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Abstract—Downtime in liquid-cooled servers and PCs is costly,
making early detection of system degradation critical to
maintaining reliability and extending lifespan. Gradual faults such
as blockages in the cooling loop reduce the efficiency of power
dissipation, and degradation in the Voltage Regulator Module
(VRM) can lead to cascading failure and system shutdown. This
paper presents an anomaly detection framework for identifying
early signs of degradation in liquid-cooled systems. To implement
this, a hybrid regression and autoencoder model predicts expected
power dissipation from sensor data and detects real-time
anomalies to support preventative maintenance and improve long-
term reliability.

Index Terms—Anomaly Detection, Autoencoder, Edge
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I. INTRODUCTION

Liquid cooling has become an increasingly common solution
for managing power dissipation in computing systems due to its
higher heat transfer efficiency compared to air cooling [22]. As
server workloads and Al applications continue to demand more
consistent performance, thermal management has become a key
reliability concern. To address this challenge, this project
targets server operators, data center managers, and PC system
builders who rely on liquid cooling to maintain stable operation
under continuous and varying power workloads.

Existing liquid-cooling systems rely on temperature
thresholds and PID control loops to maintain target
temperatures [11], [15]. These threshold-based alarms cannot
detect inefficiencies and deterioration that develop over time,
such as partial blockages in the cooling loop from coolant
deposits or reduced efficiency in the Voltage Regulator Module
(VRM) due to phase loss [38]. More heat builds up in the
system when a VRM inefficiency increases power loss or a
blockage reduces cooling effectiveness. Once temperatures
approach the threshold, the system compensates by increasing
fan and pump speeds, masking the underlying problem. In
doing so, the system remains apparently stable even as energy
consumption rises and mechanical components operate under
greater stress.

First, persistent high operating temperatures reduce overall
system reliability and lifetime. Higher thermal load on
processors, power delivery circuits, and other electronics

accelerates aging and increases the likelihood of failure [32],
[35]. Even moderate increases in temperature over time shorten
the useful life of the system and raise the risk of downtime. In
always-on systems such as servers, even brief downtime can
disrupt operations and lead to costly delays [36].

Second, increased heat generation makes it harder for the
cooling system to maintain its temperature setpoint. As
temperatures rise, the radiator and surrounding air approach
thermal equilibrium, reducing the temperature difference that
drives heat transfer. This lowers the overall heat transfer rate
according to (1):

Q = mc,AT (1)

where Q is the heat transfer rate (W), 711 is the mass flow rate of
coolant (kg/s), ¢, is the specific heat capacity of coolant
(J/kg-°C), and AT is temperature rise across the component or
loop (°C) [6]. Reduced cooling efficiency raises CPU
temperatures, so the buffer between current and maximum safe
operating temperature shrinks. With less margin available,
temporary workload spikes or changes in ambient temperature
can trigger thermal throttling, where the processor
automatically reduces frequency and power to prevent
overheating [18]. This leads to more frequent performance
fluctuations and unstable behavior under load.

Finally, these hidden inefficiencies can lead to cascading
failures in power delivery systems. For example, if one phase
of a multiphase VRM begins to degrade, the remaining phases
must supply more current to maintain output [23]. This added
current increases power loss and thermal stress on the
remaining phases, accelerating further degradation until
eventual phase loss or complete VRM failure. In many cases,
compensating fan and pump speeds delay visible symptoms,
allowing the system to appear stable until the fault becomes
severe. Prolonged high fan and pump speeds also shorten
component lifespan and increase maintenance needs. Elevated
bearing temperature and sustained high rotational speed cause
exponential reductions in fan life, leading to earlier mechanical
failure and decreased reliability of the cooling system [31].

Detecting  inefficiencies  early  enables  scheduled
maintenance, extending service intervals, improving system
reliability, and reducing the risk of costly unplanned downtime.
This project aims to implement a preventative maintenance
alert system that identifies such faults early and accurately.
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II. USE-CASE REQUIREMENTS

For the success of the proposed maintenance alert system, we
outline the following quantitative use-case requirements.

1. Abnormal Power Detection

An anomaly alert must be issued when the measured power
differs from the predicted power by more than 10 % for at least
30 seconds. This requirement allows the system to detect
reduced power delivery efficiency, such as a partially degraded
VRM phase, without triggering false alerts caused by short
spikes in CPU activity or small variations from sensor noise.

In a 65 W class CPU operating around a typical 60 W load,
a 10 % mismatch corresponds to approximately 6 W of
additional power loss. With a typical CPU water block thermal
resistance of 0.1-0.2 °C/W [1], this results in a 0.6-1.2 °C rise
in junction temperature. Even a small, sustained temperature
rise of 1 °C has been shown to shorten component lifetime by
about 1.3-1.5 years based on the Arrhenius acceleration model
[37]. This supports the 10 % mismatch threshold as a
meaningful indicator of system degradation.

The 30 second persistence requirement is based on the
thermal response time of the cooling loop. Using a first-order
RC model, the loop’s temperature rise after a small abnormal
power step was calculated. With a typical radiator thermal
resistance R4 0f0.172 °C/W and an estimated coolant volume
of 310 mL, the calculated thermal capacitance Cy, (2) was
1.296 kJ/°C, yielding a time constant 7 (3) of 222.9 seconds.
The following equations were used to calculate these quantities:

Cn=pVep 2

where p is the coolant density, V is the coolant volume, and c,,
is the specific heat.

T = Rpq Ciy 3)
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Fig. 1. Calculated bulk coolant temperature rise for injected power
anomalies of 2 W, 4 W, 6 W, and 8 W using a first-order RC thermal
model (4).

The first-order step response of coolant temperature rise was
modeled according to the following equation:

AT(t) = AT..(1 — e™t/7) “4)

where AT, is the final steady state temperature rise. Fig. /
shows that for an injected anomaly of 8 W, the bulk coolant
temperature increases by only 0.173 °C after 30 seconds which
is sufficient to exceed normal temperature jitter in the loop.
Requiring the mismatch to persist for at least 30 seconds
ensures that alerts are generated only after the temperature
change becomes distinguishable from short-term fluctuations
caused by flow variability or minor load changes.

2. Abnormal Flow Detection

An anomaly alert must be issued when the coolant flow rate
decreases by more than 20 % from its normal operating value
for at least 30 seconds. This requirement ensures that the system
can detect partial blockages in the cooling loop that reduce
cooling performance.

