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Abstract—Downtime in liquid-cooled servers and PCs is costly, 

making early detection of system degradation critical to 

maintaining reliability and extending lifespan. Gradual faults such 

as blockages in the cooling loop reduce the efficiency of power 

dissipation, and degradation in the Voltage Regulator Module 

(VRM) can lead to cascading failure and system shutdown. This 

paper presents an anomaly detection framework for identifying 

early signs of degradation in liquid-cooled systems. To implement 

this, a hybrid regression and autoencoder model predicts expected 

power dissipation from sensor data and detects real-time 

anomalies to support preventative maintenance and improve long-

term reliability. 

 
Index Terms—Anomaly Detection, Autoencoder, Edge 

Computing, Liquid Cooling, Regression Model, Server Cooling 

Systems, System Health Monitoring 

 

I. INTRODUCTION 

Liquid cooling has become an increasingly common solution 

for managing power dissipation in computing systems due to its 

higher heat transfer efficiency compared to air cooling [22]. As 

server workloads and AI applications continue to demand more 

consistent performance, thermal management has become a key 

reliability concern. To address this challenge, this project 

targets server operators, data center managers, and PC system 

builders who rely on liquid cooling to maintain stable operation 

under continuous and varying power workloads. 

Existing liquid-cooling systems rely on temperature 

thresholds and PID control loops to maintain target 

temperatures [11], [15]. These threshold-based alarms cannot 

detect inefficiencies and deterioration that develop over time, 

such as partial blockages in the cooling loop from coolant 

deposits or reduced efficiency in the Voltage Regulator Module 

(VRM) due to phase loss [38]. More heat builds up in the 

system when a VRM inefficiency increases power loss or a 

blockage reduces cooling effectiveness. Once temperatures 

approach the threshold, the system compensates by increasing 

fan and pump speeds, masking the underlying problem. In 

doing so, the system remains apparently stable even as energy 

consumption rises and mechanical components operate under 

greater stress. 

First, persistent high operating temperatures reduce overall 

system reliability and lifetime. Higher thermal load on 

processors, power delivery circuits, and other electronics 

accelerates aging and increases the likelihood of failure [32], 

[35]. Even moderate increases in temperature over time shorten 

the useful life of the system and raise the risk of downtime. In 

always-on systems such as servers, even brief downtime can 

disrupt operations and lead to costly delays [36]. 

Second, increased heat generation makes it harder for the 

cooling system to maintain its temperature setpoint. As 

temperatures rise, the radiator and surrounding air approach 

thermal equilibrium, reducing the temperature difference that 

drives heat transfer. This lowers the overall heat transfer rate 

according to (1): 

 𝑄̇ = 𝑚̇𝑐𝑝Δ𝑇 () 

where 𝑄̇ is the heat transfer rate (W), 𝑚̇ is the mass flow rate of 

coolant (kg/s), 𝑐𝑝  is the specific heat capacity of coolant 

(J/kg·°C), and Δ𝑇 is temperature rise across the component or 

loop (°C) [6]. Reduced cooling efficiency raises CPU 

temperatures, so the buffer between current and maximum safe 

operating temperature shrinks. With less margin available, 

temporary workload spikes or changes in ambient temperature 

can trigger thermal throttling, where the processor 

automatically reduces frequency and power to prevent 

overheating [18]. This leads to more frequent performance 

fluctuations and unstable behavior under load. 

Finally, these hidden inefficiencies can lead to cascading 

failures in power delivery systems. For example, if one phase 

of a multiphase VRM begins to degrade, the remaining phases 

must supply more current to maintain output [23]. This added 

current increases power loss and thermal stress on the 

remaining phases, accelerating further degradation until 

eventual phase loss or complete VRM failure. In many cases, 

compensating fan and pump speeds delay visible symptoms, 

allowing the system to appear stable until the fault becomes 

severe. Prolonged high fan and pump speeds also shorten 

component lifespan and increase maintenance needs. Elevated 

bearing temperature and sustained high rotational speed cause 

exponential reductions in fan life, leading to earlier mechanical 

failure and decreased reliability of the cooling system [31]. 

