
18-500 Final Project Report: May 8, 2019

1

Abstract—A system capable of being a low-cost, FPGA-based

wavetable synthesizer with digital wave-blending effects and

digital effects chain including multi-voice unison, distortions, and

reverb. While there are many inexpensive wavetable synthesizers

that include basic digital effects, wave-blending effects are only

found on expensive full-featured hardware synthesizers or

software synthesizers. Our goal is to create a system targeting a

platform competitive with other low-cost synthesizers on the

market while capable of unique and interesting wave-blending

effects not found in this price segment.

Index Terms— FPGA, Music, Synthesizers, Wavetable

Synthesis

I. INTRODUCTION

N this project, our team aims to develop an FPGA-based

wavetable musical synthesizer that targets wave-blending

and wave-shaping effects along with other standard digital

effects found in synthesizers at comparable price points.

Although we are developing the system on an FPGA, we

envision this project as a prototype for evaluation on the track

to create a dedicated chip for musical synthesis. From a market

perspective, we are targeting the prosumer audio/music market,

where people are interested in unique effects and sounds but are

not willing to spend upwards of $4000-5000 for a professional

synthesizer kit. Other devices in the market range typically

either have simple oscillators combined with effects or

wavetables that focus on instrument sound reproduction. While

software solutions do exist, they are not self-contained and

require a digital audio workstation, a MIDI controller, and some

other software for the system to work in, meaning that although

the wavetable synthesizer may not be extremely expensive, the

combined workflow can be both high cost and limiting. Our

goals for our synthesizer focus on having a polyphonic

synthesizer with unique wavetable synthesis effects in addition

to standard effects found on low-cost synthesizers such as

distortion, delay, unison, and delay. On a more technical side,

we want to have pitch accuracy within 5 cents of standard

tunings, minimal harmonic distortion, and even frequency

response. Finally, an important goal is to keep the total parts

cost of the project as low as possible, to show that these effects

can be had at a low cost.

II. DESIGN REQUIREMENTS

The requirements of the project will be split into two parts:

features and audio fidelity. Other metrics we will be measuring,

but without a hard requirement, are FPGA usage (chip area) and

price. Power consumption is of a lesser concern because the

system will be designed to plug into a wall outlet.
For features, we will first discuss traits of the synthesizer. The

synthesizer will support four note polyphony, where four notes

can be played through the synthesizer simultaneously.

Polyphony is a feature found on some, but not all low-cost

synthesizers, but we believe it to be a valuable feature to have

in order to support being able to play chords. The synthesizer

should have at least four different wave shapes stored in the

wavetables; we anticipate the shapes to be two simple ones,

such as a sine and a sawtooth, and two complex waveforms

which can make interesting sounds when blended with others.

The synthesizer can support user-controlled blending any two

wave shapes together. For user-controlled synthesizer effects,

we plan on implementing distortion (sample reduction and bit-

depth reduction), delay, and reverb. the analog side, we will

have an analog equalizer doing a final filtering step. For the

digital synthesis and effects components, we will test them

using Verilog testbenches, and for the analog filtering, we will

generate frequency response plots by passing in noise.
For audio fidelity, we have determined several technical

requirements that the project should meet. As a musical

instrument, we want our synthesizer to be in tune, so we want

our synthesizer to produce sounds within five cents of standard

tunings. This will be tested with a regular instrument tuner and

the synthesizer outputting an undistorted sine. We want the total

harmonic distortion to be less than 5%, a property we will test

by generating sine waves of different frequencies, running an

FFT on the output, and calculating how much distortion exists

at higher harmonics. Similarly, we want the frequency response

to be even across all levels (<5%), and make sure no effect or

filter behaves differently at different frequencies. This will be

tested by observing output response over a range of frequencies

and looking for deviations.
Our soft metrics, area and power, will be measured using the

FPGA synthesis tools and measured for the analog components.

Price will be measured by the total cost of components that we

purchase, as well as the cost of the FPGA board, which is

provided by the university. We aim to minimize these metrics

overall but are not working with a hard requirement.

Jens Ertman, Charles Li, Hailang Liou

{jertman, cli4, hliou}@andrew.cmu.edu

Electrical and Computer Engineering, Carnegie Mellon University

Check Out Our Soundcloud: An FPGA

Wavetable Synthesizer

I

18-500 Final Project Report: May 8, 2019

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The way that the overall architecture is designed is that first

the player interacts with the MIDI controller that we have

purchased. This controller includes the keyboard for playing

notes and each of the control knobs. The control knobs each

have two functions controlled by a function key on the

keyboard. Additionally, active wavetable selection will be

controlled by the switches on the FPGA board.

From the MIDI controller, a MIDI control message is sent to

the FPGA via serial UART and decoded into a format that the

rest of our architecture can read. The MIDI control messages

can either be a control knob, which controls the strength of

different effects, or a keypress message, which signals that a

key was pressed or released, as well as how fast the key was

pressed.

The first stage is the wavetable synthesis stage which takes

the MIDI control signals for the notes and converts them into

samples to feed through the rest of the pipeline. It also takes in

the controls to choose which two active wavetables to fetch

samples from. The last input control that this stage takes in is

the unison control knob which controls the distance from in-

tune each of the unison voices is. The samples are generated

from traversing the wavetable, containing multiple different

wave shapes, and the stride of the traversal determines the

frequency or pitch of the sound. These samples are mixed

together according to the desired amount of wave blending and

then fed through into the effects chain. The number of samples

mixed together is dependent on the amount of wave-blending,

the number of voices from the polyphony, as well as the degree

of unison effect.

Next is the stage of digital effects applied to the samples.

