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Abstract—A system capable of being a low-cost, FPGA-based 

wavetable synthesizer with digital wave-blending effects and 

digital effects chain including multi-voice unison, distortions, and 

reverb. While there are many inexpensive wavetable synthesizers 

that include basic digital effects, wave-blending effects are only 

found on expensive full-featured hardware synthesizers or 

software synthesizers. Our goal is to create a system targeting a 

platform competitive with other low-cost synthesizers on the 

market while capable of unique and interesting wave-blending 

effects not found in this price segment. 

 
Index Terms— FPGA, Music, Synthesizers, Wavetable 

Synthesis 

 

I. INTRODUCTION 

N this project, our team aims to develop an FPGA-based 

wavetable musical synthesizer that targets wave-blending 

and wave-shaping effects along with other standard digital 

effects found in synthesizers at comparable price points. 

Although we are developing the system on an FPGA, we 

envision this project as a prototype for evaluation on the track 

to create a dedicated chip for musical synthesis. From a market 

perspective, we are targeting the prosumer audio/music market, 

where people are interested in unique effects and sounds but are 

not willing to spend upwards of $4000-5000 for a professional 

synthesizer kit. Other devices in the market range typically 

either have simple oscillators combined with effects or 

wavetables that focus on instrument sound reproduction. While 

software solutions do exist, they are not self-contained and 

require a digital audio workstation, a MIDI controller, and some 

other software for the system to work in, meaning that although 

the wavetable synthesizer may not be extremely expensive, the 

combined workflow can be both high cost and limiting. Our 

goals for our synthesizer focus on having a polyphonic 

synthesizer with unique wavetable synthesis effects in addition 

to standard effects found on low-cost synthesizers such as 

distortion, delay, unison, and delay. On a more technical side, 

we want to have pitch accuracy within 5 cents of standard 

tunings, minimal harmonic distortion, and even frequency 

response. Finally, an important goal is to keep the total parts 

cost of the project as low as possible, to show that these effects 

can be had at a low cost. 

II. DESIGN REQUIREMENTS 

The requirements of the project will be split into two parts: 

features and audio fidelity. Other metrics we will be measuring, 

but without a hard requirement, are FPGA usage (chip area) and 

price. Power consumption is of a lesser concern because the 

system will be designed to plug into a wall outlet. 
For features, we will first discuss traits of the synthesizer. The 

synthesizer will support four note polyphony, where four notes 

can be played through the synthesizer simultaneously. 

Polyphony is a feature found on some, but not all low-cost 

synthesizers, but we believe it to be a valuable feature to have 

in order to support being able to play chords. The synthesizer 

should have at least four different wave shapes stored in the 

wavetables; we anticipate the shapes to be two simple ones, 

such as a sine and a sawtooth, and two complex waveforms 

which can make interesting sounds when blended with others. 

The synthesizer can support user-controlled blending any two 

wave shapes together. For user-controlled synthesizer effects, 

we plan on implementing distortion (sample reduction and bit-

depth reduction), delay, and reverb. the analog side, we will 

have an analog equalizer doing a final filtering step. For the 

digital synthesis and effects components, we will test them 

using Verilog testbenches, and for the analog filtering, we will 

generate frequency response plots by passing in noise. 
For audio fidelity, we have determined several technical 

requirements that the project should meet. As a musical 

instrument, we want our synthesizer to be in tune, so we want 

our synthesizer to produce sounds within five cents of standard 

tunings. This will be tested with a regular instrument tuner and 

the synthesizer outputting an undistorted sine. We want the total 

harmonic distortion to be less than 5%, a property we will test 

by generating sine waves of different frequencies, running an 

FFT on the output, and calculating how much distortion exists 

at higher harmonics. Similarly, we want the frequency response 

to be even across all levels (<5%), and make sure no effect or 

filter behaves differently at different frequencies. This will be 

tested by observing output response over a range of frequencies 

and looking for deviations. 
Our soft metrics, area and power, will be measured using the 

FPGA synthesis tools and measured for the analog components. 