A 20 % decrease in flow rate lowers the rate at which heat is
carried from components to the radiator. From (1), the rate of
heat removal depends on mass flow rate, specific heat capacity,
and temperature difference between the coolant and the radiator.
When flow decreases, less heat is transferred per second,
causing higher steady state coolant and component
temperatures. For water, which has a specific heat capacity of
approximately 4.18 J/kg-°C, a 20 % reduction in flow rate at the
same power load can raise coolant temperature by several
degrees [26], accelerating component wear and lowering
cooling efficiency as shown in Section II.1. The 30 second
persistence requirement ensures that short fluctuations in pump
speed or sensor readings do not trigger false alerts, consistent
with the thermal response characteristics discussed in Section
IL.1.

3. Accurate Alerts

The anomaly detection system must maintain a False Positive
Rate (FPR) below 5 % and a False Negative Rate (FNR) below
5 %. This ensures that alerts reflect true system degradation
rather than normal variations in workload or measurement noise.
False positives lead to unnecessary alerts while false negatives
allow faults to go undetected, increasing the risk of unplanned
downtime. In “RADS: Real-time Anomaly Detection System
for Cloud Data Centres,” the authors report a low FPR of 0-3 %,
demonstrating that maintaining FPR below 5 % helps preserve
system reliability [5]. Keeping rates within this range
minimizes false alarms that can reduce trust in the system while
ensuring that genuine degradation events are consistently
detected.

4. Timely Alerts

An anomaly alert must be issued within 1 second after the 30
second persistence period has ended. This ensures that once an
abnormal condition has lasted long enough for temperature
changes to become measurable and distinguishable from
normal short-term fluctuations, the system promptly notifies the
operator. Although the system is intended for preventative
maintenance, a 1 second limit demonstrates real-time
responsiveness from the model once a fault is confirmed,
allowing sensor data, model outputs, and alert logs to remain
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synchronized. This enables operators to identify exactly when
a fault occurred and correlate it with other system events.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The system architecture consists of two main subsystems: a
physical testbed that simulates a liquid-cooled computing
system and a model trained on data collected from the testbed
to identify normal versus abnormal cooling behavior. A detailed
overview of the interconnections of our system is provided in
Appendix, Fig. 10.

1. Testbed Subsystem

The testbed subsystem simulates a computer or server liquid-
cooling system, circulating coolant through a controlled loop
with adjustable liquid flow and airflow for heat dissipation.
This enables evaluation of thermal behavior under both normal
and injected fault conditions. The subsystem consists of five
functional components: the water loop, heater complex, fault
injection assembly, sensor network, and power distribution
network.

The water loop circulates coolant through a reservoir, pump,
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CPU water block, and radiator with a fan. These components
are the same types commonly used in custom PC liquid-cooling
systems, ensuring realistic thermal and flow behavior [12]. The
pump controls coolant flow to carry heat away from the CPU
block to the radiator while the fan removes heat from the
coolant to ambient air. Together, these components determine
the system’s overall cooling capacity and temperature response.

The heater complex simulates power dissipation from a CPU
and VRM. Two power resistors represent these heat sources,
each driven by a solid-state relay (SSR) that is PWM duty-cycle
controlled by the Pi Pico to adjust the simulated power load.
Varying heater output allows the system to simulate different
computational loads for data collection.

The fault injection assembly introduces controlled faults to
evaluate the model’s ability to detect anomalies and meet the
use-case requirements. Two types of faults are implemented:

1. Flow restriction is done by partially closing a servo-
controlled valve to reduce coolant flow.

2. Hidden power injection is achieved by increasing VRM
heater power to simulate reduced power conversion
efficiency.
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Fig. 2. System architecture showing communication between the compute unit (Pi 5) and control unit (Pico).
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The sensor network consists of air temperature sensors at the
radiator’s inlet and outlet, a coolant temperature sensor at the
reservoir, and tachometer feedback from the fan and pump.
These measurements are used to infer power. All data are
collected and timestamped by the compute unit, a Raspberry Pi
5 (Pi5), and stored in InfluxDB for model input and anomaly
detection.

The power distribution network provides regulated voltage
rails for the components. A combination of power supplies,
SSRs, and DC-DC buck converters delivers the required
voltages for the heaters, pump and fan, and servo motors.

The system architecture, shown in Fig. 2, illustrates
communication between the compute unit and control unit. The
Pi 5 handles data collection, model execution, and the alert
system while the Pico receives periodic heartbeat messages
containing PWM commands for the pump, fan, servo valve, and
heater power levels. On startup, the Pico initializes to a
predefined safe operating state and continuously updates
actuator outputs based on the latest heartbeat from the Pi 5. If
no heartbeat is received, the Pico reverts to its safe state,
maximum pump and fan speed, valve fully open, and heat
power disabled to maintain cooling and prevent thermal
runaway.

2. Model Subsystem

The model subsystem performs real-time anomaly detection
using a regression model to preprocess data collected from the
testbed and an autoencoder to detect anomalies.

During training, the regression model learns to predict
expected power dissipation based on sensor inputs such as
coolant temperature, radiator inlet and outlet air temperatures,
and pump and fan speeds. The difference between predicted and
measured power, or the residual, quantifies deviations from
actual measured power.

An autoencoder is then trained on the residual, the percent
deviation from actual power, and 30 second window-based
features such as the mean, maximum, standard deviation, and
slope. The autoencoder compresses these features through an
encoder and reconstructs them through a decoder. Normal
inputs produce low reconstruction error while anomalies
produce a high reconstruction error. A threshold is determined
during training to establish the reconstruction error that
constitutes an anomaly flag [28].

tcc»ol ant

The overall model workflow is shown in Fig. 3, illustrating
the flow from regression-based power prediction and residual
analysis to unsupervised anomaly detection and classification.

Once trained, the models are deployed on the Pi 5 for real-
time inference. As the system operates, the Pi 5 continuously
computes the residual between measured and predicted power
and evaluates it using the trained autoencoder. If the
reconstruction error exceeds a defined threshold, the model
flags the anomaly and classifies it based on temperature
response patterns: flow restrictions raise coolant temperature
with little radiator outlet change, while power mismatches
increase both coolant and radiator outlet temperatures.

Once the model confirms an anomaly, the result is
immediately displayed on the Pi 5 terminal and recorded in a
log file. This allows operators to see alerts in real time and
review afterward to determine what conditions caused the fault.

IV. DESIGN REQUIREMENTS

The design requirements translate the use-case requirements
from Section II into quantifiable metrics for both the hardware
testbed and the anomaly detection model. Because the proposed
system must first simulate realistic thermal behavior and collect
representative data to train the anomaly detection model, the
design requirements are divided into two categories. Testbed
requirements (1 and 2) define the specifications of the
components needed to simulate both normal and fault behavior
of the PC or server, ensuring consistent, high-fidelity training
and validation data. Model requirements (3 and 4) define the
performance and alert generation criteria necessary for accurate,
real-time anomaly detection once the model is deployed.