These begin with the distortion module. The distortion comes

in two flavors, one that reduces bit depth (bit crushing) and

another that reduces the sample rate. The bit crushing effect

uses a control knob value that adjusts between a value from 0

to 15 that determine how many of the bits will be truncated to

zeros from the sample. The sample rate reduction module is

similarly controlled by a control knob and discards some

number of samples to reduce the effective sample rate.

Following the distortion effect is the delay effect. This operates

by taking a control knob value to determine the length of the

delay and another control knob value to determine the loudness

of the repeated sound and then plays back all samples a second

time that delay length later. Lastly in the effects chain is the

reverb effect. This effect is very similar in operation to delay

however, the control knob for reverb controls how strong the

reverb is, adjusting the amount of attenuation between “wall

reflections”. Once the digital effects have been applied the

sample is adjusted to be compatible with the DAC interface and

then converted to an analog signal.

After the sample has been converted to analog through the

DAC support circuitry, it is sent to a bank of filters that act as

an 8-band equalizer with high pass and low pass filters as the

outside bands. Each of these bands can be mixed at a different

level using potentiometers and the overall amplification level

can also be controlled. Finally, this signal goes through one

final stage of amplification in preparation for being fed into a

speaker.

The wavetable synthesis itself will all be done on-board the

FPGA, with the analog filtering done only as a final step. This

is quite different than most comparable synthesizers, which do

very little in the digital space and do most of the effects

processing using analog components. While many music-

makers place a lot of value on the idea of the “analog sound,”

we seek to give our synthesizer output some of these qualities

by having the final output stage be fully analog.

The FPGA board that we have chosen for the project is a

Terasic DE0-CV board with an Altera Cyclone V FPGA chip

on-board. The full details of why this board was chosen will be

expanded on in the later sections of this paper, but the key

benefits of this platform were its relatively low cost as well as

the large amount of on-board block ram to facilitate the easy

storage and retrieval of the wavetables themselves, as well as

making the design of the delay and reverb effects much simpler.

While we ultimately see this project as a potential prototype for

a production model using a dedicated chip, the benefits of using

a cheap FPGA platform allow the option of going into

production with the FPGA platform in the future while staying

cost-competitive.

Figure 1. System Block Diagram

18-500 Final Project Report: May 8, 2019

3

IV. DESIGN TRADE STUDIES

In order for us to meet our system specifications, we had to

make several key tradeoffs throughout our design. Our goal in

creating this synthesizer was to create a low-cost musical

synthesis platform that could incorporate features from many

high-end synthesizers, but in the pursuit of keeping costs low,

we could not design everything the way we had wanted.

A. Memory and Block RAM

One of the biggest constraints that we had to work around

was the amount of memory available in our system. Memory

turned out to be a large bottleneck throughout our design,

especially in the effects chain, given the size of each sample and

the number of samples per second that had to be stored in the

reverb and delay effects. Each wavetable requires several

kilobits of block RAM as well. While we investigated other

memory options, such as using DRAM, those options turned out

to be infeasible both because of the amount of time and

resources that would be required to develop and test a memory

controller that suited our needs, as well as our need to be able

to access many words in the memory at once. Block RAM on-

board the FPGA suited this purpose well, because each block

RAM unit is small at 10 kilobits per bank but could easily be

combined together to form arbitrarily large memory banks.

Memory is used all throughout our design independently; for

example, each of the wavetables needs to be accessed in

parallel, as well as the memories used in the many FIFOs

throughout the effects chain. The amount of parallelism

inherent to these memory accesses made on-board block RAM

the only reasonable choice.

 Our original FPGA board selection, the Terasic DE0 with an

Altera Cyclone III, was chosen because of its very low cost and

ease of development. However the block RAM issue forced us

to reevaluate and we settled on the Terasic DE0-CV board, with

an Altera Cyclone V instead. With this board, we had 3

megabits of total block RAM available, which according to

basic calculations using the estimated block RAM usage of each

module would be sufficient. The overall pipeline ended up

coming in at just under 50% of the total block RAM usage,

which was important to us because we needed the area to add a

second, identical pipeline to handle a recording and looping

feature. While it would have made things easier with an even

larger board, given our priority in keeping the overall cost of

the synthesizer low, we did not want to have to use an even

larger board which would be significantly more expensive and

contain more logic cells than were necessary for the project.

 The block RAM limitation did force us to make some

compromises in certain effects. The two major users of block

RAM were delay and reverb: the delay module needed enough

block RAM to store all the samples it needed to delay and the

reverb module needed block RAM to simulate reflections and

delay from different reflections around the room. In order to

have a more natural and fuller sounding reverb, we needed to

simulate many reflections happening at many different times.

This was accomplished by our early reflection network with the

tapped shift register and our late reflection network using the

four parallel comb filters. The compromise was made to use

only four comb filters because of the memory demands for each

filter, as well as using a uniform-tapped shift-register. The

uniform tap spacing that we used would cause a downgrade in

the quality of the reverb effect, since it is preferable for the taps

to be spaced in very different intervals, but doing so would stop

the synthesis tools from using a minimal amount of memory

and would force us to have a lot of block RAM units sitting

partly unused. We tested this tradeoff with a software

simulation of the reverb network and compared the outputs of

the different configurations we experimented with subjectively

to see how much of a difference the more natural reverb designs

we could actually hear. This tradeoff did allow us to have a

longer possible delay, since we originally had only intended for

the delay FIFO to store 32,768 samples, using 60 block RAM

units and allowing for a .75 second maximum delay, but saving

block RAM in the reverb allowed us to double the delay FIFO

to 64556 samples, using 120 block RAM units and allowing for

a 1.5 second delay. Since we thought the longer delay effect

would be a much more impactful change for the end user

compared to the marginally better-sounding reverb, we decided

to opt for more delay and slightly more artificial reverb.

