LivePin

ECE Capstone Fall 2025 – **Crystal Huang**, Safiya Bainazar, Tedd Jung

Use Case

Problem

Currently museum exhibits and primarily rely on 2D screens or static objects, limiting engagement

Application

Allow users to take a picture of an object and render it into a 3D pin art recreation

ECE Areas

Software Systems, Hardware Systems, Circuits

Use Case Requirements

Size Latency Accuracy

16 x 16 (256 pins total)

Sufficient number of pins to model objects, while be cost effective All pins should finish actuating within 2 minutes of image capture

Ample amount of time for the pins to actuate

Minimal wait time for rendering

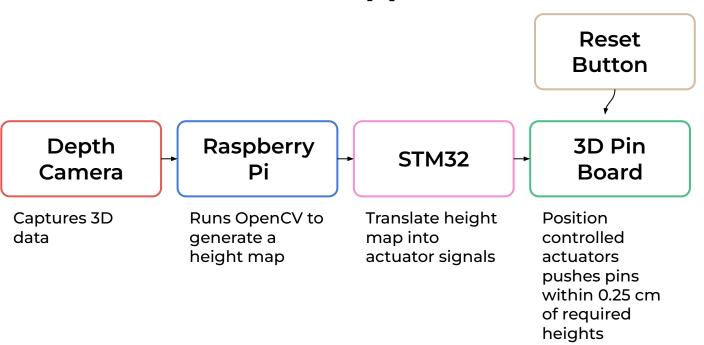
95% of the target pins actuate to the correct position

Correct position defined as within 0.25 cm of intended height

Technical Challenges

Creating a realistic 3D rendering even with lower number of pins

Mechanical actuation speed and precision


System Integration

 Adjust height map calculations

- Parallelize actuation
- Try different actuators

- Modular design
- Unit testing

Solution Approach

Testing, Verification, and Metrics

Latency

Measure the amount of time between camera capture to all pins done actuating

Confirm <= 120 s

Accuracy

Construct a height map of known values

Individually measure the heights of pins based on set values

Tasks and Division of Labor

Hardware

Firmware

Software

Design of Prototype (CAD) - Safiya

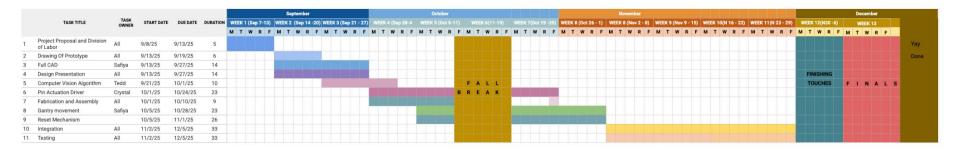
Fabrication - Everyone

Assembly - Everyone

Actuator Driver - Crystal

Gantry Driver - Safiya

Reset Mechanism Driver - Tedd


Communication Protocol - Crystal

OpenCV Development - Tedd

Depth Camera - Tedd

Heightmap - Tedd

Gantt Chart

A cool new 3D visualization tool