1. Abnormal Power Detection
To meet the abnormal power detection use-case, the testbed

must simulate realistic CPU and VRM power dissipation levels
and faulty VRM levels.

1.1 CPU and VRM Operating Range

The CPU heater must operate between 20-80 W, spanning
idle to full load conditions for 65 W class CPUs. This range is
based on reviews of commercial desktop processors such as the
Intel Core 15-12400 and AMD Ryzen 5 7600 which report
comparable power draw across typical workloads [19], [33].

The VRM heater must cover a 1-30 W range. Under normal
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Fig. 3. Machine learning model workflow for anomaly detection.
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for 20-80 W CPU loads [35]. An additional 10 % efficiency loss
is modeled to simulate a degraded phase or reduced efficiency
fault. The VRM loss fraction L is defined by the standard
efficiency-loss equation for DC-DC converters [34]:

L=(5-1)Pwy ®)

where L is the conversion loss (W), n is VRM efficiency, and
Pcpy is CPU load power (W).

Under normal operating conditions, efficiencies from 85-95 %

produce conversion losses ranging from approximately 1.05 W
at Popy =20W,n =095 to 14.1 W at Ppy =80W ,n =
0.85. With an additional 10 % efficiency loss to model the fault
condition, the conversion loss rises to approximately 26.7 W at
Pcpy =80 W, n =0.75. Therefore, the VRM heater must
cover a 1-30 W range, providing sufficient headroom for both
normal and degraded VRM behavior.

To accurately simulate both normal and fault loads, the
heater control system must maintain a command accuracy
within 2 % RMS across the 20-80 W CPU load range. This
ensures that the applied heater power matches the intended load
and that control uncertainty does not interfere with the 10 %
deviation threshold used for anomaly detection. A 2 % RMS
error provides a five times separation between command
uncertainty and the 10 % detection threshold, as shown by the
signal-to-noise ratio (SNR) equation [9]:

0.10P _

SNR = =
0.02P

5 (©)

Maintaining this ratio minimizes the likelihood of false
positives from PWM inaccuracy. Across the 20-80 W range, a
2 % error corresponds to only 0.4-1.6 W, providing consistent
repeatable loads for reliable model validation.

1.2 Pump and Fan Control Accuracy

To ensure realistic cooling behavior during data collection,
the pump and fan must be PWM controllable with less than 2 %
deviation between commanded and measured RPM. PWM
control allows adjustment of flow and airflow rates to match
real cooling loop conditions [13], [27]. Without it, overcooling
could flatten temperature gradients, preventing sensors from
capturing measurable thermal responses to injected faults.

Maintaining tight PWM control accuracy ensures that the
system’s thermal response remains constant between runs, so
any measured power mismatch reflects true anomalies rather
than variations in cooling performance. The rate of heat
removal from the coolant is given by:

Q=hA (Tsurface - TOO) (7)
where Q is the heat removal rate (W), h is the convective heat
transfer coefficient (W/m?-K), A is the effective heat exchange
area (m?), and Ty, face — T 1s the temperature difference
between the heated surface and ambient air.

For forced convection heat transfer, h scales approximately
with the square root of the flow velocity [6]. Since pump and

fan RPM are proportional to flow velocity, the resulting
relationship between RPM and h is:

ha _ (%)0'5 (8)

hy RPM;

A 2 % change in RPM therefore changes h by only about 1 %
which in turn changes @ by 1 %. This shift in cooling capacity
is one-tenth of the 10 % power mismatch threshold defined in
the use-case requirements, ensuring that cooling drift does not
cause or obscure anomaly detection.

To achieve this precision, the pump and fan PWM control
signals operate at a carrier frequency above 25 kHz. This allows
the fan and pump to maintain steady RPM within 2 % accuracy
for consistent heat-transfer conditions.

2. Abnormal Flow Detection

To meet the abnormal flow detection use-case, the test bed’s
servo-controlled valve must be capable of restricting flow rate
between 0-30 % in discrete 5 % increments with £2 %
repeatability. This requirement ensures that the system can
reliably generate calibrated and repeatable reductions in flow
rate to train and validate the anomaly detection model. The 0-
30 % range provides sufficient margin around the 20 % target
restriction while extending to 25-30% for calibration and
margin testing. Reductions below 20 % need to be tested to
verify that the model does not trigger an anomaly flag on minor
coolant flow variations. The 5 % incremental step size offers a
practical balance between resolution and control stability, and
the £2 % repeatability ensures consistent fault injection and
reliable comparison across tests.

3. Accurate Alerts

To meet the accurate alert use-case requirement, the anomaly
detection model must maintain a FPR below 5 % and a FNR
below 5 %. Two design requirements were derived for the
autoencoder to satisfy this use-case requirement.

3.1 Anomaly Detection Accuracy

The target FPR and FNR below 5 % follows directly from
the use-case requirement and defines the quantitative accuracy
the model must achieve during validation. For the autoencoder-
based anomaly detector, these metrics are determined by
selecting the reconstruction error threshold that balances
detection sensitivity and false-alarm probability.

3.2 Regression Model Accuracy

The regression model that predicts expected power from
temperature and RPM inputs must achieve a Root Mean Square
Error (RMSE) of less than 2 % to ensure that the predicted
power Py qq closely matches the measured power Pyeas by (9):

1 2
RMSE = \/EZ?I=1(Ppred,i - Pmeas,i) < 0.02 Pmeas,avg (9)

This requirement applies to the trained regression model’s

accuracy during normal operation and is distinct from the

hardware power control accuracy defined in Section 1.1.
Keeping RMSE below 2 % ensures that the model
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uncertainty remains small compared to the 10 % power
deviation threshold in Section II.1, so the residual input to the
autoencoder reflects true deviations rather than regression error.
For example, at an 80 W load, a 2 % RMSE corresponds to +1.6
W average prediction error, well below the 12.6 W mismatch
threshold from Section 1.1. This allows the anomaly alerts to
indicate real power deviations rather than prediction noise.

4. Timely Alerts

To meet the use-case requirement of issuing an anomaly alert
within 1 second from the fault, the total latency budget is
divided among three sequential processes: regression inference,
anomaly detection inference, and alert transmission.