Price will be measured by the total cost of components that we 

purchase, as well as the cost of the FPGA board, which is 

provided by the university. We aim to minimize these metrics 

overall but are not working with a hard requirement. 
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                       Fig. 1. System Block Diagram 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

The way that the overall architecture is designed is that first 

the player interacts with the MIDI controller that we have 

purchased. This controller includes the keyboard for playing 

notes and each of the control knobs. The control knobs each 

have two functions controlled by a function key on the 

keyboard. Additionally, active wavetable selection will be 

controlled by the switches on the FPGA board. 

From the MIDI controller, a MIDI control message is sent to 

the FPGA via serial UART and decoded into a format that the 

rest of our architecture can read. The MIDI control messages 

can either be a control knob, which controls the strength of 

different effects, or a keypress message, which signals that a 

key was pressed or released, as well as how fast the key was 

pressed. 

The first stage is the wavetable synthesis stage which takes 

the MIDI control signals for the notes and converts them into 

samples to feed through the rest of the pipeline. It also takes in 

the controls to choose which two active wavetables to fetch 

samples from. The last input control that this stage takes in is 

the unison control knob which controls the distance from in-

tune each of the unison voices is. The samples are generated 

from traversing the wavetable, containing multiple different 

wave shapes, and the stride of the traversal determines the 

frequency or pitch of the sound. These samples are mixed 

together according to the desired amount of wave blending and 

then fed through into the effects chain. The number of samples 

mixed together is dependent on the amount of wave-blending, 

the number of voices from the polyphony, as well as the degree 

of unison effect. 

Next is the stage of digital effects applied to the samples. 

These begin with the distortion module. The distortion comes 

in two flavors, one that reduces bit depth (bit crushing) and 

another that reduces the sample rate. The bit crushing effect 

uses a control knob value that adjusts between a value from 0 

to 15 that determine how many of the bits will be truncated to 

zeros from the sample. The sample rate reduction module is 

similarly controlled by a control knob and discards some 

number of samples to reduce the effective sample rate. 

Following the distortion effect is the delay effect. This operates 

by taking a control knob value to determine the length of the 

delay and another control knob value to determine the loudness 

of the repeated sound and then plays back all samples a second 

time that delay length later. Lastly in the effects chain is the 

reverb effect. This effect is very similar in operation to delay 

however, the control knob for reverb controls how strong the 

reverb is, adjusting the amount of attenuation between “wall 

reflections”. Once the digital effects have been applied the 

sample is adjusted to be compatible with the DAC interface and 

then converted to an analog signal. 

After the sample has been converted to analog through the 

DAC support circuitry, it is sent to a bank of filters that act as 

an 8-band equalizer with high pass and low pass filters as the 

outside bands. Each of these bands can be mixed at a different 

level using potentiometers and the overall amplification level 

can also be controlled. Finally, this signal goes through one 

final stage of amplification in preparation for being fed into a 

speaker. 

The wavetable synthesis itself will all be done on-board the 

FPGA, with the analog filtering done only as a final step. This 

is quite different than most comparable synthesizers, which do 

very little in the digital space and do most of the effects 

processing using analog components. While many music-

makers place a lot of value on the idea of the “analog sound,” 

we seek to give our synthesizer output some of these qualities 

by having the final output stage be fully analog. 

The FPGA board that we have chosen for the project is a 

Terasic DE0-CV board with an Altera Cyclone V FPGA chip 

on-board. The full details of why this board was chosen will be 

expanded on in the later sections of this paper, but the key 

benefits of this platform were its relatively low cost as well as 

the large amount of on-board block ram to facilitate the easy 

storage and retrieval of the wavetables themselves, as well as 

making the design of the delay and reverb effects much simpler. 

While we ultimately see this project as a potential prototype for 

a production model using a dedicated chip, the benefits of using 

a cheap FPGA platform allow the option of going into 

production with the FPGA platform in the future while staying 

cost-competitive. 

 



18-500 Design Review: March 4, 2019 

 

3 

IV. SYSTEM DESCRIPTION 

A.  MIDI controller to FPGA interface 

The first stage of the synthesizer system is the MIDI 

keyboard to FPGA interface. This stage consists of the MIDI 

keyboard, the support circuitry to convert the MIDI serial out 

to UART, the UART receiver module on the FPGA, and 

finally a UART decoder to convert the raw bytes into signals 

for the synthesis and effects pipeline. 

