiplied 

by 2 the correct number of times to represent the number of 

octaves higher than the base note the note being played is. 

Additionally, at the end of this module the unison effect is 

applied. This works by taking the computed incrementation 

value and multiplying the value by slightly more or slightly less 

than 1. This results in two frequencies that are slightly higher 

and lower than the fundamental frequency of the note. 
    These addresses are then sent to the wavetable access 

module. This module takes each of these addresses and sends 

them to M10k block-RAM containing each waveform. Each 

note has a copy of each of the four waveforms to access samples 

from. The M10k block-RAM is configured as a 2-ported ROM 

so that each module can have a port dedicated to each of the two 

unison addresses. All samples in the wavetables are 12-bit 

sample being read as a 16-bit sample. The remaining 4-bit are 

reserved for overhead involved in mixing the samples and 

applying effects. There are four possible waveforms available, 

a saw wave, a sine wave, and two more complex shapes 

generated for the user. For any given configuration of the 

synthesizer two wavetables will be active at a time. These active 

waveforms are selected by the player using the switched on the 

FPGA itself. Because of this every clock cycle 16 samples are 

fetched from the wavetables. This breaks down as 8 samples per 

active waveform and 2 samples for each of the 4 notes being 

held. 

Once the 16 samples are fetched from the wavetable 

memory, the sample and the velocity of note hit are sent to the 

ADSR envelope generator module. ADSR stands for “Attack”, 

“Decay”, “Sustain”, and “Release” and are the four standard 

components of the loudness envelope generated. The idea 

behind adding ADSR to our design was to allow for better 

shaping of our notes and to allow a more mellow and smooth 

tone. In this module, we manipulate the magnitude of the note 

being played using some set values as well as knob value inputs 

to determine the attack length, decay length, sustain amplitude, 

and release length. By allowing the user to control these values, 

we can more easily shape the note, but a more complex ADSR 

module could be created with time.  

The attack stage allows for the volume of the note to ramp up 

from 0 to a maximum over the attack length specified by the 

knobs. The calculation for the magnitude of the note is 

computed by first determining the slope of the line connecting 

the 0 to maximum volume, in our case 16, by dividing 16 by the 

attack length specified by the user. This value is then multiplied 

by a counter, which allows us to determine where on the line 

we should fall. This value is then multiplied by the velocity 

specified by the input to compute the correct scaled magnitude 

of our value. Decay works in a similar fashion. In the decay 

mode, we fall from 16 to our sustain amplitude over the decay 

length specified by the user. This is done in the same stages as 

attack, by first computing a sloped line, then computing where 

Figure 4. Digital Synthesis Diagram 
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we are on the line, and finally multiplying by the velocity we 

were given. Sustain simply multiplies the input velocity by a set 

scaled value. 

    Coming out of the ADSR envelope generator, the final scaled 

samples are sent to the mixer module. This module takes in each 

sample and the velocity value for its respective note. It then 

weights each notes sample by its velocity level and adds 

together all the samples for each of the two waveforms. Then 

taking the value provided by the blending control knob adds the 

resultant samples for each of the waveforms. The blending 

control knob determines how much of each of the two active 

waveforms is desired. At a value of 0 only active waveform one 

is played, at a value of 127 only active waveform two is played. 

The output of the mixer is buffered and updated on the sample 

clock as opposed to the system clock. This is done so that the 

effects chain which involves a delay effect and a reverb effect 

that both need to use memory must store the minimum number 

of samples to achieve their effects.  

D. Digital Effects Subsystem 

After the wavetable synthesis pipeline, the sample is then 

piped into the effects pipeline. The effects pipeline consists of 

three parts, the distortion effect, the delay effect, and the reverb 

effect. These effects are all chained together in serially one after 

another. All three of these effects are independently adjustable 

using the rotary encoders on the MIDI controller. 
The distortion module is first in the effects chain. The module 

takes in the 16-bit sample and the values of two rotary encoders 

as input and outputs a distorted 16-bit sample. The sample is 

distorted by both a sample-rate reduction effect and a bit-depth 

reduction effect, both independently controlled by different 

rotary encoders. The implementation of both effects is fairly 

straightforward, using a counter and only passing every n 

samples downstream and tossing the other samples for sample 

rate reduction, or zeroing out some number of the lower bits of 

the sample for bit-depth reduction. The number of samples 

discarded and the number of bits zeroed are the two parameters 

controlled by the rotary encoders. 
The delay module follows the distortion module. The delay 

effect will replay the given sample at the same distortion with 

some variable loudness after some amount of time, again 

controlled with an onboard rotary encoder. The module itself 

will take a sample from upstream effects and the value of the 

rotary encoders as input, and outputs a sample that is the 

original input sample mixed with the output of the delay queue. 

