
18-500 Design Review: March 4, 2019

1

Abstract—A system capable of being a low-cost, FPGA-based

wavetable synthesizer with digital wave-blending effects and

digital effects chain including multi-voice unison, distortions, and

reverb. While there are many inexpensive wavetable synthesizers

that include basic digital effects, wave-blending effects are only

found on expensive full-featured hardware synthesizers or

software synthesizers. Our goal is to create a system targeting a

platform competitive with other low-cost synthesizers on the

market while capable of unique and interesting wave-blending

effects not found in this price segment.

Index Terms— FPGA, Music, Synthesizers, Wavetable

Synthesis

I. INTRODUCTION

N this project, our team aims to develop an FPGA-based

wavetable musical synthesizer that targets wave-blending

and wave-shaping effects along with other standard digital

effects found in synthesizers at comparable price points.

Although we are developing the system on an FPGA, we

envision this project as a prototype for evaluation on the track

to create a dedicated chip for musical synthesis. From a market

perspective, we are targeting the prosumer audio/music market,

where people are interested in unique effects and sounds but are

not willing to spend upwards of $4000-5000 for a professional

synthesizer kit. Other devices in the market range typically

either have simple oscillators combined with effects or

wavetables that focus on instrument sound reproduction. While

software solutions do exist, they are not self-contained and

require a digital audio workstation, a MIDI controller, and some

other software for the system to work in, meaning that although

the wavetable synthesizer may not be extremely expensive, the

combined workflow can be both high cost and limiting. Our

goals for our synthesizer focus on having a polyphonic

synthesizer with unique wavetable synthesis effects in addition

to standard effects found on low-cost synthesizers such as

distortion, delay, unison, and delay. On a more technical side,

we want to have pitch accuracy within 5 cents of standard

tunings, minimal harmonic distortion, and even frequency

response. Finally, an important goal is to keep the total parts

cost of the project as low as possible, to show that these effects

can be had at a low cost.

II. DESIGN REQUIREMENTS

The requirements of the project will be split into two parts:

features and audio fidelity. Other metrics we will be measuring,

but without a hard requirement, are FPGA usage (chip area) and

price. Power consumption is of a lesser concern because the

system will be designed to plug into a wall outlet.
For features, we will first discuss traits of the synthesizer. The

synthesizer will support four note polyphony, where four notes

can be played through the synthesizer simultaneously.

Polyphony is a feature found on some, but not all low-cost

synthesizers, but we believe it to be a valuable feature to have

in order to support being able to play chords. The synthesizer

should have at least four different wave shapes stored in the

wavetables; we anticipate the shapes to be two simple ones,

such as a sine and a sawtooth, and two complex waveforms

which can make interesting sounds when blended with others.

The synthesizer can support user-controlled blending any two

wave shapes together. For user-controlled synthesizer effects,

we plan on implementing distortion (sample reduction and bit-

depth reduction), delay, and reverb. the analog side, we will

have an analog equalizer doing a final filtering step. For the

digital synthesis and effects components, we will test them

using Verilog testbenches, and for the analog filtering, we will

generate frequency response plots by passing in noise.
For audio fidelity, we have determined several technical

requirements that the project should meet. As a musical

instrument, we want our synthesizer to be in tune, so we want

our synthesizer to produce sounds within five cents of standard

tunings. This will be tested with a regular instrument tuner and

the synthesizer outputting an undistorted sine. We want the total

harmonic distortion to be less than 5%, a property we will test

by generating sine waves of different frequencies, running an

FFT on the output, and calculating how much distortion exists

at higher harmonics. Similarly, we want the frequency response

to be even across all levels (<5%), and make sure no effect or

filter behaves differently at different frequencies. This will be

tested by observing output response over a range of frequencies

and looking for deviations.
Our soft metrics, area and power, will be measured using the

FPGA synthesis tools and measured for the analog components.

Price will be measured by the total cost of components that we

purchase, as well as the cost of the FPGA board, which is

provided by the university. We aim to minimize these metrics

overall but are not working with a hard requirement.