    The MIDI keyboard we decided to use for the project, the 

Stage Right by Monoprice 49-Key MIDI controller, was 

chosen for several reasons, the three most important reasons 

being the availability of rotary encoders, MIDI serial output, 

and low price. First was the number of rotary encoder knobs 

on the keyboard. The effects that we have on the synthesizer 

are all adjustable, for example, like the degree of blending 

between two wave shapes, the decay of the reverb, or the 

length of the delay, and we decided that leveraging on-

keyboard rotary dials to control the effects would be the 

simplest method of control. Second was the availability of a 

MIDI out port. While the official MIDI standard specifies a 5-

pin DIN connector as the primary connector, almost all 

modern MIDI controllers use a USB output instead, allowing 

the keyboard to connect easily to the desktop computer-based 

digital audio workstations instead. We wanted the MIDI 

controller we used to have the MIDI DIN output, since the 

signal sent out can easily converted into UART with some 

simple support circuitry, and we wanted to avoid falling into a 

trap of either designing a hardware USB controller from 

scratch or having to use a pre-made USB controller IP block, 

which could bring its own set of compatibility and integration 

issues. Unfortunately, this constraint severely restricted the 

pool of MIDI controllers we could use, since lower-end 

controllers only supported USB output and eschewed the 

legacy DIN connector. Finally, price was a major factor as 

well. Obviously, we need to stay under the $600 project 

budget, and one of the goals with our project is the keep the 

total parts cost as low as possible to stay in the same price/cost 

range as similar synthesizers. Many higher-priced MIDI 

controllers come with lots of unnecessary bells and whistles as 

well, and for our synthesizer, we only needed the most basic 

features along with the other requirements above. In the end, 

                                           Fig. 3. MIDI Message Decoding Diagram  

the Monoprice MIDI controller was the one of the only 

keyboards under $100 that satisfied the other requirements and 

did not have atrocious reviews on Amazon. 

 

 
               Fig. 2. MIDI Support Circuitry 

 

The next component of the chain is the MIDI support 

circuitry. The DIN connector outputs a serial data stream 

using current on and off to represent zeros and ones, so 

support circuitry is required to convert this into a voltage-

based signal. Luckily, specific circuitry for this is detailed in 

the MIDI specification, requiring a specific opto-isolator chip 

with some other passive components. Although the exact opto-

isolator chip used in the specification is no longer produced, 

equivalent circuitry was easily available online, using an 

alternative model of opto-isolator chip (6N139) that was 

mentioned in the MIDI specification. The details for the 

circuitry are shown in the block diagram. The output of this 

support circuitry is a UART input line that is connected to the 

GPIO pins on the FPGA board. 
 

B. MIDI Message Decoder 

From here on out, the “components” of the synthesis and 

effects pipeline will be Verilog modules synthesized on board 

the FPGA until the DAC interface with the final analog 

filtering component of the pipeline.  
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The first module of the pipeline is the UART receiver 

module. This module is fairly straightforward: it takes in the 

raw 1-bit UART serial signal as input and outputs a 8-bit data 

byte along with a 1-bit byte data ready signal. The baud rate of 

the MIDI transmission is specified in the MIDI specification 

as 31.25 kbaud, very slow compared to the system clock 

frequency we will be running the FPGA on. This module 

consists of a state machine to detect when the UART line 

drops low, signaling the beginning of the start bit, waiting half 

of a UART bit to start sampling in the middle of each bit, and 

then proceeding to sample again every UART bit. We 

anticipate to be running the system clock at 44.1 MHz in order 

to simplify the interface with the DAC later in the pipeline, so 

each UART bit will be slightly more than 1411 clock cycles. 

There is no worry of drifting out of sync due to the very large 

number of clock cycles per bit and that there will only be 10 

bit per message before resynchronizing. The state machine 

will then proceed to read the 8 data bits, the one stop bit, and 

then either return to an idle state or detect a new incoming 

byte. The bits are pushed through an 8-bit serial in, parallel out 

shift register with the output connected to the output of the 

module. The format specified in the MIDI specification does 

not contain any parity bits, just one start and one stop bit per 

8-bit data byte. Although MIDI messages are never just a 

single byte, this module is format agnostic and will only 

process a single byte through UART, asserting a ready signal 

after every byte. We will see in the next module how the full 

message is constructed. 