4.1 Regression Inference Latency

The regression model predicting expected power from
temperature and RPM features must complete inference within
300 ms. This time is based on prior benchmarks showing that
the average inference time of several neural network models
achieve inference times of below 300 ms on the Pi 5 [2]. Since
our regression model uses a low-complexity model and only a
few features, coolant temperature, radiator air temperatures,
and RPM values, this inference time should be achievable.

4.2 Autoencoder Inference Latency

The anomaly detection autoencoder must complete execution
within 650 ms. Together with the regression time, this keeps
total model side latency under 950 ms, leaving margin for alert
transmission. This budget is supported by prior work where a
similar autoencoder-based anomaly detection framework
achieved real-time inference latency below 650 ms with more
features [30]. Thus, the 650 ms limit is reasonable and gives
margin for runtime overhead in real deployment.

V. DESIGN TRADE STUDIES

1. Power Simulation Methods

Two approaches were evaluated for generating a controllable
and repeatable thermal load within the cooling loop: using an
actual PC with a CPU and VRM as the heat source and using a
resistive load to emulate the same power dissipation

characteristics under controlled conditions.
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Fig. 4. VRM power under different CPU loads.

1.1 Actual PC Approach

In this approach, the CPU and VRM act as natural heat
sources by running high-intensity computational workloads.
Tools such as Prime95, AIDA64, and IntelBurnTest stress the
CPU through continuous calculations like prime generation and
floating-point operations, driving utilization near maximum.
Thermal power can be modulated by adjusting test parameters.

This method produces realistic power and temperature
behavior, capturing transient effects, VRM switching losses,
and load dynamics. However, it is unsuitable for controlled or
repeatable fault experiments. Simulating VRM degradation
such as partial phase failure risks irreversible hardware damage,
preventing consistent data collection and model retraining.
Thus, the method is impractical and cost-prohibitive for
experimental use.

1.2 Resistive Load Approach

The second approach uses power resistors to simulate the
heat generated by the CPU-VRM power stages. By controlling
the average voltage via PWM duty cycle, power dissipation can
be adjusted to represent different load levels or efficiency losses
matching real VRM behavior. This method means faults can be
simulated without hardware damage, load conditions are
repeatable across runs for consistent data collection, and
efficiency losses can be programmed to represent varying
degrees of VRM degradation for anomaly detection.

As shown in Fig. 4 and Fig. 5, the resistors can be configured
to closely match a VRM efficiency curve obtained from
manufacturer data sheets [35]. Fig. 4 shows how simulated
VRM power output increases with CPU load under different
CPU loads, and Fig. 5 illustrates the corresponding efficiency
curves. The -5 % and -10 % curves simulate minor and major
degradation cases, respectively, providing clear separation
between normal and faulted operation for data labeling. The
resistive load method was selected as the approach for this
system because it is more practical and repeatable for
replicating degradation faults.
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Fig. 5. VRM efficiency curves under different CPU loads.
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2. Loop Construction and Control

To accurately simulate the behavior of a real-world liquid-
cooling system, the test loop must replicate both the heat
transfer and flow characteristics found in PC cooling
applications. Two construction approaches were evaluated:
using a sealed all-in-one (AIO) cooler and building a custom
water-cooling loop from individual components.

2.1 AIO Cooler Approach

An AIO cooler integrates a pump, radiator, tubing, and water
block into a compact, factory-sealed unit. AIOs are widely used
in desktop PCs and small form factor servers because they
provide simple, efficient self-contained cooling without user
assembly [10]. However, the sealed configuration prevents
internal access for installing sensors or injected controlled
faults such as partial blockages without disassembling and
permanently altering the device which introduces the risk of
leakage. Key parameters, like flow rate, total fluid volume, and
effective loop heat capacity also cannot be measured directly,
limiting its usefulness for thermal profiling and fault testing.

2.2 Custom Loop Approach

A custom water-cooling loop was chosen to provide full
control over thermal and flow parameters. It uses standard PC
components: a DC pump, radiator, reservoir, copper water
block, and flexible tubing. The configuration allows
measurement and tuning of key parameters:

1. Pump flow rate which determines the convective heat
transfer through the water block and radiator.

2. Radiator thermal resistance is determined from the radiator
fin surface area, fan speed, and airflow characteristics.

3. Total fluid volume which defines the system’s transient
temperature response.

With these parameters defined, the total heat capacity of the

loop can be estimated using (2) and the temperature response to

a step change in input power can be modeled using (4).

Together, these relations establish a basis for correlating CPU

or VRM power fluctuations with measurable temperature

changes. This configuration reproduces realistic single-CPU

cooling conditions while providing a controllable testbed for

collecting labeled data under both normal and fault states.

3. Flow Reduction Simulation Method

To simulate partial flow restriction in the water loop, two
approaches were evaluated: mechanically pinching the tubing
to reduce its cross-sectional area and installing a controllable
valve to regulate flow.

The tube pinching method is simple to implement but has
poor precision and repeatability. Flexible silicone tubing can
deform inconsistently under pressure, and its stiffness changes
over time with heat exposure and aging. Small variations in
applied force can cause large differences in actual flow rate
which makes it difficult to achieve consistent levels of
restriction between tests. Furthermore, repeated pinching can
weaken the tubing and introduce leaks over time.

The servo-controlled valve provides a more accurate and
repeatable solution for simulating partial flow restriction. The
valve position can be precisely adjusted using PWM control.

By turning the valve to defined angles, the flow rate can be
reduced by known percentages relative to the fully open
position. This approach offers greater accuracy, stability,
repeatability, and long-term durability compared to the tube
pinching method.

4. Processors

Processor selection focused on balancing computing power
with reliable control. The Raspberry Pi 5 was chosen as the
main controller because it can easily handle data collection and
run the machine learning model with its strong processing
capability [2]. Other small computers such as the NVIDIA
Jetson Nano or BeagleBone Black were considered, but they are
either more expensive, consume more power, or require
additional setup for integration.

Since the Pi 5 runs a normal Linux operating system, it
cannot guarantee precise timing for hardware control. To
provide deterministic operation, a Raspberry Pi Pico
microcontroller is used alongside the Pi 5. The Pico runs code
directly on its chip and generates the PWM signals for the pump,
fan, and valve without an operating system, so its timing is
predictable and consistent [8]. Alternatives such as the Arduino
Uno or ESP32 were also considered, but the Pico offered higher
PWM resolution, simple UART communication, and lower cost.

5. Sensors

Accurate temperature sensing is essential for the anomaly
detection model training. The system requires sensors that can
detect small temperature changes, fit into the physical layout of
the cooling loop, and have long-term reliability under
continuous operation.