B. Multipliers and Dividers

Multipliers and dividers synthesize to very large blobs of

logic, and it was important for us to minimize the amount we

used to keep the total logic usage within reason. While we had

66 DSP units on-board the FPGA that we had chosen to use, our

synthesis and effects pipeline used a significantly larger number

of multipliers than were available. We tried mitigating the

potentially large amount of logic that could be generated by

optimizing for the sizes of the values that needed to be

multiplied. For example, while the math for a lot of the mixer

operations and effects chain required a lot of fractions and

floating-point math, we tried to do as much as possible with a

simplified fixed-point system to scale the sample values. One

way we optimized was to try to reduce the granularity of the

scaling factors. Since the scaling factors were largely a product

of the control knob configuration, which by the MIDI standard

has a range from 0-127, we experimented with different

granularities to see how few bits we could get away with

actually using in our calculations. In the end, optimizing the

mathematical operations within the system also helped with a

lot of timing and critical path issues that we ran into.

C. Analog Filter Design

One tradeoff we had to make was in the decision on the

amplifier and filter gains. The analog stage was originally

designed to run entirely off the 5V output of the FPGA GPIO

pins, and the gains for all the op-amps were set accordingly.

Unfortunately, because the op-amps take 2V from the top and

bottom of the rails, it meant that our effective rails for

amplifications was only 1V peak-to-peak. This greatly limited

the volume we could output at without causing clipping issues,

and was a tradeoff made in the design to keep the overall

physical end-product clean and compact. While we ended up

running out of time to fix issues related to the FPGA voltage

output being too unstable to use, we did not have the bandwidth

to redesign the system to be used with arbitrary rails, and stuck

with the 5V rails. However, this design does allow us to utilize

the FPGA board’s on-board power supply in the future if we

were to find a good way to stabilize the output.

18-500 Final Project Report: May 8, 2019

4

V. SYSTEM DESCRIPTION

A. MIDI controller to FPGA interface

The first stage of the synthesizer system is the MIDI

keyboard to FPGA interface. This stage consists of the MIDI

keyboard, the support circuitry to convert the MIDI serial out

to UART, the UART receiver module on the FPGA, and finally

a UART decoder to convert the raw bytes into control signals

sent into the main synthesis and effects pipeline.

 The MIDI keyboard we decided to use for the project, the

Stage Right by Monoprice 49-Key MIDI controller, was chosen

for several reasons, the three most important reasons being the

availability of rotary encoders, MIDI serial output, and low

price. First was the number of rotary encoder knobs on the

keyboard. The effects that we have on the synthesizer are all

adjustable, for example, like the degree of blending between

two wave shapes, the decay of the reverb, or the length of the

delay, and we decided that leveraging on-keyboard rotary dials

to control the effects would be the simplest method of control.

Second was the availability of a MIDI out port. While the

official MIDI standard specifies a 5-pin DIN connector as the

primary connector, almost all modern MIDI controllers use a

USB output instead, allowing the keyboard to connect easily to

the desktop computer-based digital audio workstations instead.

We wanted the MIDI controller we used to have the MIDI DIN

output, since the signal sent out can easily converted into UART

with some simple support circuitry, and we wanted to avoid

falling into a trap of either designing a hardware USB controller

from scratch or having to use a pre-made USB controller IP

block, which could bring its own set of compatibility and

integration issues. Unfortunately, this constraint severely

restricted the pool of MIDI controllers we could use, since

lower-end controllers only supported USB output and eschewed

the legacy DIN connector. Finally, price was a major factor as

well. Obviously, we need to stay under the $600 project budget,

and one of the goals with our project is the keep the total parts

cost as low as possible to stay in the same price/cost range as

similar synthesizers. Many higher-priced MIDI controllers

come with lots of unnecessary bells and whistles as well, and

for our synthesizer, we only needed the most basic features

along with the other requirements above. In the end, the

Monoprice MIDI controller was the one of the only keyboards

under $100 that satisfied the other requirements and did not

have atrocious reviews on Amazon.

The next component of the chain is the MIDI support

circuitry. The DIN connector outputs a serial data stream using

current on and off to represent zeros and ones, so support

circuitry is required to convert this into a voltage-based signal.

Luckily, specific circuitry for this is detailed in the MIDI

specification, requiring a specific opto-isolator chip with some

other passive components. Although the exact opto-isolator

chip used in the specification is no longer produced, equivalent

circuitry was easily available online, using an alternative model

of opto-isolator chip (6N139) that was mentioned in the MIDI

specification. The details for the circuitry are shown in the

block diagram. The output of this support circuitry is a UART

input line that is connected to the GPIO pins on the FPGA

board.

B. MIDI Message Decoder

From here on out, the “components” of the synthesis and

effects pipeline will be Verilog modules synthesized on board

the FPGA until the DAC interface with the final analog filtering

component of the pipeline.