    The next module of the pipeline assembles the MIDI 

message from the individual bytes received by the first 

module. MIDI messages that we will care about for this 

project will come in two flavors, a two-byte message for 

sending rotary encoder information and a three-byte message 

for sending keypress data. Because the goal of this module is 

to assemble the whole MIDI message to pass on to the full 

MIDI message decoder, this module will need to decode the 

first byte of the message, the header byte, to determine which 

type of message is being received and how many bytes the 

message is. Each byte coming into the assembly module from 

the receiver is pushed through another serial in, parallel out 

32-bit shift register which shifts in 8-bits at a time. The inputs 

to this module are the byte output and byte ready of the 

previous module, while the outputs of this assembly module 

are a 32-bit MIDI message bit-vector as well as a two-bit one-

hot signal that signals both that the message is ready and how 

many bytes the message contains. A value of 2’b00 will mean 

that the output is invalid, 2’b01 means the output is a valid 

two-byte message, and 2’b10 means the output is a valid 

three-byte message, with 2’b11 being an unused, illegal 

output. The 32-bit MIDI message bit-vector will have the 

bottom 8 bits be zeroes if the message is only two bytes long. 

This assembly module will also take an acknowledgement 

signal from downstream modules signaling that the MIDI 

message on the output has been consumed. 
    The next phase of MIDI message decoding is translating 

this 3- or 2-byte signal into a more readable format for the 

purpose of digital synthesis. This decoder module ingests a 

MIDI message and translates it out into note name, octave, 

note control, control knob value, and velocity. Note name is 

the name of the note desired using the standard musical note 

naming scheme of A to G. All half-steps between notes will be 

named as sharps. The octave output is the octave that the note 

falls under ranging from 0 to 7. If the MIDI message that is 

being decoded is not a note message the default values for 

these two signals are C, and 0 respectively. Note control is a 

two-bit signal where the high bit represents if the message is a 

note control message, and the low bit is a 0 if the message is a 

note off message and is 1 if the message is a note on message. 

Control knob value is an enum encoding of the names of the 

various control knobs that control effects on the synthesizer. 

There is a bank of registers that represent the control knobs if 

the control knob value matched the name of the control knob 

velocity is stored in that register and it represents the level of 

that knob. For a note message velocity represents the volume 

of the note.  

C. Digital Synthesis System 

    The second major subsystem of the synthesizer pipeline is 

the wavetable digital synthesis subsystem. This is the portion 

of the pipeline which takes in the control data sent by the 

MIDI messages and outputs a stream of 16-bit samples that 

are to be run through the effects chain. This MIDI control data 

comes into this portion of the pipeline in a format which has 

taken the 3-byte or 2-byte MIDI signal and translated it into 

the more readable format generated at the end of the MIDI 

control subsystem.  
The beginning of this chain is the polyphony control 

module. This module takes in a note name, from the 

conventional note naming scheme of A to G with all half-steps 

named as sharps, the octave number for the note, the velocity 

value for the note, and whether the signal is a valid note, a 

note on, or a note off message. Using this information, the 

polyphony control module registers the note name, octave 

level, and velocity value for up to four simultaneous notes. 

These values are held for the duration between when a note on 

message is sent for that note until when a note off signal that 

matches the note name and octave of one of the notes being 

held is seen. Four note polyphony was chosen because it was a 

middle ground between the single voice note playback that 

many synthesizers utilize and the complexity that comes with 

many more voices. With four playable notes a standard triad 

chord can be played with a single voice melody line being 

played on top. Should a fifth note be pressed while all four 

voices of polyphony are playing notes the note that has been 

played the longest will be replaced by the new note. When this 

control module then receives the note off signal for the note 

that has already been removed from the set of held notes the 

state of the polyphony control module does not change. 

From the polyphony control module each of the four notes is 

sent to its own incrementor module. This incrementor module 

uses the name of the note and its octave value to determine a 

pair of wavetable memory addresses to access samples from. 

These addresses start at zero and then are incremented by the 

value that will traverse the wavetables at the rate desired for 

the note being played. This is achieved by using the name of 

the note to determine the incrementation value for that note at 

octave zero. Since a note of the same name played an octave 

higher is twice the frequency, from the base incrementation 

value at octave level zero this value can be doubled for the  
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                    Fig. 4. Digital Synthesis Diagram 
 

incrementation value at octave one or quadrupled for the value 

at octave 2 and so on. The base incrementation value is 

computed based on the wavetables containing a single period 

of each waveform being read at the system clock. Two 

addresses are generated for the purpose of a unison effect. 