Check Out Our Soundcloud: An FPGA

Wavetable Synthesizer

Jens Ertman, Charles Li, Hailang Liou:

Electrical and Computer Engineering, Carnegie Mellon University

I

18-500 Design Review: March 4, 2019

2

 Fig. 1. System Block Diagram

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The way that the overall architecture is designed is that first

the player interacts with the MIDI controller that we have

purchased. This controller includes the keyboard for playing

notes and each of the control knobs. The control knobs each

have two functions controlled by a function key on the

keyboard. Additionally, active wavetable selection will be

controlled by the switches on the FPGA board.

From the MIDI controller, a MIDI control message is sent to

the FPGA via serial UART and decoded into a format that the

rest of our architecture can read. The MIDI control messages

can either be a control knob, which controls the strength of

different effects, or a keypress message, which signals that a

key was pressed or released, as well as how fast the key was

pressed.

The first stage is the wavetable synthesis stage which takes

the MIDI control signals for the notes and converts them into

samples to feed through the rest of the pipeline. It also takes in

the controls to choose which two active wavetables to fetch

samples from. The last input control that this stage takes in is

the unison control knob which controls the distance from in-

tune each of the unison voices is. The samples are generated

from traversing the wavetable, containing multiple different

wave shapes, and the stride of the traversal determines the

frequency or pitch of the sound. These samples are mixed

together according to the desired amount of wave blending and

then fed through into the effects chain. The number of samples

mixed together is dependent on the amount of wave-blending,

the number of voices from the polyphony, as well as the degree

of unison effect.

Next is the stage of digital effects applied to the samples.

These begin with the distortion module. The distortion comes

in two flavors, one that reduces bit depth (bit crushing) and

another that reduces the sample rate. The bit crushing effect

uses a control knob value that adjusts between a value from 0

to 15 that determine how many of the bits will be truncated to

zeros from the sample. The sample rate reduction module is

similarly controlled by a control knob and discards some

number of samples to reduce the effective sample rate.

Following the distortion effect is the delay effect. This operates

by taking a control knob value to determine the length of the

delay and another control knob value to determine the loudness

of the repeated sound and then plays back all samples a second

time that delay length later. Lastly in the effects chain is the

reverb effect. This effect is very similar in operation to delay

however, the control knob for reverb controls how strong the

reverb is, adjusting the amount of attenuation between “wall

reflections”. Once the digital effects have been applied the

sample is adjusted to be compatible with the DAC interface and

then converted to an analog signal.

After the sample has been converted to analog through the

DAC support circuitry, it is sent to a bank of filters that act as

an 8-band equalizer with high pass and low pass filters as the

outside bands. Each of these bands can be mixed at a different

level using potentiometers and the overall amplification level

can also be controlled. Finally, this signal goes through one

final stage of amplification in preparation for being fed into a

speaker.

The wavetable synthesis itself will all be done on-board the

FPGA, with the analog filtering done only as a final step. This

is quite different than most comparable synthesizers, which do

very little in the digital space and do most of the effects

processing using analog components. While many music-

makers place a lot of value on the idea of the “analog sound,”

we seek to give our synthesizer output some of these qualities

by having the final output stage be fully analog.

The FPGA board that we have chosen for the project is a

Terasic DE0-CV board with an Altera Cyclone V FPGA chip

on-board. The full details of why this board was chosen will be

expanded on in the later sections of this paper, but the key

benefits of this platform were its relatively low cost as well as

the large amount of on-board block ram to facilitate the easy

storage and retrieval of the wavetables themselves, as well as

making the design of the delay and reverb effects much simpler.

While we ultimately see this project as a potential prototype for

a production model using a dedicated chip, the benefits of using

a cheap FPGA platform allow the option of going into

production with the FPGA platform in the future while staying

cost-competitive.

18-500 Design Review: March 4, 2019

3

IV. SYSTEM DESCRIPTION

A. MIDI controller to FPGA interface

The first stage of the synthesizer system is the MIDI

keyboard to FPGA interface. This stage consists of the MIDI

keyboard, the support circuitry to convert the MIDI serial out

to UART, the UART receiver module on the FPGA, and

finally a UART decoder to convert the raw bytes into signals

for the synthesis and effects pipeline.