The first module of the pipeline is the UART receiver

module. This module is fairly straightforward: it takes in the

raw 1-bit UART serial signal as input and outputs a 8-bit data

byte along with a 1-bit byte data ready signal. The baud rate of

the MIDI transmission is specified in the MIDI specification as

31.25 kbaud, very slow compared to the system clock frequency

we will be running the FPGA on. This module consists of a state

machine to detect when the UART line drops low, signaling the

beginning of the start bit, waiting half of a UART bit to start

sampling in the middle of each bit, and then proceeding to

sample again every UART bit. We anticipate to be running the

system clock at 44.1 MHz in order to simplify the interface with

the DAC later in the pipeline, so each UART bit will be slightly

more than 1411 clock cycles. There is no worry of drifting out

of sync due to the very large number of clock cycles per bit and

that there will only be 10 bit per message before

resynchronizing. The state machine will then proceed to read

the 8 data bits, the one stop bit, and then either return to an idle

state or detect a new incoming byte. The bits are pushed through

an 8-bit serial in, parallel out shift register with the output

connected to the output of the module. The format specified in

the MIDI specification does not contain any parity bits, just one

start and one stop bit per 8-bit data byte. Although MIDI

messages are never just a single byte, this module is format

agnostic and will only process a single byte through UART,

asserting a ready signal after every byte. We will see in the next

module how the full message is constructed.

 The next module of the pipeline assembles the MIDI message

from the individual bytes received by the first module. MIDI

messages that we will care about for this project will come in

two flavors, a two-byte message for sending rotary encoder

information and a three-byte message for sending keypress

data. Because the goal of this module is to assemble the whole

MIDI message to pass on to the full MIDI message decoder,

this module will need to decode the first byte of the message,

the header byte, to determine which type of message is being

received and how many bytes the message is. Each byte coming
Figure 2. MIDI Support Circuitry

18-500 Final Project Report: May 8, 2019

5

into the assembly module from the receiver is pushed through

another serial in, parallel out 32-bit shift register which shifts in

8-bits at a time. The inputs to this module are the byte output

and byte ready of the previous module, while the outputs of this

assembly module are a 32-bit MIDI message bit-vector as well

as a two-bit one-hot signal that signals both that the message is

ready and how many bytes the message contains. A value of

2’b00 will mean that the output is invalid, 2’b01 means the

output is a valid two-byte message, and 2’b10 means the output

is a valid three-byte message, with 2’b11 being an unused,

illegal output. The 32-bit MIDI message bit-vector will have the

bottom 8 bits be zeroes if the message is only two bytes long.

This assembly module will also take an acknowledgement

signal from downstream modules signaling that the MIDI

message on the output has been consumed.
 The next phase of MIDI message decoding is translating this

3- or 2-byte signal into a more readable format for the purpose

of digital synthesis. This decoder module ingests a MIDI

message and translates it out into note name, octave, note

control, control knob value, and velocity. Note name is the

name of the note desired using the standard musical note

naming scheme of A to G. All half-steps between notes will be

named as sharps. The octave output is the octave that the note

falls under ranging from 0 to 7. If the MIDI message that is

being decoded is not a note message the default values for these

two signals are C, and 0 respectively. Note control is a two-bit

signal where the high bit represents if the message is a note

control message, and the low bit is a 0 if the message is a note

off message and is 1 if the message is a note on message.

Control knob value is an enum encoding of the names of the

various control knobs that control effects on the synthesizer.

There is a bank of registers that represent the control knobs if

the control knob value matched the name of the control knob

velocity is stored in that register and it represents the level of

that knob. For a note message velocity represents the volume of

the note.

C. Digital Synthesis System

 The second major subsystem of the synthesizer pipeline is

the wavetable digital synthesis subsystem. This is the portion of

the pipeline which takes in the control data sent by the MIDI

messages and outputs a stream of 16-bit samples that are to be

run through the effects chain. This MIDI control data comes

into this portion of the pipeline in a format which has taken the

3-byte or 2-byte MIDI signal and translated it into the more

readable format generated at the end of the MIDI control

subsystem.

 The beginning of this chain receives the decoded MIDI

messages. These decoded MIDI messages are then fed into the

polyphony control module which manages the storage of the

values for up to four simultaneous notes. The polyphony

module requires a certain amount of cooperation with the

ADSR module because it adjusts the way in which polyphony

removes its stored notes. In order for ADSR to properly

implement the release portion of its envelope polyphony needs

to maintain the stored values for a note even after that note is

released, only evicting a note if there is a new incoming note

and no more non playing slots available. Additionally because

ADSR is applied individually for each note support logic to

keep track of the age of each slot of the polyphony module for

the purpose of evicting the oldest note is also required. Therefor

the polyphony module behaves as such. Until there have been

four notes pressed it fills in the four slots from slot one to slot

four with each note. As the notes are added they are also given

a priority to determine in which order they should be replaced

should more than 4 notes be played. They are also given a flag

that says whether or not the note is currently being held so that

releasing the same note twice will not cause the system to only

remove one of the notes from the four slots. When notes are

released they are not removed from the slots as the ADSR

module requires the note values to remain buffered to play the

release. So when a note is released it changes its flag and

becomes the highest priority to be replaced by a new incoming

note. When a note is replaced the new values are buffered into

the slot and the slot is given the lowest priority for replacement.

Logic checks the priority of all of the other notes against the

priority of the note that was replaced. If the note that was

replaced was of higher priority than another note then that notes

priority increases by one and if not that notes priority does not

change. This implementation of the polyphony module allows

for the use of four simultaneous notes to be played with the user

not needing to lift any of the currently held notes in order to

play more notes. This results in the smoothest possible four

voice playing experience. The only drawback to this

Figure 3. MIDI Message Decoding Diagram

18-500 Final Project Report: May 8, 2019

6

implementation is that it requires an ADSR module to control

when held notes that have been released should stop sounding.