For measuring the radiator inlet and outlet air temperature,
which are the main features used for power prediction, a
temperature sensor with enough resolution to measure the small
temperature response outlined in Section II.1 was required. The
TMP117 provides +0.1 °C across the 20-50 °C range and
communicates using the I?C interface, allowing multiple
sensors to share one connection line to the Pi 5. Compared with
other I2C sensors such as the LM75A, which offers only £0.2 °C
accuracy, the TMP117 achieves much higher precision while
remaining cost effective. Unlike analog sensors such as
thermocouples or thermistors, the TMP117 produces a direct
digital reading and does not require an ADC. This reduces
wiring complexity and prevents signal drift from cable length
or electrical noise. Overall, the TMP117 provides the best
balance of accuracy, reliability, and cost for this application.

A separate coolant temperature sensor is also installed at the
reservoir port using a standard G1/4 fitting for compatibility
with common water-cooling components. This is an analog
sensor (NTC-based probe, +1 °C typical accuracy) used as a
supplementary reading of bulk coolant temperature.

Since this channel is analog, a few low-cost ADCs were
considered to connect to the Pi 5 which does not have a built-in
ADC. Coolant temperature changes slowly, so very high
sample rates are unnecessary. The key factors for selecting an
ADC were easy integration with the I*C temperature sensors
and low noise. Table 1 shows the ADC options considered with
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their specifications. The ADS1115 was chosen because it
integrates easily with the other I?C sensors in the Qwiic
ecosystem and includes a differential input mode for noise
rejection.

Table 1. ADC Comparison

Options
Parameters
MCP3008 ADS1015 ADS1115
Sampling Rate 200 kHz 33 kHz 0.86 kHz
Sampling Depth 10 bit 12 bit 16 bit
Channel Count 8 4 4

6. Model Selection

Several types of models are commonly used for anomaly
detection, including regression, decision tree, random forest,
isolation forest, and autoencoder. Each model was evaluated
based on its ability to detect gradual degradation and accurately
flag anomalies on correlated sensor data.

6.1 Tree-based Models

Tree-based models such as decision tree, random forest, and
isolation forest are widely used for anomaly detection due to
their accuracy on static datasets [17], [24], [29]. However, they
classify each sample independently and cannot capture gradual
or time-dependent changes. In this system, degradation such as
partial cooling blockages or reduced VRM efficiency develops
slowly over time, producing small correlated drifts in
temperature and power. Tree-based models lack temporal
awareness, so these drifts are often treated as normal variation
until the fault becomes severe. Thus, these do not fulfill our use
case of early detection of gradual degradation.

6.2 Autoencoder

Autoencoders achieve high accuracy on multivariate
anomaly detection tasks, up to 99.37% [30], and perform
especially well on contextual and temporal data [7], [20]. They
learn the normal relationships between temperature and power
over time, reconstructing expected behavior and identifying
anomalies when the reconstruction error exceeds a defined
threshold. By tuning this threshold appropriately, the
autoencoder can detect small deviation that indicate gradual
system degradation. Thus, autoencoder fulfills our use case of
detecting slow, progressive degradation over time.

6.3 Regression

Although the autoencoder effectively captures gradual
deviations, the system’s sensor data are strongly correlated
through predictable thermal relationships defined in (1). Such
correlations can lead to false positives when normal
fluctuations, such as transient power spikes, are misclassified
as faults [4]. To improve alert precision and stability, the system
uses a hybrid regression and autoencoder model. The regression
stage preprocess data by predicting power from the sensor data,
and the autoencoder evaluates the residual between measured
and predicted power to detect degradation. This hybrid
approach reduces false positives from correlated data and
improves response times [4].

Elastic Net regression is used instead of L1 (Lasso) or L2

(Ridge) regularization because correlated inputs, such as
temperature and power that change together according to (1),
make the model prone to overfitting, especially since testing
can only cover a limited range of operating conditions. L1
forces some coefficients towards zero to remove weak
predictors while L2 distributes weight more evenly across
related inputs to avoid instability. Elastic Net combines both
effects by applying a weighted mix of L1 and L2 penalties
during training. As a result, Elastic Net makes the regression
model generalize better to unseen data.

VI. SYSTEM IMPLEMENTATION

As described in Section III, the system is implemented as two
subsystems: the testbed hardware which physically simulates
the liquid-cooling environment and the model subsystem which
performs the anomaly detection. The Pi 5 serves as the central
compute and data acquisition node, and the Pico functions as
the controller for the testbed hardware.

1. Testbed Subsystem

The testbed subsystem implements the physical cooling loop
used to collect simulation data for model training and to
validate anomaly detection performance. It includes the water
loop, heater complex, fault injection assembly, sensor network,
and power distribution network. The water loop, heater
complex, and fault injection subsystems are controlled by the
Pico, which receives UART commands from the Pi 5 specifying
PWM values for the fan, pump, and SSRs.

1.1 Water Loop

The cooling loop is assembled from standard PC liquid-
cooling components to ensure realistic thermal performance
and maintainability. A 12 V pump circulates coolant from an
acrylic reservoir through a copper CPU water block and into a
120 mm radiator. A 12 V fan mounted on the radiator dissipates
heat from the coolant to ambient air. Both the pump and fan
receive PWM control signals from the Pico. Coolant flows
through 6 mm polyurethane tubing secured with clamps and
brass fittings. The assembled loop holds approximately 300 mL
of coolant, selected to match the modeled thermal time constant
derived in Section II.1. A SolidWorks model of the assembled
loop is shown in Fig. 6, illustrating component placement.

Reservoir

CPU Water Block

Radiator

Fig. 6. SolidWorks model of the water loop.
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1.2 Heater Complex

Two power resistors simulate CPU and VRM power
dissipation, as shown in Fig. 7. Each 5 Q, 100 W resistor is
mounted to an aluminum spreader plate for power dissipation.
Two SSRs drive the resistors, and the load is varied by PWM
control from the Pico to the SSRs. The CPU heater operates
between 20-80 W, and the VRM heater operates between 1-30
W. The Pico receives PWM commands from the Pi 5 to control
the SSRs for each programmed load step on the resistors.

CPU Water Block

Power Resistor (CPU)
Power Resistor (VRM)

Fig. 7. SolidWorks model of the heater complex.

1.3 Fault Injection Assembly

Two types of faults are implemented: flow restriction and
power mismatch. For the first, the Pico uses PWM to control
two 5 V servo motors that are attached to an in-line valve (Fig.
8), allowing partial closure of the valve to restrict flow. To map
the PWM control commands to actual flow rate reductions, a
flow meter will be used during calibration to determine the
correspondence between PWM value and percentage of flow
rate reduction.