Detecting inefficiencies early enables scheduled 

maintenance, extending service intervals, improving system 

reliability, and reducing the risk of costly unplanned downtime. 

This project aims to implement a preventative maintenance 

alert system that identifies such faults early and accurately. 
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II. USE-CASE REQUIREMENTS 

For the success of the proposed maintenance alert system, we 

outline the following quantitative use-case requirements. 

1. Abnormal Power Detection 

An anomaly alert must be issued when the measured power 

differs from the predicted power by more than 10 % for at least 

30 seconds. This requirement allows the system to detect 

reduced power delivery efficiency, such as a partially degraded 

VRM phase, without triggering false alerts caused by short 

spikes in CPU activity or small variations from sensor noise. 

In a 65 W class CPU operating around a typical 60 W load, 

a 10 % mismatch corresponds to approximately 6 W of 

additional power loss. With a typical CPU water block thermal 

resistance of 0.1-0.2 °C/W [1], this results in a 0.6-1.2 °C rise 

in junction temperature. Even a small, sustained temperature 

rise of 1 °C has been shown to shorten component lifetime by 

about 1.3-1.5 years based on the Arrhenius acceleration model 

[37]. This supports the 10 % mismatch threshold as a 

meaningful indicator of system degradation. 

The 30 second persistence requirement is based on the 

thermal response time of the cooling loop. Using a first-order 

RC model, the loop’s temperature rise after a small abnormal 

power step was calculated. With a typical radiator thermal 

resistance 𝑅rad of 0.172 °C /W and an estimated coolant volume 

of 310 mL, the calculated thermal capacitance 𝐶th  (2) was 

1.296 kJ/°C, yielding a time constant 𝜏 (3) of 222.9 seconds. 

The following equations were used to calculate these quantities: 

 𝐶th = ρ 𝑉 𝑐𝑝 () 

where 𝜌 is the coolant density,  𝑉 is the coolant volume, and 𝑐𝑝 

is the specific heat. 

 τ = 𝑅rad 𝐶th () 

 
Fig. 1. Calculated bulk coolant temperature rise for injected power 

anomalies of 2 W, 4 W, 6 W, and 8 W using a first-order RC thermal 

model (4). 

The first-order step response of coolant temperature rise was 

modeled according to the following equation: 

 Δ𝑇(𝑡) = Δ𝑇∞(1 − 𝑒−𝑡/τ) () 

where Δ𝑇∞  is the final steady state temperature rise. Fig. 1 

shows that for an injected anomaly of 8 W, the bulk coolant 

temperature increases by only 0.173 °C after 30 seconds which 

is sufficient to exceed normal temperature jitter in the loop. 

Requiring the mismatch to persist for at least 30 seconds 

ensures that alerts are generated only after the temperature 

change becomes distinguishable from short-term fluctuations 

caused by flow variability or minor load changes. 

2. Abnormal Flow Detection 

An anomaly alert must be issued when the coolant flow rate 

decreases by more than 20 % from its normal operating value 

for at least 30 seconds. This requirement ensures that the system 

can detect partial blockages in the cooling loop that reduce 

cooling performance. 

A 20 % decrease in flow rate lowers the rate at which heat is 

carried from components to the radiator. From (1), the rate of 

heat removal depends on mass flow rate, specific heat capacity, 

and temperature difference between the coolant and the radiator. 

When flow decreases, less heat is transferred per second, 

causing higher steady state coolant and component 

temperatures. For water, which has a specific heat capacity of 

approximately 4.18 J/kg·°C, a 20 % reduction in flow rate at the 

same power load can raise coolant temperature by several 

degrees [26], accelerating component wear and lowering 

cooling efficiency as shown in Section II.1. The 30 second 

persistence requirement ensures that short fluctuations in pump 

speed or sensor readings do not trigger false alerts, consistent 

with the thermal response characteristics discussed in Section 

II.1. 