From the polyphony module comes the names of the notes that

are going to determine the incrementor values. Each of the four

note voices gets its own incrementor module which outputs the

wavetable addresses for each of the two unison voices for that

note. The incrementor module operates by taking in the value

of the name of the note on the twelve-tone scale being played

and the value of the octave that it is being played in and the

velocity with which the note has been pressed. It first takes the

value for the name of the note being played and calculates the

incrementation value of the lowest version of this note in the

MIDI specification. For example, if the note being played was

C8 the first step would be calculating the incrementation value

for C-1 the lowest C in the MIDI specification. This is done by

computing the fundamental frequency of the wavetable running

at the full 50 mHz system frequency. From this the value which

the wavetable increments by is determined and expressed as a

30 bit number where the bottom 20 bits are treated as a decimal

and the top 10 bits are treated as the address to the wavetable

for the desired sample. Each clock cycle this incrementation

value is added to the current address, and when a new note is

pressed the current address resets to address 0 and the

incrementation value is recomputed for the new note. Once the

base increment value of the note is found it is then multiplied

by 2 the correct number of times to represent the number of

octaves higher than the base note the note being played is.

Additionally, at the end of this module the unison effect is

applied. This works by taking the computed incrementation

value and multiplying the value by slightly more or slightly less

than 1. This results in two frequencies that are slightly higher

and lower than the fundamental frequency of the note.
 These addresses are then sent to the wavetable access

module. This module takes each of these addresses and sends

them to M10k block-RAM containing each waveform. Each

note has a copy of each of the four waveforms to access samples

from. The M10k block-RAM is configured as a 2-ported ROM

so that each module can have a port dedicated to each of the two

unison addresses. All samples in the wavetables are 12-bit

sample being read as a 16-bit sample. The remaining 4-bit are

reserved for overhead involved in mixing the samples and

applying effects. There are four possible waveforms available,

a saw wave, a sine wave, and two more complex shapes

generated for the user. For any given configuration of the

synthesizer two wavetables will be active at a time. These active

waveforms are selected by the player using the switched on the

FPGA itself. Because of this every clock cycle 16 samples are

fetched from the wavetables. This breaks down as 8 samples per

active waveform and 2 samples for each of the 4 notes being

held.

Once the 16 samples are fetched from the wavetable

memory, the sample and the velocity of note hit are sent to the

ADSR envelope generator module. ADSR stands for “Attack”,

“Decay”, “Sustain”, and “Release” and are the four standard

components of the loudness envelope generated. The idea

behind adding ADSR to our design was to allow for better

shaping of our notes and to allow a more mellow and smooth

tone. In this module, we manipulate the magnitude of the note

being played using some set values as well as knob value inputs

to determine the attack length, decay length, sustain amplitude,

and release length. By allowing the user to control these values,

we can more easily shape the note, but a more complex ADSR

module could be created with time.

The attack stage allows for the volume of the note to ramp up

from 0 to a maximum over the attack length specified by the

knobs. The calculation for the magnitude of the note is

computed by first determining the slope of the line connecting

the 0 to maximum volume, in our case 16, by dividing 16 by the

attack length specified by the user. This value is then multiplied

by a counter, which allows us to determine where on the line

we should fall. This value is then multiplied by the velocity

specified by the input to compute the correct scaled magnitude

of our value. Decay works in a similar fashion. In the decay

mode, we fall from 16 to our sustain amplitude over the decay

length specified by the user. This is done in the same stages as

attack, by first computing a sloped line, then computing where

Figure 4. Digital Synthesis Diagram

18-500 Final Project Report: May 8, 2019

7

we are on the line, and finally multiplying by the velocity we

were given. Sustain simply multiplies the input velocity by a set

scaled value.

 Coming out of the ADSR envelope generator, the final scaled

samples are sent to the mixer module. This module takes in each

sample and the velocity value for its respective note. It then

weights each notes sample by its velocity level and adds

together all the samples for each of the two waveforms. Then

taking the value provided by the blending control knob adds the

resultant samples for each of the waveforms. The blending

control knob determines how much of each of the two active

waveforms is desired. At a value of 0 only active waveform one

is played, at a value of 127 only active waveform two is played.

The output of the mixer is buffered and updated on the sample

clock as opposed to the system clock. This is done so that the

effects chain which involves a delay effect and a reverb effect

that both need to use memory must store the minimum number

of samples to achieve their effects.

D. Digital Effects Subsystem

After the wavetable synthesis pipeline, the sample is then

piped into the effects pipeline. The effects pipeline consists of

three parts, the distortion effect, the delay effect, and the reverb

effect. These effects are all chained together in serially one after

another. All three of these effects are independently adjustable

using the rotary encoders on the MIDI controller.
The distortion module is first in the effects chain. The module

takes in the 16-bit sample and the values of two rotary encoders

as input and outputs a distorted 16-bit sample. The sample is

distorted by both a sample-rate reduction effect and a bit-depth

reduction effect, both independently controlled by different

rotary encoders. The implementation of both effects is fairly

straightforward, using a counter and only passing every n

samples downstream and tossing the other samples for sample

rate reduction, or zeroing out some number of the lower bits of

the sample for bit-depth reduction. The number of samples

discarded and the number of bits zeroed are the two parameters

controlled by the rotary encoders.
The delay module follows the distortion module. The delay

effect will replay the given sample at the same distortion with

some variable loudness after some amount of time, again

controlled with an onboard rotary encoder. The module itself

will take a sample from upstream effects and the value of the

rotary encoders as input, and outputs a sample that is the

original input sample mixed with the output of the delay queue.

The design of the delay was somewhat difficult at first, given

that at 44,100 samples per second and 16-bits per sample, we

would need more than half a megabit of memory for this queue.