This is an effect where instead of the desired note being 

played at the standard frequency, two notes are played, one at 

a slightly higher frequency and one at a slightly lower one. 

    These addresses are then sent to the wavetable access 

module. This module takes each of these addresses and sends 

them to M10k block-RAM containing each waveform. Each 

note has a copy of each of the four waveforms to access 

samples from. The M10k block-RAM is configured as a 2-

ported ROM so that each module can have a port dedicated to 

each of the two unison addresses. All samples in the 

wavetables are 12- bit sample being read as a 16-bit sample. 

The remaining 4-bit are reserved for overhead involved in 

mixing the samples and applying effects. There are four 

possible waveforms available, a saw wave, a sine wave, and 

two more complex shapes generated for the user. For any 

given configuration of the synthesizer two wavetables will be 

active at a time. These active waveforms are selected by the 

player using the switched on the FPGA itself. Because of this 

every clock cycle 16 samples are fetched from the wavetables. 

This breaks down as 8 samples per active waveform and 2 

samples for each of the 4 notes being held. 
    Once the 16 samples are fetched from the wavetable 

memory, they are sent to the mixer module. This module takes 

in each sample and the velocity value for its respective note. It 

then weights each notes sample by its velocity level and adds 

together all the samples for each of the two waveforms. Then 

taking the value provided by the blending control knob adds 

the resultant samples for each of the waveforms. The blending 

control knob determines how much of each of the two active 

waveforms is desired. At a value of 0 only active waveform 

one is played, at a value of 127 only active waveform two is 

played. The output of the mixer is buffered and updated on the 

sample clock as opposed to the system clock. This is done so 

that the effects chain which involves a delay effect and a 

reverb effect that both need to use memory must store the 

minimum number of samples to achieve their effects.  

 

D. Digital to Analog Conversion 

Our digital signal now needs to be converted into an analog 

signal so that it can go through our equalizer filters and 

become and actual sound through the speakers. In order to do 

this, we chose a digital/analog converter stereo DAC: the 

PCM 1793. The stereo portion of the DAC is not made use of 

as our design currently does not support stereo noise. 

Furthermore, the voltage lines are powered from the FPGA 

board, which removes the need for an outside power source in 

addition to the one needed for the FPGA. Shown in Fig. 3. 

below is the pinout for the FPGA. In Fig. 4 we have the 

connections needed for the pinout DAC to work with our 

system. In green are the FPGA connections, in yellow are the 

power sources, which will also come from the FPGA. The 

gray pins denote ground, while the red and blue pins are the 

two sound outputs. As mentioned before, the DAC supports 

stereo, but our circuitry currently does not, and as such, we 

only use one of the two output pins. 

 

                                         Fig. 5. DAC DIP chip pinout 
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                           Fig. 6. FPGA value table 

 

According to the specification for the PCM1793, many of 

the signals coming from the FPGA are relatively simple to 

generate. Almost all of them are clocks, which are much 

slower than the FPGA’s clock, or held signals which are set to 

the same value always when received by the DAC. The DAC 

will communicate over I2S specification, which will also be 

controlled by the FPGA to the data pin on the DAC. 

Verification for this part will be by sending a known note to 

the DAC and measuring the output waveform to ensure that it 

is the note specified. 
 

E. Filters and Equalizer  

After we have converted our digital signal into an analog 

one, we wanted to create a simple equalizer to give the user 

greater control over the sound output. This equalizer also has a 

volume control tacked onto the end. As a baseline target, we 

wanted to be able for the user to control sounds from a note 

referred to as A0, to a note referred to as C8. These notes are 

denoted as the tone followed by an octave, and the range that 

we chose gives us a range equivalent to that of a piano. The 

equalizer has eight different ranges to mirror the number of 

equalizers in a normal synthesizer. Shown in Table Fig. 7. 

below are the ranges of each filter. Regions 1 and 8 are the 

final low and high pass filters that we wanted to use. 

Currently, they are fixed filters, but the design allows for us to 

potentially control where their cutoffs are and make them 

variable cutoff filters, which is a feature that many on-the-

market synthesizers have. 