3. Accurate Alerts 

The anomaly detection system must maintain a False Positive 

Rate (FPR) below 5 % and a False Negative Rate (FNR) below 

5 %. This ensures that alerts reflect true system degradation 

rather than normal variations in workload or measurement noise. 

False positives lead to unnecessary alerts while false negatives 

allow faults to go undetected, increasing the risk of unplanned 

downtime. In “RADS: Real-time Anomaly Detection System 

for Cloud Data Centres,” the authors report a low FPR of 0-3 %, 

demonstrating that maintaining FPR below 5 % helps preserve 

system reliability [5]. Keeping rates within this range 

minimizes false alarms that can reduce trust in the system while 

ensuring that genuine degradation events are consistently 

detected. 

4. Timely Alerts 

An anomaly alert must be issued within 1 second after the 30 

second persistence period has ended. This ensures that once an 

abnormal condition has lasted long enough for temperature 

changes to become measurable and distinguishable from 

normal short-term fluctuations, the system promptly notifies the 

operator. Although the system is intended for preventative 

maintenance, a 1 second limit demonstrates real-time 

responsiveness from the model once a fault is confirmed, 

allowing sensor data, model outputs, and alert logs to remain 
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synchronized. This enables operators to identify exactly when 

a fault occurred and correlate it with other system events. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

 The system architecture consists of two main subsystems: a 

physical testbed that simulates a liquid-cooled computing 

system and a model trained on data collected from the testbed 

to identify normal versus abnormal cooling behavior. A detailed 

overview of the interconnections of our system is provided in 

Appendix, Fig. 10. 

1. Testbed Subsystem 

The testbed subsystem simulates a computer or server liquid-

cooling system, circulating coolant through a controlled loop 

with adjustable liquid flow and airflow for heat dissipation. 

This enables evaluation of thermal behavior under both normal 

and injected fault conditions. The subsystem consists of five 

functional components: the water loop, heater complex, fault 

injection assembly, sensor network, and power distribution 

network. 

The water loop circulates coolant through a reservoir, pump, 

CPU water block, and radiator with a fan. These components 

are the same types commonly used in custom PC liquid-cooling 

systems, ensuring realistic thermal and flow behavior [12]. The 

pump controls coolant flow to carry heat away from the CPU 

block to the radiator while the fan removes heat from the 

coolant to ambient air. Together, these components determine 

the system’s overall cooling capacity and temperature response. 

The heater complex simulates power dissipation from a CPU 

and VRM. Two power resistors represent these heat sources, 

each driven by a solid-state relay (SSR) that is PWM duty-cycle 

controlled by the Pi Pico to adjust the simulated power load. 

Varying heater output allows the system to simulate different 

computational loads for data collection. 

The fault injection assembly introduces controlled faults to 

evaluate the model’s ability to detect anomalies and meet the 

use-case requirements. Two types of faults are implemented: 

1. Flow restriction is done by partially closing a servo-

controlled valve to reduce coolant flow. 

2. Hidden power injection is achieved by increasing VRM 

heater power to simulate reduced power conversion 

efficiency. 

Fig. 2. System architecture showing communication between the compute unit (Pi 5) and control unit (Pico). 
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The sensor network consists of air temperature sensors at the 

radiator’s inlet and outlet, a coolant temperature sensor at the 

reservoir, and tachometer feedback from the fan and pump. 

These measurements are used to infer power. All data are 

collected and timestamped by the compute unit, a Raspberry Pi 

5 (Pi 5), and stored in InfluxDB for model input and anomaly 

detection. 

The power distribution network provides regulated voltage 

rails for the components. A combination of power supplies, 

SSRs, and DC-DC buck converters delivers the required 

voltages for the heaters, pump and fan, and servo motors. 