The design of the delay was somewhat difficult at first, given 

that at 44,100 samples per second and 16-bits per sample, we 

would need more than half a megabit of memory for this queue. 

This is far more than can be stored within the LUTs of the 

FPGA and we decided between placing the queue in SDRAM 

versus the block ram of the FPGA. Ultimately, we decided the 

while there is a lot more SDRAM available on the FPGA, the 

time and effort spent dealing with potential memory controller 

issues would make it not worth it. Although the original FPGA 

board we wanted to target, the Terasic DE0 board with an Altera 

Cyclone III, does not have enough block ram to support the 

queues for the delay and the reverb effect, we decided that 

switching to the very similar Terasic DE0-CV board with a 

Cyclone V would be sufficient. Although this board is slightly 

more expensive than the low cost DE0 board, the cost increase 

is not particularly worrying, given the low cost of the rest of the 

system. We found that Quartus’s Megafunction wizard could 

create fixed-length FIFOs using the M10K block ram and will 

be leveraging this tool to create the core of the delay queue. We 

will target a maximum delay of one second for the delay effect, 

adjustable by the rotary encoders. Ideally, since for every 

sample we enqueue we also dequeue a sample on the same 

clock cycle, the FIFO will be a fixed length for each delay 

length. When the user changes the length of the delay, we will 

either enqueue without dequeuing to adjust to a longer delay or 

dequeue without enqueueing to adjust to a shorter delay. While 

this does mean that there will be some transient distortion, given 

the short timescales within the queue itself, the transient should 

not negatively impact the user experience. We will design 

support hardware around the FIFO to both control the FIFO and 

adjust the length of the delays, as well as hardware that mixes 

the input sample and the output of the delay queue. The output 

of the delay queue will be adjusted in volume based on the user 

input and then mixed with the input sample and outputted. 
The reverb module is similar to the delay module in principle, 

operating on a delay queue as well. The primary difference, 

however, is that the queue in the reverb module will incorporate 

feedback and attenuation to create the echoing effect simu 

lating the sound bouncing off the walls in a room. The input to 

the reverb module will be the sample outputted by the delay 

module as well as the value of the rotary encoder that will 

control the amount of attenuation in the feedback loop. Again, 

we will utilize the Quartus Megafunction wizard to create fixed 

length FIFOs using the M10K block rams aboard the Cyclone 

V. In the design of the reverb module, we have two stages. In 

the first stage, we use a tapped shift register to simulate an 

initial network of early sound reflections. The values out of 

these taps are then scaled and added to become the inputs to the 

second stage. The second stage of reflections uses four comb 

Figure 5. Reverb Module Design 
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filters made of feedback FIFOs feeding into an all-pass filter 

made with a FIFO with both feedback and feedforward loops. 

The values for the tapped shift register scaling, tap width, FIFO 

length, and feedback gains were all determined experimentally 

using software simulations of the effect. Compromises were 

ultimately made on the quality of the reverb effect to save on 

the large amount of block ram and multiplier usage. Again as 

before, the output of the reverb queue will be mixed with the 

input signal coming into the module; however we do not 

anticipate this mixing to be adjustable at this time. Currently, 

since that the reverb module is at the end of the digital effects 

chain, the mixed sample outputted from the reverb module will 

be piped into the DAC support module. 
 

E. Drum Pads 

Parallel to the digital synthesis and effects chain is the drum 

synthesis pipeline. While we originally considered using drum 

samples to provide the best sounding drums, an investigation 

into drum synthesis techniques used in early video game 

consoles yielded simple drum sounds that sounded percussive 

enough yet would not have the hefty memory requirements that 

a sample-based drum sound would need. There are four 

different drum sounds that our synthesizer can create: bass 

drums, snare drums, tom-toms, and closed hi-hats. All four of 

these sounds are created with only a triangle wave and white 

noise generator. The three drum sounds are all made by pitch 

shifting a triangle wave down quickly over the course of a tenth 

of a second to create a thick percussive sound. For the snare 

drum, white noise generated by a linear feedback shift register 

is mixed in with the triangle wave. Finally, for the hi-hats, a 

short burst of white noise is played that quickly fades away. All 

four of these drum sounds are controlled using the push buttons 

on the Terasic DE0-CV development board. 