 The MIDI keyboard we decided to use for the project, the

Stage Right by Monoprice 49-Key MIDI controller, was

chosen for several reasons, the three most important reasons

being the availability of rotary encoders, MIDI serial output,

and low price. First was the number of rotary encoder knobs

on the keyboard. The effects that we have on the synthesizer

are all adjustable, for example, like the degree of blending

between two wave shapes, the decay of the reverb, or the

length of the delay, and we decided that leveraging on-

keyboard rotary dials to control the effects would be the

simplest method of control. Second was the availability of a

MIDI out port. While the official MIDI standard specifies a 5-

pin DIN connector as the primary connector, almost all

modern MIDI controllers use a USB output instead, allowing

the keyboard to connect easily to the desktop computer-based

digital audio workstations instead. We wanted the MIDI

controller we used to have the MIDI DIN output, since the

signal sent out can easily converted into UART with some

simple support circuitry, and we wanted to avoid falling into a

trap of either designing a hardware USB controller from

scratch or having to use a pre-made USB controller IP block,

which could bring its own set of compatibility and integration

issues. Unfortunately, this constraint severely restricted the

pool of MIDI controllers we could use, since lower-end

controllers only supported USB output and eschewed the

legacy DIN connector. Finally, price was a major factor as

well. Obviously, we need to stay under the $600 project

budget, and one of the goals with our project is the keep the

total parts cost as low as possible to stay in the same price/cost

range as similar synthesizers. Many higher-priced MIDI

controllers come with lots of unnecessary bells and whistles as

well, and for our synthesizer, we only needed the most basic

features along with the other requirements above. In the end,

 Fig. 3. MIDI Message Decoding Diagram

the Monoprice MIDI controller was the one of the only

keyboards under $100 that satisfied the other requirements and

did not have atrocious reviews on Amazon.

 Fig. 2. MIDI Support Circuitry

The next component of the chain is the MIDI support

circuitry. The DIN connector outputs a serial data stream

using current on and off to represent zeros and ones, so

support circuitry is required to convert this into a voltage-

based signal. Luckily, specific circuitry for this is detailed in

the MIDI specification, requiring a specific opto-isolator chip

with some other passive components. Although the exact opto-

isolator chip used in the specification is no longer produced,

equivalent circuitry was easily available online, using an

alternative model of opto-isolator chip (6N139) that was

mentioned in the MIDI specification. The details for the

circuitry are shown in the block diagram. The output of this

support circuitry is a UART input line that is connected to the

GPIO pins on the FPGA board.

B. MIDI Message Decoder

From here on out, the “components” of the synthesis and

effects pipeline will be Verilog modules synthesized on board

the FPGA until the DAC interface with the final analog

filtering component of the pipeline.

18-500 Design Review: March 4, 2019

4

The first module of the pipeline is the UART receiver

module. This module is fairly straightforward: it takes in the

raw 1-bit UART serial signal as input and outputs a 8-bit data

byte along with a 1-bit byte data ready signal. The baud rate of

the MIDI transmission is specified in the MIDI specification

as 31.25 kbaud, very slow compared to the system clock

frequency we will be running the FPGA on. This module

consists of a state machine to detect when the UART line

drops low, signaling the beginning of the start bit, waiting half

of a UART bit to start sampling in the middle of each bit, and

then proceeding to sample again every UART bit. We

anticipate to be running the system clock at 44.1 MHz in order

to simplify the interface with the DAC later in the pipeline, so

each UART bit will be slightly more than 1411 clock cycles.

There is no worry of drifting out of sync due to the very large

number of clock cycles per bit and that there will only be 10

bit per message before resynchronizing. The state machine

will then proceed to read the 8 data bits, the one stop bit, and

then either return to an idle state or detect a new incoming

byte. The bits are pushed through an 8-bit serial in, parallel out

shift register with the output connected to the output of the

module. The format specified in the MIDI specification does

not contain any parity bits, just one start and one stop bit per

8-bit data byte. Although MIDI messages are never just a

single byte, this module is format agnostic and will only

process a single byte through UART, asserting a ready signal

after every byte. We will see in the next module how the full

message is constructed.