  
 

 
                                     Fig. 7. Filter Ranges  
 

In order to create these, our circuitry implements two-

stage filters for each frequency range. The reason for this 

is that it is simpler to create a low-pass combined with a 

high-pass that have sharp cut-off frequencies than to create 

a bandpass with less sharp cutoffs. Furthermore, it allows 

us to separately design each filter, which makes testing and 

fixing any errors that have been made much easier. The 

overall circuitry is shown in Figure Fig. 8., but with only 

two band-pass filters shown rather than the 6 that we 

intend to have when our design is completed.  
 

 

  
                              Fig. 8. Equalizer design 

 

The low-pass and high-pass filters are in Cauer topologies 

and have a third-order pole at the given cutoff frequency. This 

pole allows us to achieve 60dB/decade roll-off, which is 

important in ensuring that sound frequencies that we do not 

want to pass through are not passing through. The topologies 

for the third-order low-pass and high-pass filters are relatively 

simple in terms of design and implementation. Shown in 

figures Fig. 9. and Fig. 10. are the third-order filters.  

 

 

                  
      Fig. 9. Low Pass                                           Fig.10. High Pass 

 

 

In terms of overall design, we wanted to add as many layers 

of buffers as possible in order to ensure that there will be 

minimal loading between all the stages of filters that we have 

 

Pin Number Pin Name Connection Pin Number Pin Name Connection 

 1 LRCK FPGA GPIO 15 VCC_C 5V FPGA 

2 BCK FPGA GPIO 16 AGNDC GND 

3 DATA FPGA GPIO 17 V_OUT L+ OUT 

4 MUTE FPGA GPIO 18 V_OUT L- OUT 

5 SCK FPGA GPIO 19 AGNDL GND 

6 RST_N FPGA GPIO 20 V_CC L 5V FPGA 

7 V_DD 3.3V FPGA 21 V_CC F 5V FPGA 

8 DGND GND 22 ZEROR FPGA GPIO 

9 AGNDF GND 23 ZEROL FPGA GPIO 

10 V_CC R 5V FPGA 24 DEMP0 FPGA GPIO 

11 AGNDR GND 25 DEMP1 FPGA GPIO 

12 V_OUT R- NC 26 FMT0 FPGA GPIO 

13 V_OUT R+ NC 27 FMT1 FPGA GPIO 

14 V_COM GND 28 FMT2 FPGA GPIO 
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designed. This also allows us to test each filter independently 

and then combined in order to help smooth integration. After 

the two stages of filters that we have, we have an effectively 

variable gain op-amp whose gain is controlled by the 

potentiometers. These allow us to create an equalizer which 

can be used to boost or attenuate certain frequencies and allow 

the user to create unique sounds. Finally, we combine all our 

signals via a summing amplifier, which also has variable gain, 

and send the output to a speaker. The speaker is yet to be 

determined, but the chosen speaker will determine what 

amount of gain is needed at minimum on the summing 

amplifier at the end. 

 

F. Power 

In terms of overall power use, we expect to be easily within 

the parameters of the FPGA where the power for all our 

analog components will be drawn from. The relevant active 

components currently are the DAC and all op-amps. In all, we 

use 17 op-amps in our design. According to the specification 

for the op-amp that we have chosen, the OPA 1692, the 

maximum current that it should draw from its power rails is 

975µA. Our power rail for the op-amps will be 5V and ground 

coming from the FPGA. For the DAC, the 5V rail can draw up 

to 8mA according to the specification while the 3.3V rail can 

draw up to 16mA. According to the specification on the FPGA 

that is being used, any given power pin can supply up to 5W 

of power. That means that on the 5V rail, we can draw up to 

1A and on the 3.3V rail, we can draw up to 1.515A. Our 

design currently draws 17*.975mA + 8mA = 24.575mA from 

the 5V rail at worst, and 16mA from the 3.3V rail at worst. 

Even if our design ends up having a lot of loss between the 

power source and the op-amps/DAC, we have more than 

enough clearance on the power use of our power to support all 

of our circuitry. 