F. Digital to Analog Conversion 

The digital signal now must be converted into an analog 

signal so that it can go through our equalizer filters and become 

an actual sound through our speakers. In order to do this, we 

use a MAX841 DAC, shown in figure 5. Our DAC is powered 

through a typical laboratory power supply with 5V. Our system 

then outputs an SCLK, generated from our 50MHz output 

clock. It shows the DAC 16 positive edges to allow the shift 

register within the DAC to shift in our 16-bit sample. Our data 

is offset by around 40ns to ensure that we do not violate any 

set-up conditions for the shift register. Our sample clock is also 

generated from our 50MHz clock by counting clocks before 

needing to change.  

 Verification for the DAC modules was done through 

testbenches and measuring the outputs of the FPGA GPIO pins 

through an oscilloscope. 

G. Filters and Equalizer  

After we have converted our digital signal into an analog one, 

we wanted to create a simple equalizer to give the user greater 

control over the sound output. This equalizer also has a volume 

control tacked onto the end. As a baseline target, we wanted to 

be able for the user to control sounds from a note referred to as 

A0, to a note referred to as C8. These notes are denoted as the 

tone followed by an octave, and the range that we chose gives 

us a range equivalent to that of a piano. The equalizer has eight 

different ranges to mirror the number of equalizers in a normal 

synthesizer. Shown in Fig. 7. below are the ranges of each filter. 

Regions 1 and 8 are the final low and high pass filters that we 

wanted to use. Currently, they are fixed filters, but the design 

allows for us to potentially control where their cutoffs are and 

make them variable cutoff filters, which is a feature that many 

on-the-market synthesizers have. 

  

In order to create these, our circuitry implements two-stage 

filters for each frequency range. The reason for this is that it is 

simpler to create a low-pass combined with a high-pass that 

have sharp cut-off frequencies than to create a bandpass with 

less sharp cutoffs. Furthermore, it allows us to separately design 

each filter, which makes testing and fixing any errors that have 

been made much easier. The overall circuitry is shown in Figure 

Fig. 8., but with only two band-pass filters shown rather than 

the 6 that we intend to have when our design is completed.  

Figure 6. DAC DIP chip pinout 

Figure 8. Equalizer design 

 

 

Figure 7. Filter ranges 
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The low-pass and high-pass filters are in Butterworth 

topologies and have a second-order pole at the given cutoff 

frequency. This pole allows us to achieve 40dB per decade roll-

off, which is important in ensuring that sound frequencies that 

we do not want to pass through are not passing through. The 

topologies for the third-order low-pass and high-pass filters are 

relatively simple in terms of design and implementation. Shown 

in figures Fig. 9. and Fig. 10. are the third-order filters.  

 

In terms of overall design, we wanted to add as many layers 

of buffers as possible in order to ensure that there will be 

minimal loading between all the stages of filters that we have 

designed. This also allows us to test each filter independently 

and then combined in order to help smooth integration. After 

the two stages of filters that we have, we have an effectively 

variable gain op-amp whose gain is controlled by the 

potentiometers. These allow us to create an equalizer which can 

be used to boost or attenuate certain frequencies and allow the 

user to create unique sounds. Finally, we combine all our 

signals via a summing amplifier, which also has variable gain, 

and send the output to a speaker. The speaker is yet to be 

determined, but the chosen speaker will determine what amount 

of gain is needed at minimum on the summing amplifier at the 

end. 

VI. PROJECT MANAGEMENT 

A. Schedule 

Our breakdown of work is relatively simple. We wanted to 

ensure that everyone was scheduled in their comfort zone where 

they would be able to do their best work. Furthermore, we 

wanted to make sure that everyone had enough slack available 

so that they would have some extra time to do their work if 

necessary. Our schedule can be seen in the figure below. It may                                  

be a bit difficult to read, but in yellow are tasks that require 

everyone to pitch in to complete, in green are tasks for Hailang, 

blue tasks for Jens, and red tasks for Charles. Additionally, a 

larger version of the schedule can be seen after the references 

section. Each person should have roughly two weeks of slack 

for themselves, while the overall project where everyone might 

need slack has around another added week of slack. 

These two weeks were consumed with solving unforeseen 

issues with the ways that certain modules worked. Then at the 

end of the project the overall slack that had been put in place 

for the group was consumed in large part by the task of tracking 

down the analog bug that was creating all of the noise in the 

circuit. This took a considerable amount of time and was found 

to be mainly caused by a timing bug in the DAC section. 
Figure 11. Schedule 

Figure 9. Low pass filter Figure 10. High pass filter 
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However, other issues with the implementation such as the 

solderless breadboards were found and solved in this time. 