Valve Group Plate —

\
= Turn Buckle
—Valve

— Lever \

Fig. 8. SolidWorks model of the flow restriction fault injection
assembly.

For power mismatch faults, the Pico adjusts the PWM duty
cycle for the VRM SSR-resistor pair to produce an injected
hidden power that is not reflected in the measured power,
creating a controlled mismatch between measured and
predicted power. Both mechanisms are initiated by the Pi 5
through serial UART command sequences.

1.4 Sensor Network

As shown in Appendix, Fig. 10, all sensors connect to the Pi
5 via I?C for synchronized data acquisition without interfering
with UART communication with the Pico. A Qwiic shim adds
convenient access to the 3.3 V, I?C, and ground lines. Two
TMP117 temperature sensor boards, mounted at the radiator
inlet and outlet, provide £0.1 °C accuracy, and an in-line analog
sensor at the reservoir measures coolant temperature. An
ADS1115 ADC, daisy-chained with the TMP117s over IC,
digitizes the analog signal. Fan and pump tachometers are read
through GPIO pins to monitor RPM. All sensor data are logged

locally in InfluxDB on the Pi 5 for model training and validation.

1.5 Power Distribution and Mechanical Structure

The system is powered by a 24 V DC supply connected to a
wall outlet. The Pi 5 has its own power input from wall adapters,
and the Pico is powered through the Pi 5’s 5V rail. A 24 V to
12 V DC-DC buck converter powers the pump and fan, and a
separate 24 V to 5 V converter powers the servos. Each
converter output is distributed through WAGO terminals to
create shared power rails for components operating at the same
voltage. The 24 V supply also powers the SSRs that drive heater
resistors during load variation. Components are mounted on
custom cut plates secured to a modular frame of aluminum rods
and connectors as shown in Fig. 9.

Fig. 9. SolidWorks model of hardware system.

2. Model Subsystem

The model subsystem performs on-device inference for real-
time anomaly detection. It consists of a regression model for
power prediction, residual and feature computation, and an
autoencoder trained on normal operation data. The Pi 5 handles
all model computation and evaluation locally to maintain low
latency and continuous operation.

3.1 Regression Model

The regression model is implemented in Python using scikit-
learn’s Elastic Net regressor. It is trained using data exported
from InfluxDB and collected from the testbed operating under
normal conditions. Each feature, coolant temperature, radiator
inlet and outlet air temperature, and pump and fan speeds is
standardized before training. Model coefficients are obtained
through five-fold cross-validation to minimize mean-squared
error and prevent overfitting. During operation, predicted
power values are logged in InfluxDB along with the sensor data
and commanded heater power from the Pi 5.

3.2 Residual and 30-Second Window Feature Extraction
During operation, the Pi 5 computes the residual given by:

_ Pmeas—Ppred
r = ——m_—

(10)

Pmeas

and continuously buffers the most recent 30 seconds of residual
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data. A Python routine maintains this sliding window and
computes four summary features every 5 seconds, mean,
maximum, standard deviation, and slope. These features are
appended to a rolling data frame and passed to the autoencoder
input layer. All calculations are performed on the Pi 5 in the
same process as the regression model to minimize overhead.

3.3 Autoencoder

The autoencoder is trained on residual features collected
every 5 seconds during normal testbed operation, providing
approximately 17,000 sample per day. It takes in five input
features, the most recent residual along with the mean,
maximum, standard deviation, and slope of the residual over a
30-second window, and learns to reproduce these same values
as its output. Inside the network, several connected layers first
compress the input information into a smaller internal
representation, encoding, and then reconstruct it back to the
original form, decoding. The difference between the input and
output is the reconstruction error which measures how much the
current operating condition deviates from normal behavior.

After training, the reconstruction error is recorded for many
normal samples across a range of conditions. The average
reconstruction error plus three standard deviations is used as the
threshold for normal operation, corresponding to approximately
the 99.7 % confidence interval of the training data [25]. This
threshold ensures that only statistically significant deviations
are flagged as anomalies. The threshold value is stored in a
configuration file on the Pi 5 and loaded when the program
starts.

At runtime, the Pi 5 evaluates new data every 5 seconds,
matching the sensor sampling rate. Each inference cycle uses
the most recent 30 seconds of residual data to generate an
updated reconstruction error. Since the 30-second window
already smooths transient noise, a reconstruction error above
the threshold is immediately considered anomalous.

Once an anomaly is detected, the Pi 5 classifies the fault type
based on temperature response patterns. The program compares
the rate of change of the coolant temperature and the radiator
outlet air temperature over the last 60 seconds. If the coolant
temperature rises faster while the outlet air temperature remains
relatively steady, the anomaly is labeled a flow restriction fault.
If both temperatures rise together, it is labeled a power
mismatch fault since additional heat is entering the loop. Each
detection cycle generates a small JSON packet containing the
timestamp, anomaly flag, and fault label. This packet is sent to
the alert subsystem for immediate logging or alert notification.

When an anomaly is detected, the model writes an entry to a
local log file and prints an alert to the Pi 5 terminal. Each log
entry includes the timestamp, fault label, measured and
predicted power, residual value, and anomaly flag. These
outputs provide enough detail to verify the model’s decision
and analyze system behavior during fault conditions.

VII. TEST, VERIFICATION AND VALIDATION

To meet the quantitative specifications defined in Section II
and IV, this section outlines the testing methods used to verify
and validate the system implementation. The validation plan is

10

divided into tests for the hardware design requirements and tests
for the model and alert system requirements.

1. Testbed Requirements Tests

1.1 Heater Control Accuracy

To verify that the CPU and VRM heaters maintain power
control accuracy within 2 % RMs, both channels are swept
across their respective operating ranges: 20-80 W for the CPU
heater and 1-30 W for the VRM heater. For each commanded
PWM level, the voltage is measured using a digital multimeter
(DMM). The resistance of each resistor is measured beforehand
using the same DMM to ensure consistent calibration. The
instantaneous power at each setting is then computed as:

(11)

where V is the measured voltage across the resistor and R is its
measured resistance.

The expected heater power from the Pi 5’s PWM command
is compared against the calculated P value from measurements.
The test passes if the RMS deviation between commanded and
measured power is less than 2 % across the full range,
confirming that the power control system maintains sufficient
accuracy to prevent control noise from interfering with the 10 %
anomaly detection threshold.