 The next module of the pipeline assembles the MIDI

message from the individual bytes received by the first

module. MIDI messages that we will care about for this

project will come in two flavors, a two-byte message for

sending rotary encoder information and a three-byte message

for sending keypress data. Because the goal of this module is

to assemble the whole MIDI message to pass on to the full

MIDI message decoder, this module will need to decode the

first byte of the message, the header byte, to determine which

type of message is being received and how many bytes the

message is. Each byte coming into the assembly module from

the receiver is pushed through another serial in, parallel out

32-bit shift register which shifts in 8-bits at a time. The inputs

to this module are the byte output and byte ready of the

previous module, while the outputs of this assembly module

are a 32-bit MIDI message bit-vector as well as a two-bit one-

hot signal that signals both that the message is ready and how

many bytes the message contains. A value of 2’b00 will mean

that the output is invalid, 2’b01 means the output is a valid

two-byte message, and 2’b10 means the output is a valid

three-byte message, with 2’b11 being an unused, illegal

output. The 32-bit MIDI message bit-vector will have the

bottom 8 bits be zeroes if the message is only two bytes long.

This assembly module will also take an acknowledgement

signal from downstream modules signaling that the MIDI

message on the output has been consumed.
 The next phase of MIDI message decoding is translating

this 3- or 2-byte signal into a more readable format for the

purpose of digital synthesis. This decoder module ingests a

MIDI message and translates it out into note name, octave,

note control, control knob value, and velocity. Note name is

the name of the note desired using the standard musical note

naming scheme of A to G. All half-steps between notes will be

named as sharps. The octave output is the octave that the note

falls under ranging from 0 to 7. If the MIDI message that is

being decoded is not a note message the default values for

these two signals are C, and 0 respectively. Note control is a

two-bit signal where the high bit represents if the message is a

note control message, and the low bit is a 0 if the message is a

note off message and is 1 if the message is a note on message.

Control knob value is an enum encoding of the names of the

various control knobs that control effects on the synthesizer.

There is a bank of registers that represent the control knobs if

the control knob value matched the name of the control knob

velocity is stored in that register and it represents the level of

that knob. For a note message velocity represents the volume

of the note.

C. Digital Synthesis System

 The second major subsystem of the synthesizer pipeline is

the wavetable digital synthesis subsystem. This is the portion

of the pipeline which takes in the control data sent by the

MIDI messages and outputs a stream of 16-bit samples that

are to be run through the effects chain. This MIDI control data

comes into this portion of the pipeline in a format which has

taken the 3-byte or 2-byte MIDI signal and translated it into

the more readable format generated at the end of the MIDI

control subsystem.
The beginning of this chain is the polyphony control

module. This module takes in a note name, from the

conventional note naming scheme of A to G with all half-steps

named as sharps, the octave number for the note, the velocity

value for the note, and whether the signal is a valid note, a

note on, or a note off message. Using this information, the

polyphony control module registers the note name, octave

level, and velocity value for up to four simultaneous notes.

These values are held for the duration between when a note on

message is sent for that note until when a note off signal that

matches the note name and octave of one of the notes being

held is seen. Four note polyphony was chosen because it was a

middle ground between the single voice note playback that

many synthesizers utilize and the complexity that comes with

many more voices. With four playable notes a standard triad

chord can be played with a single voice melody line being

played on top. Should a fifth note be pressed while all four

voices of polyphony are playing notes the note that has been

played the longest will be replaced by the new note. When this

control module then receives the note off signal for the note

that has already been removed from the set of held notes the

state of the polyphony control module does not change.

From the polyphony control module each of the four notes is

sent to its own incrementor module. This incrementor module

uses the name of the note and its octave value to determine a

pair of wavetable memory addresses to access samples from.