This is far more than can be stored within the LUTs of the

FPGA and we decided between placing the queue in SDRAM

versus the block ram of the FPGA. Ultimately, we decided the

while there is a lot more SDRAM available on the FPGA, the

time and effort spent dealing with potential memory controller

issues would make it not worth it. Although the original FPGA

board we wanted to target, the Terasic DE0 board with an Altera

Cyclone III, does not have enough block ram to support the

queues for the delay and the reverb effect, we decided that

switching to the very similar Terasic DE0-CV board with a

Cyclone V would be sufficient. Although this board is slightly

more expensive than the low cost DE0 board, the cost increase

is not particularly worrying, given the low cost of the rest of the

system. We found that Quartus’s Megafunction wizard could

create fixed-length FIFOs using the M10K block ram and will

be leveraging this tool to create the core of the delay queue. We

will target a maximum delay of one second for the delay effect,

adjustable by the rotary encoders. Ideally, since for every

sample we enqueue we also dequeue a sample on the same

clock cycle, the FIFO will be a fixed length for each delay

length. When the user changes the length of the delay, we will

either enqueue without dequeuing to adjust to a longer delay or

dequeue without enqueueing to adjust to a shorter delay. While

this does mean that there will be some transient distortion, given

the short timescales within the queue itself, the transient should

not negatively impact the user experience. We will design

support hardware around the FIFO to both control the FIFO and

adjust the length of the delays, as well as hardware that mixes

the input sample and the output of the delay queue. The output

of the delay queue will be adjusted in volume based on the user

input and then mixed with the input sample and outputted.
The reverb module is similar to the delay module in principle,

operating on a delay queue as well. The primary difference,

however, is that the queue in the reverb module will incorporate

feedback and attenuation to create the echoing effect simu

lating the sound bouncing off the walls in a room. The input to

the reverb module will be the sample outputted by the delay

module as well as the value of the rotary encoder that will

control the amount of attenuation in the feedback loop. Again,

we will utilize the Quartus Megafunction wizard to create fixed

length FIFOs using the M10K block rams aboard the Cyclone

V. In the design of the reverb module, we have two stages. In

the first stage, we use a tapped shift register to simulate an

initial network of early sound reflections. The values out of

these taps are then scaled and added to become the inputs to the

second stage. The second stage of reflections uses four comb

Figure 5. Reverb Module Design

18-500 Final Project Report: May 8, 2019

8

filters made of feedback FIFOs feeding into an all-pass filter

made with a FIFO with both feedback and feedforward loops.

The values for the tapped shift register scaling, tap width, FIFO

length, and feedback gains were all determined experimentally

using software simulations of the effect. Compromises were

ultimately made on the quality of the reverb effect to save on

the large amount of block ram and multiplier usage. Again as

before, the output of the reverb queue will be mixed with the

input signal coming into the module; however we do not

anticipate this mixing to be adjustable at this time. Currently,

since that the reverb module is at the end of the digital effects

chain, the mixed sample outputted from the reverb module will

be piped into the DAC support module.

E. Drum Pads

Parallel to the digital synthesis and effects chain is the drum

synthesis pipeline. While we originally considered using drum

samples to provide the best sounding drums, an investigation

into drum synthesis techniques used in early video game

consoles yielded simple drum sounds that sounded percussive

enough yet would not have the hefty memory requirements that

a sample-based drum sound would need. There are four

different drum sounds that our synthesizer can create: bass

drums, snare drums, tom-toms, and closed hi-hats. All four of

these sounds are created with only a triangle wave and white

noise generator. The three drum sounds are all made by pitch

shifting a triangle wave down quickly over the course of a tenth

of a second to create a thick percussive sound. For the snare

drum, white noise generated by a linear feedback shift register

is mixed in with the triangle wave. Finally, for the hi-hats, a

short burst of white noise is played that quickly fades away. All

four of these drum sounds are controlled using the push buttons

on the Terasic DE0-CV development board.

F. Digital to Analog Conversion

The digital signal now must be converted into an analog

signal so that it can go through our equalizer filters and become

an actual sound through our speakers. In order to do this, we

use a MAX841 DAC, shown in figure 5. Our DAC is powered

through a typical laboratory power supply with 5V. Our system

then outputs an SCLK, generated from our 50MHz output

clock. It shows the DAC 16 positive edges to allow the shift

register within the DAC to shift in our 16-bit sample. Our data

is offset by around 40ns to ensure that we do not violate any

set-up conditions for the shift register. Our sample clock is also

generated from our 50MHz clock by counting clocks before

needing to change.

 Verification for the DAC modules was done through

testbenches and measuring the outputs of the FPGA GPIO pins

through an oscilloscope.

G. Filters and Equalizer

After we have converted our digital signal into an analog one,

we wanted to create a simple equalizer to give the user greater

control over the sound output. This equalizer also has a volume

control tacked onto the end. As a baseline target, we wanted to

be able for the user to control sounds from a note referred to as

A0, to a note referred to as C8. These notes are denoted as the

tone followed by an octave, and the range that we chose gives

us a range equivalent to that of a piano. The equalizer has eight

different ranges to mirror the number of equalizers in a normal

synthesizer. Shown in Fig. 7. below are the ranges of each filter.

Regions 1 and 8 are the final low and high pass filters that we

wanted to use. Currently, they are fixed filters, but the design

allows for us to potentially control where their cutoffs are and

make them variable cutoff filters, which is a feature that many

on-the-market synthesizers have.

In order to create these, our circuitry implements two-stage

filters for each frequency range. The reason for this is that it is

simpler to create a low-pass combined with a high-pass that

have sharp cut-off frequencies than to create a bandpass with

less sharp cutoffs. Furthermore, it allows us to separately design

each filter, which makes testing and fixing any errors that have

been made much easier. The overall circuitry is shown in Figure

Fig. 8., but with only two band-pass filters shown rather than

the 6 that we intend to have when our design is completed.