1.2 Pump and Fan Control Accuracy

The pump and fan are swept from 20 % to 100 % PWM duty
in 5 % increments. For each step, the Pi 5 records steady-state
RPM from the tachometer output over a 10 second window. The
measured RPMs are compared to the commanded values to
verify control accuracy within +2 %. The test passes if all
readings remain within this tolerance, confirming that the PWM
control maintains stable and repeatable flow and airflow during
operation.

1.3 Valve Control Accuracy

The servo-controlled valve is tested from 0 % to 30 %
restriction in 5 % increments. Actual flow rate is measured
using an inline flowmeter during this test for each setting, and
each position is repeated three times to evaluate repeatability.
A lookup table mapping PWM command to flow rate reduction
percentage is generated from these measurements. The test
passes if flow restriction error and repeatability are both within
+2 %, verifying that the valve can reliably produce calibrated,
repeatable flow faults.

2. Model Validation Tests

2.1 Abnormal Power Detection Validation

To wvalidate abnormal power detection under realistic
operating conditions, the system is tested across multiple CPU
heater workloads ranging from 20-80 W. For each test, the
VRM heater power is increased by +10 % relative to the
corresponding CPU load to simulate degraded efficiency faults.
The workloads include steady-state levels as well as dynamic
usage patterns such as step changes, ramp-up and ramp-down
transitions, and short idle-to-load spikes to reflect real processor
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behavior.

The Pi 5 logs measured and predicted power continuously,
recording the time of fault injection and the alert trigger. The
test passes if the model detects a sustained greater than 10 %
deviation for at least 30 seconds across all tested workloads and
issues an alert within 1 second of the threshold crossing. This
verifies that the anomaly detection pipeline reliably
distinguishes true power and mismatches from normal
workload transients and meets both the magnitude and timing
requirements defined in the use-case specification.

2.2 Abnormal Flow Detection Validation

To validate the system’s ability to detect blockages in the
coolant loop, tests are conducted with the CPU and VRM
heaters operating under a range of workloads. To isolate the
fault, the VRM will be kept at normal efficiency. For each test,
the servo valve applies a 20 % flow restriction, determined from
the PWM to flow rate lookup table. The restriction is applied
both during steady-state operation and during load transitions
such as ramp-up, ramp-down, and idle-to-load conditions.

The Pi 5 records the time of fault initiation and the alert
trigger for each trial. The test passes if the model detects a
sustained greater than 20 % flow reduction that persists for at
least 30 seconds and raises a flow fault alert within 1 second of
threshold persistence.

2.3 Model Accuracy Validation

To verify regression model accuracy, predicted power values
are logged along with measured heater power during fault-free
runs across varying workloads as described in Section 2.1.
RMSE (9) is computed from the measured and predicted power,
and the test passes if RMSE is less than 2 % of the average
measured power across all runs.

To validate anomaly detection accuracy, the autoencoder is
evaluated using logged datasets from fault-free and fault-
injected runs. The data is divided into 30 second windows, and
for each window the model outputs an anomaly flag and
anomaly label. These predicted flags and anomaly labels are
then compared against the know true anomaly flags and fault
labels for the same time intervals. The FPR and FNR are
computed from this comparison, and the test passes if both
remain below 5 %.

2.4 Latency Validation

End-to-end latency is measured from the time the regression
model computes the predicted power corresponding to the 30th
second of a sustained fault to the time the alert message is
displayed in the Pi 5 terminal. This captures the delay of the
detection and alert pipeline once the 30 second persistence
requirement has been satisfied.

Time stamps for the final regression computation and the
alert display are logged automatically. The total latency is the
difference between the two. The test passes if the average
latency across power and flow fault trials remains below 1
second, confirming that the combined inference and alert
transmission processes meet the real-time performance
requirement.
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VIII. PROJECT MANAGEMENT

1. Schedule

The overall project schedule is shown in Fig. 11 in the
Appendix. The project is divided into six phases. The first four

include physical construction, research, data collection
software development, and valve and PWM control
development. These can run in parallel with minimal

dependencies to split work efficiently. Once the testbed and
control systems are completed, the final two phases, data
collection and model bring-up, proceed sequentially. These
phases rely on the completed hardware to generate datasets for
training and validating the anomaly detection model.

2. Team Member Responsibilities

The project is divided as follows:

e Kristina is responsible for hardware integration,
CAD modeling, and testbed assembly, and will also
lead anomaly detection model development

e Jacob is in charge of Pi 5 software development,
including sensor data collection, database
integration, and alert system implementation. He
will also lead data collection.

e Aidan will develop and test the valve control and
PWM control code, ensuring accuracy and precision
for the heater complex, fan, pump, and servo valves.

All team members will collaborate on system integration,
debugging, and the final ML model bring-up.

3. Bill of Materials and Budget
The complete Bill of Materials is provided in Table 2.

4. TechSpark Use Plan
We do not plan to use TechSpark for this project.

5. Risk Mitigation Plans

One risk is that the combined anomaly detection model may
not meet the FPR and FNR targets because of differing thermal
patterns between power and flow faults. If this occurs, the
system will use two separate autoencoder-based models: one
trained specifically to detect abnormal power mismatches and
another to detect abnormal flow restrictions. This separation
allows each model to learn feature patterns relevant to its fault
type and apply individually tuned reconstruction error
thresholds to improve detection accuracy and reduce
misclassification.

Another risk is that the fan and pump could overcool the
system which would be an inaccurate simulation of a real PC or
server. Temperature changes from injected faults may become
too small to detect reliably as a result. To address this, fan and
pump speeds will be reduced during calibration to increase the
coolant temperature rise and better simulate real PC and server
thermal conditions.

Fault injection and high-load testing pose risks of
overheating, coolant leakage, or thermal damage if control
signals fail. The Pico includes a heartbeat safety routine that
continuously monitors communication with the Pi 5. If
communication is lost, the Pico automatically drives the pump
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and fan to maximum speed, opens the valve fully, and disables
both heaters, returning the system to a safe state.

IX. RELATED WORK

1. IoT Module for Vacuum Pump Preventative Maintenance
[14]

This project develops an IoT module designed to attach
directly to vacuum pumps for predictive maintenance. The
system collects vibration, acoustic, and temperature data to
identify abnormal performance patterns that could indicate
mechanical wear or impending failure. It represents a growing
trend in integrating loT hardware with machine learning to
improve equipment reliability and operational efficiency.
Compared to our project, their system depends heavily on the
deployment of physical sensors and embedded hardware for
data acquisition. Our project's main goals are automatic alerting
and data-driven anomaly identification without the need for an
add-on module. While monitoring the health of physical
systems is a common goal of both projects, ours places more
emphasis on using existing sensors to monitor the system rather
than integrating additional sensors.