These addresses start at zero and then are incremented by the

value that will traverse the wavetables at the rate desired for

the note being played. This is achieved by using the name of

the note to determine the incrementation value for that note at

octave zero. Since a note of the same name played an octave

higher is twice the frequency, from the base incrementation

value at octave level zero this value can be doubled for the

18-500 Design Review: March 4, 2019

5

 Fig. 4. Digital Synthesis Diagram

incrementation value at octave one or quadrupled for the value

at octave 2 and so on. The base incrementation value is

computed based on the wavetables containing a single period

of each waveform being read at the system clock. Two

addresses are generated for the purpose of a unison effect.

This is an effect where instead of the desired note being

played at the standard frequency, two notes are played, one at

a slightly higher frequency and one at a slightly lower one.

 These addresses are then sent to the wavetable access

module. This module takes each of these addresses and sends

them to M10k block-RAM containing each waveform. Each

note has a copy of each of the four waveforms to access

samples from. The M10k block-RAM is configured as a 2-

ported ROM so that each module can have a port dedicated to

each of the two unison addresses. All samples in the

wavetables are 12- bit sample being read as a 16-bit sample.

The remaining 4-bit are reserved for overhead involved in

mixing the samples and applying effects. There are four

possible waveforms available, a saw wave, a sine wave, and

two more complex shapes generated for the user. For any

given configuration of the synthesizer two wavetables will be

active at a time. These active waveforms are selected by the

player using the switched on the FPGA itself. Because of this

every clock cycle 16 samples are fetched from the wavetables.

This breaks down as 8 samples per active waveform and 2

samples for each of the 4 notes being held.
 Once the 16 samples are fetched from the wavetable

memory, they are sent to the mixer module. This module takes

in each sample and the velocity value for its respective note. It

then weights each notes sample by its velocity level and adds

together all the samples for each of the two waveforms. Then

taking the value provided by the blending control knob adds

the resultant samples for each of the waveforms. The blending

control knob determines how much of each of the two active

waveforms is desired. At a value of 0 only active waveform

one is played, at a value of 127 only active waveform two is

played. The output of the mixer is buffered and updated on the

sample clock as opposed to the system clock. This is done so

that the effects chain which involves a delay effect and a

reverb effect that both need to use memory must store the

minimum number of samples to achieve their effects.

D. Digital to Analog Conversion

Our digital signal now needs to be converted into an analog

signal so that it can go through our equalizer filters and

become and actual sound through the speakers. In order to do

this, we chose a digital/analog converter stereo DAC: the

PCM 1793. The stereo portion of the DAC is not made use of

as our design currently does not support stereo noise.

Furthermore, the voltage lines are powered from the FPGA

board, which removes the need for an outside power source in

addition to the one needed for the FPGA. Shown in Fig. 3.

below is the pinout for the FPGA. In Fig. 4 we have the

connections needed for the pinout DAC to work with our

system. In green are the FPGA connections, in yellow are the

power sources, which will also come from the FPGA. The

gray pins denote ground, while the red and blue pins are the

two sound outputs. As mentioned before, the DAC supports

stereo, but our circuitry currently does not, and as such, we

only use one of the two output pins.

 Fig. 5. DAC DIP chip pinout

18-500 Design Review: March 4, 2019

6

 Fig. 6. FPGA value table

According to the specification for the PCM1793, many of

the signals coming from the FPGA are relatively simple to

generate. Almost all of them are clocks, which are much

slower than the FPGA’s clock, or held signals which are set to

the same value always when received by the DAC. The DAC

will communicate over I2S specification, which will also be

controlled by the FPGA to the data pin on the DAC.

Verification for this part will be by sending a known note to

the DAC and measuring the output waveform to ensure that it

is the note specified.

E. Filters and Equalizer

After we have converted our digital signal into an analog

one, we wanted to create a simple equalizer to give the user

greater control over the sound output. This equalizer also has a

volume control tacked onto the end. As a baseline target, we

wanted to be able for the user to control sounds from a note

referred to as A0, to a note referred to as C8. These notes are

denoted as the tone followed by an octave, and the range that

we chose gives us a range equivalent to that of a piano. The

equalizer has eight different ranges to mirror the number of

equalizers in a normal synthesizer. Shown in Table Fig. 7.

below are the ranges of each filter. Regions 1 and 8 are the

final low and high pass filters that we wanted to use.