Figure 6. DAC DIP chip pinout

Figure 8. Equalizer design

Figure 7. Filter ranges

18-500 Final Project Report: May 8, 2019

9

The low-pass and high-pass filters are in Butterworth

topologies and have a second-order pole at the given cutoff

frequency. This pole allows us to achieve 40dB per decade roll-

off, which is important in ensuring that sound frequencies that

we do not want to pass through are not passing through. The

topologies for the third-order low-pass and high-pass filters are

relatively simple in terms of design and implementation. Shown

in figures Fig. 9. and Fig. 10. are the third-order filters.

In terms of overall design, we wanted to add as many layers

of buffers as possible in order to ensure that there will be

minimal loading between all the stages of filters that we have

designed. This also allows us to test each filter independently

and then combined in order to help smooth integration. After

the two stages of filters that we have, we have an effectively

variable gain op-amp whose gain is controlled by the

potentiometers. These allow us to create an equalizer which can

be used to boost or attenuate certain frequencies and allow the

user to create unique sounds. Finally, we combine all our

signals via a summing amplifier, which also has variable gain,

and send the output to a speaker. The speaker is yet to be

determined, but the chosen speaker will determine what amount

of gain is needed at minimum on the summing amplifier at the

end.

VI. PROJECT MANAGEMENT

A. Schedule

Our breakdown of work is relatively simple. We wanted to

ensure that everyone was scheduled in their comfort zone where

they would be able to do their best work. Furthermore, we

wanted to make sure that everyone had enough slack available

so that they would have some extra time to do their work if

necessary. Our schedule can be seen in the figure below. It may

be a bit difficult to read, but in yellow are tasks that require

everyone to pitch in to complete, in green are tasks for Hailang,

blue tasks for Jens, and red tasks for Charles. Additionally, a

larger version of the schedule can be seen after the references

section. Each person should have roughly two weeks of slack

for themselves, while the overall project where everyone might

need slack has around another added week of slack.

These two weeks were consumed with solving unforeseen

issues with the ways that certain modules worked. Then at the

end of the project the overall slack that had been put in place

for the group was consumed in large part by the task of tracking

down the analog bug that was creating all of the noise in the

circuit. This took a considerable amount of time and was found

to be mainly caused by a timing bug in the DAC section.
Figure 11. Schedule

Figure 9. Low pass filter Figure 10. High pass filter

18-500 Final Project Report: May 8, 2019

10

However, other issues with the implementation such as the

solderless breadboards were found and solved in this time.

Additionally, a lot of the time went into adding some bonus

features to the project that originally were not budgeted for.

These features included the ADSR envelope and the button-

based drum system.

B. Team Member Responsibilities

In terms of work breakdown, Jens has a work focus on

converting signals into digital signals. His focus is on

determining what needs to be read from the wavetables which

store digital sample values in the distributed block ram.

Hailang’s focus is on digital logic manipulation, taking a

sample value and applying different effects to that to get a final

digital value. Charles’ work focuses on the analog side of the

synthesizer. His work involves converting the digital value

through a DAC to get to an analog signal and filtering that

signal to reach the speaker and an end sound.

As such, we broke down our project into several parts, which

are distributed as described above. The distribution of work can

be seen in Table 2.

C. Budget

The total cost of the synthesizer lie mostly in the MIDI

controller and the FPGA board. We tried to buy analog parts

specifically designed for audio applications as those tended to

be less noisy, but as a result, the cost was therefore higher as

well. We had smoked out several DACs during testing so we

made sure to buy lots of extra ICs over the course of the project

so we had spares on hand. For a complete breakdown of parts,

see Table 2.

D. Risk Management

When initially planning out the organization for completing

this project we knew that the largest potential issue that we

would face would be in the integration of the entire system.

Specifically, when it came to the transition between digital

signals and analog. Because of this fact there were a few

specific actions that we took to safeguard against one of these

issues bringing down the project entirely. The first of which was

the built-in slack time at the end of the semester that was meant

to pick up any extra time that we would need to complete

integration. This ended up being extremely useful as there were

a few bugs at the end that took a very large amount of time to

finish. This bug had to do with noise on the analog side which

took a long time to determine both the cause of and the solution

for.

Another stride we took to try and prepare for risk at the

beginning of the project was to stress having a complete end to

end solution complete by the midpoint demo. This would make

sure that at that point we had at least worked out some of the

issues that would have been created from the transition from

digital to analog. When it came to polishing the end sound that

the synth created there was a large issue with the ground noise

that had been created through our implementation of the

equalizer on a solderless breadboard. Moving this design onto

soldered protoboards solved the ground noise issues from the

filters. This change helped to stabilize the connections into the

filters and from the potentiometers. However, it was not known

for sure whether this would fully solve the issue so the system

had been designed with the potential fallback of bypassing the

filter bank all together to still get a usable sound out at the end.

This kind of modular design was also very important to the way

that we designed the whole system. The digital synthesis

pipeline was designed in such a way that almost any module

could be removed from the chain if it ended up being broken

and a valid sample would still be output at the end of the

Item Unit Price Quantity Used Quantity Bought

Monoprice MIDI Keyboard $50 1 1

Terasic DE0 CV FPGA $150 1 1

MAX 541 DAC $17 1 4

RC4580 Op-amp $0.99 9 14

6N138 Opto-isolator $1.80 1 3

LM386 Audio Amplifier $5 1 3

Various Passives $30 N/A N/A

Total $262.71

Jens Charles Hailang
MIDI message
decoder

Analog filter design MIDI to FPGA
interface

Wavetable

Incrementor

DAC support

circuitry

Delay effect

Wavetable blending
and mixing

FPGA to DAC
interface

Reverb effect

Unison mixing Amplifier design Bit distortion effect

Table 1. Work Distribution Table

Table 2. Bill of Materials

18-500 Final Project Report: May 8, 2019

11

pipeline. This design mentality came about from trying to make

sure that as features were added to the system as a whole they

would not break any of the currently functioning components.