2. Autoencoder Based Anomaly Detection and Explained
Fault Localization in Industrial Cooling Systems [16]

This study examines the ability of autoencoders to locate and
detect issues in extensive industrial cooling systems. The
system can identify instances in which specific sensor readings
substantially vary from typical operating behavior by
calculating the reconstruction error between observed and
predicted data. Our project and this method are very similar in
that they both use feature reconstruction and unsupervised
learning to identify anomalies in complex data. Our effort
focuses on flexible anomaly detection in a controlled testbed
setting, whereas their work focuses on high-dimensional
industrial cooling systems. This is the primary difference in
application scope. Autoencoders are a useful tool for
identifying abnormalities in physical systems that have multiple
interconnected variables.

3. Industrial [oT System for Pump Condition Monitoring
[21]

This project offers an industrial Internet of Things
framework for monitoring on mechanical pump health. To
anticipate possible mechanical deterioration before failure
happens, the system gathers temperature and vibration data in
real time and uses signal analysis algorithms. By fusing sensor
input with cloud-based data analytics, its design prioritizes
scalability and dependability in industrial settings. Although the
general objective of predictive maintenance is the same as ours,
its implementation is different. In contrast to their work, which
relies on physical sensors and rule-based signal processing, our
study uses machine learning algorithms to automatically
identify deviations and learn typical system behavior. While
both methods highlight the value of proactive monitoring, our
research uses Al models rather than fixed thresholds to increase
intelligence and adaptability.
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X. SUMMARY

This project demonstrates a preventative maintenance alert
system that detects early signs of degradation in liquid-cooled
PCs and servers before critical temperature thresholds are
reached. Using a hybrid regression and autoencoder model, the
system identifies gradual changes in power dissipation
efficiency that indicate coolant blockages as well as hidden
increases in power loss that signal VRM degradation. By
analyzing real-time thermal and power data, it provides early
warnings that allow operators to perform maintenance during
planned service windows instead of after a server outage.

The approach establishes a framework for integrating
predictive thermal diagnostics into cooling systems by
leveraging existing temperature sensors and RPM feedback.
Remaining work includes data collection, training the model on
normal and fault conditions, validating its performance, and
refining detection thresholds for consistent accuracy across
workloads. Once completed, the prototype will demonstrate a
practical method for anomaly detection in PC and server
thermal management.

GLOSSARY OF ACRONYMS

ADC — Analog-to-Digital Converter

AIO — All-In-One

AUC — Area Under the Curve

BMC — Baseboard Management Controller

CPU - Central Processing Unit

DC-DC - Direct Current to Direct Current (converter)
DMM - Digital Multimeter

FNR — False Negative Rate

FPR - False Positive Rate

GPIO — General Purpose Input/Output

12C — Inter-Integrated Circuit

JSON - JavaScript Object Notation

ML — Machine Learning

PID — Proportional Integral Differential

Pi 5 — Raspberry Pi 5

Pico — Raspberry Pi Pico

PWM — Pulse Width Modulation

Qwiic — Quick Interface for I?°C Connection (System by
SparkFun)

RMSE — Root Mean Square Error

RPM - Revolutions Per Minute

SSR — Solid-State Relay

UART - Universal Asynchronous Receiver-Transmitter
VRM - Voltage Regulator Module
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Fig. 10. Full system block diagram.
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Fig. 11. Gantt Chart.
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Table 2. Bill of Materials

Description Model # Manufacturer Quantity Cost @ Total

Raspberry Pi 5 8GB SC1432 Raspberry Pi 1 $0.00 $0.00

Raspberry Pi Pico WH .

RP2040 SC0919 Raspberry Pi 1 $7.00 $7.00

RPi Pico Expansion DFRO0848 DFRobot 1 $4.90 $4.90

Board

64GB MicroSD Card SC0339L Raspberry Pi 1 $0.00 $0.00

Qwiic Shim 15794 SparkFun Electronics 1 $1.95 $1.95

Pin Header 61300621821 Wiirth Elektronik 1 $0.37 $0.37

TMP117 Temperature 4821 Adafruit Industries 5 $11.50 $23.00

Sensor LLC

Qwiic Cable Kit 15081 SparkFun Electronics 2 $0.00 $0.00

Servo Motor MG996R Deegoo 2 $0.00 $0.00

Silicone Tubing - YSIL 1 $10.99 $10.99

2(11/4 Tube Fitting - Yosoo Health Gear 1 $7.72 $7.72

apter
LYSB01DVV
G1/4 Fitting Plug 5XNS- BXQINLENX 1 $9.99 $9.99
ELECTRNCS

G1/4 Temperature TCWD-V1 Barrow 1 $13.99 $13.99

Sensor Fitting

ADS1115 ADC 1085 Adafr”}i‘g“mes | $14.95 $14.95

Aluminum Radiator - Corsair 1 $59.99 $59.99

Fan ACFAEO(BOS Arctic 1 $8.49 $8.49

Water Pump - Sanpyl 1 $36.14 $36.14

Water Reservoir - Serounder 1 $18.17 $18.17

CPU Water Block - BXQINLENX 1 $15.98 $15.98

5 Ohm 100W Resistor | HS100 SR F Ohmite 2 $12.37 $24.74

Solid State Relay SSR-25DD BlueStars 1 $18.99 $18.99

24V to 5V DC-DC EA50-5V | Tobsun Electronics 1 $9.99 $9.99

Buck Converter

24V 10 12VDC-DC | g 15012V | Tobsun Electronics 1 $9.39 $9.39

Buck Converter

AC/DC Converter 24V | LRS-100-24 | MEANWELLUSA 1 $15.00 $15.00

Cross Connector - uxcell 5 $0.00 $0.00

Panel Connector LRSP-SK8-4P VI-CHAN 2 $9.99 $19.98

Shaft Collar ASDS-ZH128 Esedese 2 $12.99 $25.98

Flange Connector - daier 1 $7.99 $7.99

100mm Linear Motion ; Vigorous 2 $9.99 $19.98

Rod

200mm Linear Motion 8DG Generic 1 $0.00 $0.00

Rod

]i%%mm Linear Motion 8DG Generic 1 $14.88 $14.88

400mm Linear Motion Rods8-

Rod 400MM-4P akkacm 2 $17.99 $35.98

Acrylic Floor Plate - Sculpteo 2 $22.82 $45.64

Aluminum

Motherboard Plate - SendCutSend 1 $18.24 $18.24
Grand Total $500.41
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