V. PROJECT MANAGEMENT 

A. Schedule 

Our breakdown of work is relatively simple. We wanted to 

ensure that everyone was scheduled in their comfort zone where 

they would be able to do their best work. Furthermore, we 

wanted to make sure that everyone had enough slack available 

so that they would have some extra time to do their work if 

necessary. Our schedule can be seen in the figure below. It may                                  

be a bit difficult to read, but in yellow are tasks that require 

everyone to pitch in to complete, in green are tasks for Hailang, 

blue tasks for Jens, and red tasks for Charles. Additionally, a 

larger version of the schedule can be seen after the references 

section. Each person should have roughly two weeks of slack 

for themselves, while the overall project where everyone might 

need slack has around another added week of slack. 

 

B. Team Member Responsibilities 

In terms of work breakdown, Jens has a work focus on 

converting signals into digital signals. His focus is on 

determining what needs to be read from the wavetables which 

store digital sample values in the distributed block ram.            Fig. 11. Schedule 
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Hailang’s focus is on digital logic manipulation, taking a 

sample value and applying different effects to that to get a final 

digital value. Charles’ work focuses on the analog side of the 

synthesizer. His work involves converting the digital value 

through a DAC to get to an analog signal and filtering that 

signal to reach the speaker and an end sound.  

As such, we broke down our project into several parts, which 

are distributed as described above. The distribution of work can 

be seen in the table below. 

                      Fig. 12. Work Distribution Table 

 

C. Budget 

Our budget will mostly comprise of analog pieces. The 

primary non-analog part bought is the keyboard that we will be 

using to transmit our MIDI signal to our FPGA. All other parts 

will be analog parts. The op-amps chosen are just over a dollar 

in cost and impact our budget relatively little. All passive 

components should sum to a total of no more than $50, though 

the specific components have not been bought yet. This is 

because passive components are generally extremely cheap in 

cost. As such, our total overall cost is budgeted to be lower than 

$100 currently. 

 
                      Fig. 13. Estimated Bill of Materials 

 

VI. RELATED WORK 

In researching similar work to the synthesizer that we wished 

to create we used three specific works for reference. Those 

were: Serum, the Waldorf Blofeld, and the Waldorf Quantum. 

These three synthesizers were chosen as they all use wavetable 

synthesis to produce sound but are very different in the markets 

they target and the features they provide. 

Serum is a software wavetable synthesizer plugin made by 

Xfer Records and is the industry standard wavetable synthesizer 

for electronic music production. It is built on the core feature of 

being able to blend and manipulate waveforms. Additionally, it 

comes in at a relatively price point of 300 dollars. However, it 

is locked into a software environment that requires a significant 

amount of additional software and compute power to run to its 

full potential. 

The first of the hardware synthesizers that we compared to 

was the Waldorf Blofeld. This synthesizer was chosen for its 

low price for a hardware synthesizer of 400 dollars. However, 

the core feature that our synthesizer targets of waveform 

blending is completely absent from this synthesizer. This lead 

us to attempt to find an example of a hardware synthesizer that 

did include this core feature. 

Moving up Waldorf’s product stack we arrived at the 

Waldorf Quantum, a wavetable synthesizer with an over 4000-

dollar price tag. This synthesizer did include wavetable 

blending effects but also included copious other effects to 

justify the extreme price. This confirmed that there was a 

vacancy in the market for a hardware wavetable synthesizer that 

focused on wave manipulation effects while achieving a lower 

budget price target. 

REFERENCES 

[1] Xfer Records xferrecords.com. 

[2] Waldorf www.waldorfmusic.com/en/   

[3] MIDI Spec www.midi.org/specifications 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jens  Charles Hailang 
MIDI message 
decoder 

Analog filter design MIDI to FPGA 
interface 

Wavetable 

Incrementor 

DAC support 

circuitry 

Delay effect 

Wavetable blending 
and mixing 

FPGA to DAC 
interface 

Reverb effect 

Unison mixing Amplifier design Bit distortion 

effect 

 

Item Price 
Monoprice MIDI Keyboard w/ serial output $50 

Terasic DE0-CV FPGA board $100* 

PCM1793 DAC $6.40 

6N139 Opto-isolator $1.80 

Various Passive Analog Components $30** 

 

*Is not subtracted from $600 budget 

**Components not chosen, price estimated 
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APPENDIX A. WORK SCHEDULE 
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APPENDIX B. MODULE DIAGRAMS 