Any parts that ended up being either broken or not working

exactly as intended could be cut out of the rest of the system

without any negative side effects.

When purchasing physical components for the system one of

the potential risks that we faced was that some of the

components are very sensitive to the currents and voltages that

are run through them. Specifically, the DAC was a potential

area for risk and on one occasion when a error was made with

fast modifications being made to the circuit to try and diagnose

the issue of noise. This error resulted in driving far more current

through the DAC than we had intended and fried the

component. To mitigate this risk when ordering parts that were

sensitive to being damaged multiples were ordered where we

had the budget. The DAC was a prime example of where having

the spare parts ready to go and replace prevented this issue from

setting the project back while waiting for a new part to be

ordered.

VII. RELATED WORK

In researching similar work to the synthesizer that we wished

to create we used three specific works for reference. Those

were: Serum, the Waldorf Blofeld, and the Waldorf Quantum.

These three synthesizers were chosen as they all use wavetable

synthesis to produce sound but are very different in the markets

they target and the features they provide.

Serum is a software wavetable synthesizer plugin made by

Xfer Records and is the industry standard wavetable synthesizer

for electronic music production. It is built on the core feature of

being able to blend and manipulate waveforms. Additionally, it

comes in at a relatively price point of 300 dollars. However, it

is locked into a software environment that requires a significant

amount of additional software and compute power to run to its

full potential.

The first of the hardware synthesizers that we compared to

was the Waldorf Blofeld. This synthesizer was chosen for its

low price for a hardware synthesizer of 400 dollars. However,

the core feature that our synthesizer targets of waveform

blending is completely absent from this synthesizer. This lead

us to attempt to find an example of a hardware synthesizer that

did include this core feature.

Moving up Waldorf’s product stack we arrived at the

Waldorf Quantum, a wavetable synthesizer with an over 4000-

dollar price tag. This synthesizer did include wavetable

blending effects but also included copious other effects to

justify the extreme price. This confirmed that there was a

vacancy in the market for a hardware wavetable synthesizer that

focused on wave manipulation effects while achieving a lower

budget price target.

VIII. SUMMARY

Our system overall met almost all of our design

specifications at the end of the day. Our effects were just as we

expected and our notes played at the correct volume and

frequency that we defined. Our system is of course tied to a

power supply at the moment, which is less than ideal since we

want to be an operational system outside of the limit of a power

supply. We think that the best way to deal with this would be to

introduce some DC-DC voltage convertors into our system that

can run from the FPGA to the rest of the circuitry. We were also

limited by the voltage that we gave our filters and final

amplifying stage since we could never get a swing larger than

the 5V rails that we provided that chip. Again, this problem

would be solved by introducing new DC-DC convertors to give

us a larger voltage rail. The only issue we ran into with our

specifications was the consistency in frequency response.

Unfortunately, the response of synthesizer deviates by more

than 5% at the lowest octave and a half of the MIDI

specification. This is likely because of the number of DC offset

filters built into out analog stage also attenuating some of the

lowest frequencies as well. However, the frequency response

was very consistent, and did not deviate at all for the rest of the

MIDI range, which we are satisfied with, especially since many

notes at the bottom of the MIDI range are only barely within the

limits of human hearing.

A. Future Work

We intend to continue to flush out some of the features that

are available on our board by adding frequency modulation

(FM) synthesis and a looping module that allows for a sequence

of notes to be played once and then looped continuously in the

background as other notes are played. We also would like to

eventually move our filters and analog components onto a PCB

to set in stone our design in a way that we could not before

finishing the project since we wanted to have a higher ability to

tune our circuitry.

B. Lessons Learned

In terms of lessons learned, the biggest issue we had was

making sure that our digital to analog interface came through

clean. The high frequency digital circuitry has a lot more

tolerance on it than the audio analog circuitry can take. As such,

at the interface, any source of noise could create a lot of

problems. This was one of the biggest issues we had with our

system. Another issue on the analog side of the system was that

there were a lot of loose wires when we used a typical

breadboard to build our circuit. These wires caused us to have

a lot more noise on our output than we wanted. In order to fix

this issue, we decided to solder our filters on to protoboards.

This helped our presentation and also provided us with a way

to isolate the problem away from the analog circuitry since it

was less noisy than before. On the digital side of the project, it

is important to make sure that everyone understands the full

front-to-back behavior of the system. This will help the team

when integration time comes. We had defined our interfaces

well, but experienced problems when it came to building the

entire system since although any two parts worked fine

together, the overall architecture of the system did not work

initially because everyone had been focused on their small part

as opposed to the system as a whole.

18-500 Final Project Report: May 8, 2019

12

REFERENCES

[1] J. Moorer, “About This Reverberation Business”, Computer Music
Journal, vol. 3, no. 2, 1979, pp. 13–28. JSTOR,

www.jstor.org/stable/3680280.

[2] Xfer Records xferrecords.com.
[3] Waldorf www.waldorfmusic.com/en/

[4] MIDI Spec www.midi.org/specifications

18-500 Final Project Report: May 8, 2019

13

APPENDIX A. WORK SCHEDULE

18-500 Final Project Report: May 8, 2019

14

APPENDIX B. MODULE DIAGRAMS