Additionally, a lot of the time went into adding some bonus 

features to the project that originally were not budgeted for. 

These features included the ADSR envelope and the button-

based drum system. 

 

B. Team Member Responsibilities 

In terms of work breakdown, Jens has a work focus on 

converting signals into digital signals. His focus is on 

determining what needs to be read from the wavetables which 

store digital sample values in the distributed block ram. 

Hailang’s focus is on digital logic manipulation, taking a 

sample value and applying different effects to that to get a final 

digital value. Charles’ work focuses on the analog side of the 

synthesizer. His work involves converting the digital value 

through a DAC to get to an analog signal and filtering that 

signal to reach the speaker and an end sound.  

As such, we broke down our project into several parts, which 

are distributed as described above. The distribution of work can 

be seen in Table 2.  

 

C. Budget 

The total cost of the synthesizer lie mostly in the MIDI 

controller and the FPGA board. We tried to buy analog parts 

specifically designed for audio applications as those tended to 

be less noisy, but as a result, the cost was therefore higher as 

well. We had smoked out several DACs during testing so we 

made sure to buy lots of extra ICs over the course of the project 

so we had spares on hand. For a complete breakdown of parts, 

see Table 2. 

D. Risk Management 

When initially planning out the organization for completing 

this project we knew that the largest potential issue that we 

would face would be in the integration of the entire system. 

Specifically, when it came to the transition between digital 

signals and analog. Because of this fact there were a few 

specific actions that we took to safeguard against one of these 

issues bringing down the project entirely. The first of which was 

the built-in slack time at the end of the semester that was meant 

to pick up any extra time that we would need to complete 

integration. This ended up being extremely useful as there were 

a few bugs at the end that took a very large amount of time to 

finish. This bug had to do with noise on the analog side which 

took a long time to determine both the cause of and the solution 

for.  

Another stride we took to try and prepare for risk at the 

beginning of the project was to stress having a complete end to 

end solution complete by the midpoint demo. This would make 

sure that at that point we had at least worked out some of the 

issues that would have been created from the transition from 

digital to analog. When it came to polishing the end sound that 

the synth created there was a large issue with the ground noise 

that had been created through our implementation of the 

equalizer on a solderless breadboard. Moving this design onto 

soldered protoboards solved the ground noise issues from the 

filters. This change helped to stabilize the connections into the 

filters and from the potentiometers. However, it was not known 

for sure whether this would fully solve the issue so the system 

had been designed with the potential fallback of bypassing the 

filter bank all together to still get a usable sound out at the end.  

This kind of modular design was also very important to the way 

that we designed the whole system. The digital synthesis 

pipeline was designed in such a way that almost any module 

could be removed from the chain if it ended up being broken 

and a valid sample would still be output at the end of the 

Item Unit Price Quantity Used Quantity Bought 

Monoprice MIDI Keyboard $50 1 1 

Terasic DE0 CV FPGA $150 1 1 

MAX 541 DAC $17 1 4 

RC4580 Op-amp $0.99 9 14 

6N138 Opto-isolator $1.80 1 3 

LM386 Audio Amplifier $5 1 3 

Various Passives $30 N/A N/A  

Total $262.71   
 

 

 

Jens  Charles Hailang 
MIDI message 
decoder 

Analog filter design MIDI to FPGA 
interface 

Wavetable 

Incrementor 

DAC support 

circuitry 

Delay effect 

Wavetable blending 
and mixing 

FPGA to DAC 
interface 

Reverb effect 

Unison mixing Amplifier design Bit distortion effect 

 

 

 

Table 1. Work Distribution Table 

Table 2. Bill of Materials 
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pipeline. This design mentality came about from trying to make 

sure that as features were added to the system as a whole they 

would not break any of the currently functioning components. 

Any parts that ended up being either broken or not working 

exactly as intended could be cut out of the rest of the system 

without any negative side effects.  

When purchasing physical components for the system one of 

the potential risks that we faced was that some of the 

components are very sensitive to the currents and voltages that 

are run through them. Specifically, the DAC was a potential 

area for risk and on one occasion when a error was made with 

fast modifications being made to the circuit to try and diagnose 

the issue of noise. This error resulted in driving far more current 

through the DAC than we had intended and fried the 

component. To mitigate this risk when ordering parts that were 

sensitive to being damaged multiples were ordered where we 

had the budget. The DAC was a prime example of where having 

the spare parts ready to go and replace prevented this issue from 

setting the project back while waiting for a new part to be 

ordered. 