The system architecture, shown in Fig. 2, illustrates 

communication between the compute unit and control unit. The 

Pi 5 handles data collection, model execution, and the alert 

system while the Pico receives periodic heartbeat messages 

containing PWM commands for the pump, fan, servo valve, and 

heater power levels. On startup, the Pico initializes to a 

predefined safe operating state and continuously updates 

actuator outputs based on the latest heartbeat from the Pi 5. If 

no heartbeat is received, the Pico reverts to its safe state, 

maximum pump and fan speed, valve fully open, and heat 

power disabled to maintain cooling and prevent thermal 

runaway.  

2. Model Subsystem 

The model subsystem performs real-time anomaly detection 

using a regression model to preprocess data collected from the 

testbed and an autoencoder to detect anomalies. 

During training, the regression model learns to predict 

expected power dissipation based on sensor inputs such as 

coolant temperature, radiator inlet and outlet air temperatures, 

and pump and fan speeds. The difference between predicted and 

measured power, or the residual, quantifies deviations from 

actual measured power. 

An autoencoder is then trained on the residual, the percent 

deviation from actual power, and 30 second window-based 

features such as the mean, maximum, standard deviation, and 

slope. The autoencoder compresses these features through an 

encoder and reconstructs them through a decoder. Normal 

inputs produce low reconstruction error while anomalies 

produce a high reconstruction error. A threshold is determined 

during training to establish the reconstruction error that 

constitutes an anomaly flag [28]. 

The overall model workflow is shown in Fig. 3, illustrating 

the flow from regression-based power prediction and residual 

analysis to unsupervised anomaly detection and classification. 

Once trained, the models are deployed on the Pi 5 for real-

time inference. As the system operates, the Pi 5 continuously 

computes the residual between measured and predicted power 

and evaluates it using the trained autoencoder. If the 

reconstruction error exceeds a defined threshold, the model 

flags the anomaly and classifies it based on temperature 

response patterns: flow restrictions raise coolant temperature 

with little radiator outlet change, while power mismatches 

increase both coolant and radiator outlet temperatures. 

Once the model confirms an anomaly, the result is 

immediately displayed on the Pi 5 terminal and recorded in a 

log file. This allows operators to see alerts in real time and 

review afterward to determine what conditions caused the fault. 

IV. DESIGN REQUIREMENTS 

The design requirements translate the use-case requirements 

from Section II into quantifiable metrics for both the hardware 

testbed and the anomaly detection model. Because the proposed 

system must first simulate realistic thermal behavior and collect 

representative data to train the anomaly detection model, the 

design requirements are divided into two categories. Testbed 

requirements (1 and 2) define the specifications of the 

components needed to simulate both normal and fault behavior 

of the PC or server, ensuring consistent, high-fidelity training 

and validation data. Model requirements (3 and 4) define the 

performance and alert generation criteria necessary for accurate, 

real-time anomaly detection once the model is deployed. 

1. Abnormal Power Detection 

To meet the abnormal power detection use-case, the testbed 

must simulate realistic CPU and VRM power dissipation levels 

and faulty VRM levels. 

1.1 CPU and VRM Operating Range 

The CPU heater must operate between 20-80 W, spanning 

idle to full load conditions for 65 W class CPUs. This range is 

based on reviews of commercial desktop processors such as the 

Intel Core i5-12400 and AMD Ryzen 5 7600 which report 

comparable power draw across typical workloads [19], [33]. 

The VRM heater must cover a 1-30 W range. Under normal 

(no phase-loss) conditions, VRMs achieve 85-95 % efficiency 

Fig. 3. Machine learning model workflow for anomaly detection. 
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for 20-80 W CPU loads [35]. An additional 10 % efficiency loss 

is modeled to simulate a degraded phase or reduced efficiency 

fault. The VRM loss fraction 𝐿  is defined by the standard 

efficiency-loss equation for DC-DC converters [34]: 

 𝐿 = (
1

η
− 1) 𝑃CPU () 

where 𝐿 is the conversion loss (W), 𝜂 is VRM efficiency, and 

𝑃CPU is CPU load power (W). 