Currently, they are fixed filters, but the design allows for us to

potentially control where their cutoffs are and make them

variable cutoff filters, which is a feature that many on-the-

market synthesizers have.

 Fig. 7. Filter Ranges

In order to create these, our circuitry implements two-

stage filters for each frequency range. The reason for this

is that it is simpler to create a low-pass combined with a

high-pass that have sharp cut-off frequencies than to create

a bandpass with less sharp cutoffs. Furthermore, it allows

us to separately design each filter, which makes testing and

fixing any errors that have been made much easier. The

overall circuitry is shown in Figure Fig. 8., but with only

two band-pass filters shown rather than the 6 that we

intend to have when our design is completed.

 Fig. 8. Equalizer design

The low-pass and high-pass filters are in Cauer topologies

and have a third-order pole at the given cutoff frequency. This

pole allows us to achieve 60dB/decade roll-off, which is

important in ensuring that sound frequencies that we do not

want to pass through are not passing through. The topologies

for the third-order low-pass and high-pass filters are relatively

simple in terms of design and implementation. Shown in

figures Fig. 9. and Fig. 10. are the third-order filters.

 Fig. 9. Low Pass Fig.10. High Pass

In terms of overall design, we wanted to add as many layers

of buffers as possible in order to ensure that there will be

minimal loading between all the stages of filters that we have

Pin Number Pin Name Connection Pin Number Pin Name Connection

 1 LRCK FPGA GPIO 15 VCC_C 5V FPGA

2 BCK FPGA GPIO 16 AGNDC GND

3 DATA FPGA GPIO 17 V_OUT L+ OUT

4 MUTE FPGA GPIO 18 V_OUT L- OUT

5 SCK FPGA GPIO 19 AGNDL GND

6 RST_N FPGA GPIO 20 V_CC L 5V FPGA

7 V_DD 3.3V FPGA 21 V_CC F 5V FPGA

8 DGND GND 22 ZEROR FPGA GPIO

9 AGNDF GND 23 ZEROL FPGA GPIO

10 V_CC R 5V FPGA 24 DEMP0 FPGA GPIO

11 AGNDR GND 25 DEMP1 FPGA GPIO

12 V_OUT R- NC 26 FMT0 FPGA GPIO

13 V_OUT R+ NC 27 FMT1 FPGA GPIO

14 V_COM GND 28 FMT2 FPGA GPIO

18-500 Design Review: March 4, 2019

7

designed. This also allows us to test each filter independently

and then combined in order to help smooth integration. After

the two stages of filters that we have, we have an effectively

variable gain op-amp whose gain is controlled by the

potentiometers. These allow us to create an equalizer which

can be used to boost or attenuate certain frequencies and allow

the user to create unique sounds. Finally, we combine all our

signals via a summing amplifier, which also has variable gain,

and send the output to a speaker. The speaker is yet to be

determined, but the chosen speaker will determine what

amount of gain is needed at minimum on the summing

amplifier at the end.

F. Power

In terms of overall power use, we expect to be easily within

the parameters of the FPGA where the power for all our

analog components will be drawn from. The relevant active

components currently are the DAC and all op-amps. In all, we

use 17 op-amps in our design. According to the specification

for the op-amp that we have chosen, the OPA 1692, the

maximum current that it should draw from its power rails is

975µA. Our power rail for the op-amps will be 5V and ground

coming from the FPGA. For the DAC, the 5V rail can draw up

to 8mA according to the specification while the 3.3V rail can

draw up to 16mA. According to the specification on the FPGA

that is being used, any given power pin can supply up to 5W

of power. That means that on the 5V rail, we can draw up to

1A and on the 3.3V rail, we can draw up to 1.515A. Our

design currently draws 17*.975mA + 8mA = 24.575mA from

the 5V rail at worst, and 16mA from the 3.3V rail at worst.

Even if our design ends up having a lot of loss between the

power source and the op-amps/DAC, we have more than

enough clearance on the power use of our power to support all

of our circuitry.