VII. RELATED WORK 

In researching similar work to the synthesizer that we wished 

to create we used three specific works for reference. Those 

were: Serum, the Waldorf Blofeld, and the Waldorf Quantum. 

These three synthesizers were chosen as they all use wavetable 

synthesis to produce sound but are very different in the markets 

they target and the features they provide. 

Serum is a software wavetable synthesizer plugin made by 

Xfer Records and is the industry standard wavetable synthesizer 

for electronic music production. It is built on the core feature of 

being able to blend and manipulate waveforms. Additionally, it 

comes in at a relatively price point of 300 dollars. However, it 

is locked into a software environment that requires a significant 

amount of additional software and compute power to run to its 

full potential. 

The first of the hardware synthesizers that we compared to 

was the Waldorf Blofeld. This synthesizer was chosen for its 

low price for a hardware synthesizer of 400 dollars. However, 

the core feature that our synthesizer targets of waveform 

blending is completely absent from this synthesizer. This lead 

us to attempt to find an example of a hardware synthesizer that 

did include this core feature. 

Moving up Waldorf’s product stack we arrived at the 

Waldorf Quantum, a wavetable synthesizer with an over 4000-

dollar price tag. This synthesizer did include wavetable 

blending effects but also included copious other effects to 

justify the extreme price. This confirmed that there was a 

vacancy in the market for a hardware wavetable synthesizer that 

focused on wave manipulation effects while achieving a lower 

budget price target. 

VIII. SUMMARY 

Our system overall met almost all of our design 

specifications at the end of the day. Our effects were just as we 

expected and our notes played at the correct volume and 

frequency that we defined. Our system is of course tied to a 

power supply at the moment, which is less than ideal since we 

want to be an operational system outside of the limit of a power 

supply. We think that the best way to deal with this would be to 

introduce some DC-DC voltage convertors into our system that 

can run from the FPGA to the rest of the circuitry. We were also 

limited by the voltage that we gave our filters and final 

amplifying stage since we could never get a swing larger than 

the 5V rails that we provided that chip. Again, this problem 

would be solved by introducing new DC-DC convertors to give 

us a larger voltage rail. The only issue we ran into with our 

specifications was the consistency in frequency response. 

Unfortunately, the response of synthesizer deviates by more 

than 5% at the lowest octave and a half of the MIDI 

specification. This is likely because of the number of DC offset 

filters built into out analog stage also attenuating some of the 

lowest frequencies as well. However, the frequency response 

was very consistent, and did not deviate at all for the rest of the 

MIDI range, which we are satisfied with, especially since many 

notes at the bottom of the MIDI range are only barely within the 

limits of human hearing. 

A. Future Work 

We intend to continue to flush out some of the features that 

are available on our board by adding frequency modulation 

(FM) synthesis and a looping module that allows for a sequence 

of notes to be played once and then looped continuously in the 

background as other notes are played. We also would like to 

eventually move our filters and analog components onto a PCB 

to set in stone our design in a way that we could not before 

finishing the project since we wanted to have a higher ability to 

tune our circuitry. 

B.  Lessons Learned 

In terms of lessons learned, the biggest issue we had was 

making sure that our digital to analog interface came through 

clean. The high frequency digital circuitry has a lot more 

tolerance on it than the audio analog circuitry can take. As such, 

at the interface, any source of noise could create a lot of 

problems. This was one of the biggest issues we had with our 

system. Another issue on the analog side of the system was that 

there were a lot of loose wires when we used a typical 

breadboard to build our circuit. These wires caused us to have 

a lot more noise on our output than we wanted. In order to fix 

this issue, we decided to solder our filters on to protoboards. 

This helped our presentation and also provided us with a way 

to isolate the problem away from the analog circuitry since it 

was less noisy than before. On the digital side of the project, it 

is important to make sure that everyone understands the full 

front-to-back behavior of the system. This will help the team 

when integration time comes. We had defined our interfaces 

well, but experienced problems when it came to building the 

entire system since although any two parts worked fine 

together, the overall architecture of the system did not work 

initially because everyone had been focused on their small part 

as opposed to the system as a whole. 
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APPENDIX A. WORK SCHEDULE 
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APPENDIX B. MODULE DIAGRAMS 