Under normal operating conditions, efficiencies from 85-95 % 

produce conversion losses ranging from approximately 1.05 W 

at 𝑃CPU = 20 𝑊 , 𝜂 = 0.95  to 14.1 W at 𝑃CPU = 80 𝑊 , 𝜂 =
0.85. With an additional 10 % efficiency loss to model the fault 

condition, the conversion loss rises to approximately 26.7 W at 

𝑃CPU = 80 𝑊 , 𝜂 = 0.75 . Therefore, the VRM heater must 

cover a 1-30 W range, providing sufficient headroom for both 

normal and degraded VRM behavior. 

To accurately simulate both normal and fault loads, the 

heater control system must maintain a command accuracy 

within 2 % RMS across the 20-80 W CPU load range. This 

ensures that the applied heater power matches the intended load 

and that control uncertainty does not interfere with the 10 % 

deviation threshold used for anomaly detection. A 2 % RMS 

error provides a five times separation between command 

uncertainty and the 10 % detection threshold, as shown by the 

signal-to-noise ratio (SNR) equation [9]: 

 SNR =
0.10𝑃

0.02𝑃
= 5 () 

Maintaining this ratio minimizes the likelihood of false 

positives from PWM inaccuracy. Across the 20-80 W range, a 

2 % error corresponds to only 0.4-1.6 W, providing consistent 

repeatable loads for reliable model validation. 

1.2 Pump and Fan Control Accuracy 

To ensure realistic cooling behavior during data collection, 

the pump and fan must be PWM controllable with less than 2 % 

deviation between commanded and measured RPM. PWM 

control allows adjustment of flow and airflow rates to match 

real cooling loop conditions [13], [27]. Without it, overcooling 

could flatten temperature gradients, preventing sensors from 

capturing measurable thermal responses to injected faults. 

Maintaining tight PWM control accuracy ensures that the 

system’s thermal response remains constant between runs, so 

any measured power mismatch reflects true anomalies rather 

than variations in cooling performance. The rate of heat 

removal from the coolant is given by: 

 𝑄 = ℎ 𝐴 (𝑇surface − 𝑇∞) () 

where 𝑄 is the heat removal rate (W), ℎ  is the convective heat 

transfer coefficient (W/m²·K), 𝐴 is the effective heat exchange 

area (m²), and 𝑇surface − 𝑇∞  is the temperature difference 

between the heated surface and ambient air. 

For forced convection heat transfer, ℎ scales approximately 

with the square root of the flow velocity [6]. Since pump and 

fan RPM are proportional to flow velocity, the resulting 

relationship between RPM and ℎ is: 

 
ℎ2

ℎ1
= (

RPM2

RPM1
)

0.5

 () 

A 2 % change in RPM therefore changes ℎ by only about 1 % 

which in turn changes 𝑄 by 1 %. This shift in cooling capacity 

is one-tenth of the 10 % power mismatch threshold defined in 

the use-case requirements, ensuring that cooling drift does not 

cause or obscure anomaly detection. 

To achieve this precision, the pump and fan PWM control 

signals operate at a carrier frequency above 25 kHz. This allows 

the fan and pump to maintain steady RPM within 2 % accuracy 

for consistent heat-transfer conditions. 

2. Abnormal Flow Detection 

To meet the abnormal flow detection use-case, the test bed’s 

servo-controlled valve must be capable of restricting flow rate 

between 0-30 % in discrete 5 % increments with ±2 % 

repeatability. This requirement ensures that the system can 

reliably generate calibrated and repeatable reductions in flow 

rate to train and validate the anomaly detection model. The 0-

30 % range provides sufficient margin around the 20 % target 

restriction while extending to 25-30% for calibration and 

margin testing. Reductions below 20 % need to be tested to 

verify that the model does not trigger an anomaly flag on minor 

coolant flow variations. The 5 % incremental step size offers a 

practical balance between resolution and control stability, and 

the ±2 % repeatability ensures consistent fault injection and 

reliable comparison across tests. 