V. PROJECT MANAGEMENT

A. Schedule

Our breakdown of work is relatively simple. We wanted to

ensure that everyone was scheduled in their comfort zone where

they would be able to do their best work. Furthermore, we

wanted to make sure that everyone had enough slack available

so that they would have some extra time to do their work if

necessary. Our schedule can be seen in the figure below. It may

be a bit difficult to read, but in yellow are tasks that require

everyone to pitch in to complete, in green are tasks for Hailang,

blue tasks for Jens, and red tasks for Charles. Additionally, a

larger version of the schedule can be seen after the references

section. Each person should have roughly two weeks of slack

for themselves, while the overall project where everyone might

need slack has around another added week of slack.

B. Team Member Responsibilities

In terms of work breakdown, Jens has a work focus on

converting signals into digital signals. His focus is on

determining what needs to be read from the wavetables which

store digital sample values in the distributed block ram. Fig. 11. Schedule

18-500 Design Review: March 4, 2019

8

Hailang’s focus is on digital logic manipulation, taking a

sample value and applying different effects to that to get a final

digital value. Charles’ work focuses on the analog side of the

synthesizer. His work involves converting the digital value

through a DAC to get to an analog signal and filtering that

signal to reach the speaker and an end sound.

As such, we broke down our project into several parts, which

are distributed as described above. The distribution of work can

be seen in the table below.

 Fig. 12. Work Distribution Table

C. Budget

Our budget will mostly comprise of analog pieces. The

primary non-analog part bought is the keyboard that we will be

using to transmit our MIDI signal to our FPGA. All other parts

will be analog parts. The op-amps chosen are just over a dollar

in cost and impact our budget relatively little. All passive

components should sum to a total of no more than $50, though

the specific components have not been bought yet. This is

because passive components are generally extremely cheap in

cost. As such, our total overall cost is budgeted to be lower than

$100 currently.

 Fig. 13. Estimated Bill of Materials

VI. RELATED WORK

In researching similar work to the synthesizer that we wished

to create we used three specific works for reference. Those

were: Serum, the Waldorf Blofeld, and the Waldorf Quantum.

These three synthesizers were chosen as they all use wavetable

synthesis to produce sound but are very different in the markets

they target and the features they provide.

Serum is a software wavetable synthesizer plugin made by

Xfer Records and is the industry standard wavetable synthesizer

for electronic music production. It is built on the core feature of

being able to blend and manipulate waveforms. Additionally, it

comes in at a relatively price point of 300 dollars. However, it

is locked into a software environment that requires a significant

amount of additional software and compute power to run to its

full potential.

The first of the hardware synthesizers that we compared to

was the Waldorf Blofeld. This synthesizer was chosen for its

low price for a hardware synthesizer of 400 dollars. However,

the core feature that our synthesizer targets of waveform

blending is completely absent from this synthesizer. This lead

us to attempt to find an example of a hardware synthesizer that

did include this core feature.

Moving up Waldorf’s product stack we arrived at the

Waldorf Quantum, a wavetable synthesizer with an over 4000-

dollar price tag. This synthesizer did include wavetable

blending effects but also included copious other effects to

justify the extreme price. This confirmed that there was a

vacancy in the market for a hardware wavetable synthesizer that

focused on wave manipulation effects while achieving a lower

budget price target.

REFERENCES

[1] Xfer Records xferrecords.com.

[2] Waldorf www.waldorfmusic.com/en/

[3] MIDI Spec www.midi.org/specifications

Jens Charles Hailang
MIDI message
decoder

Analog filter design MIDI to FPGA
interface

Wavetable

Incrementor

DAC support

circuitry

Delay effect

Wavetable blending
and mixing

FPGA to DAC
interface

Reverb effect

Unison mixing Amplifier design Bit distortion

effect

Item Price
Monoprice MIDI Keyboard w/ serial output $50

Terasic DE0-CV FPGA board $100*

PCM1793 DAC $6.40

6N139 Opto-isolator $1.80

Various Passive Analog Components $30**

*Is not subtracted from $600 budget

**Components not chosen, price estimated

18-500 Design Review: March 4, 2019

9

APPENDIX A. WORK SCHEDULE

18-500 Design Review: March 4, 2019

10

APPENDIX B. MODULE DIAGRAMS