3. Accurate Alerts 

To meet the accurate alert use-case requirement, the anomaly 

detection model must maintain a FPR below 5 % and a FNR 

below 5 %. Two design requirements were derived for the 

autoencoder to satisfy this use-case requirement. 

3.1 Anomaly Detection Accuracy 

The target FPR and FNR below 5 % follows directly from 

the use-case requirement and defines the quantitative accuracy 

the model must achieve during validation. For the autoencoder-

based anomaly detector, these metrics are determined by 

selecting the reconstruction error threshold that balances 

detection sensitivity and false-alarm probability. 

3.2 Regression Model Accuracy 

The regression model that predicts expected power from 

temperature and RPM inputs must achieve a Root Mean Square 

Error (RMSE) of less than 2 % to ensure that the predicted 

power 𝑃pred closely matches the measured power 𝑃meas by (9): 

 RMSE = √
1

𝑁
∑ (𝑃pred,𝑖 − 𝑃meas,𝑖)

2𝑁
𝑖=1 < 0.02 𝑃meas,avg () 

This requirement applies to the trained regression model’s 

accuracy during normal operation and is distinct from the 

hardware power control accuracy defined in Section 1.1. 

Keeping RMSE below 2 % ensures that the model 
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uncertainty remains small compared to the 10 % power 

deviation threshold in Section II.1, so the residual input to the 

autoencoder reflects true deviations rather than regression error. 

For example, at an 80 W load, a 2 % RMSE corresponds to ±1.6 

W average prediction error, well below the 12.6 W mismatch 

threshold from Section 1.1. This allows the anomaly alerts to 

indicate real power deviations rather than prediction noise. 

4. Timely Alerts 

To meet the use-case requirement of issuing an anomaly alert 

within 1 second from the fault, the total latency budget is 

divided among three sequential processes: regression inference, 

anomaly detection inference, and alert transmission. 

4.1 Regression Inference Latency 

The regression model predicting expected power from 

temperature and RPM features must complete inference within 

300 ms. This time is based on prior benchmarks showing that 

the average inference time of several neural network models 

achieve inference times of below 300 ms on the Pi 5 [2]. Since 

our regression model uses a low-complexity model and only a 

few features, coolant temperature, radiator air temperatures, 

and RPM values, this inference time should be achievable. 

4.2 Autoencoder Inference Latency 

The anomaly detection autoencoder must complete execution 

within 650 ms. Together with the regression time, this keeps 

total model side latency under 950 ms, leaving margin for alert 

transmission. This budget is supported by prior work where a 

similar autoencoder-based anomaly detection framework 

achieved real-time inference latency below 650 ms with more 

features [30]. Thus, the 650 ms limit is reasonable and gives 

margin for runtime overhead in real deployment. 

V. DESIGN TRADE STUDIES 

1. Power Simulation Methods 

Two approaches were evaluated for generating a controllable 

and repeatable thermal load within the cooling loop: using an 

actual PC with a CPU and VRM as the heat source and using a 

resistive load to emulate the same power dissipation 

characteristics under controlled conditions. 

 
Fig. 4. VRM power under different CPU loads. 

1.1 Actual PC Approach 

In this approach, the CPU and VRM act as natural heat 

sources by running high-intensity computational workloads. 

Tools such as Prime95, AIDA64, and IntelBurnTest stress the 

CPU through continuous calculations like prime generation and 

floating-point operations, driving utilization near maximum. 

Thermal power can be modulated by adjusting test parameters. 

This method produces realistic power and temperature 

behavior, capturing transient effects, VRM switching losses, 

and load dynamics. However, it is unsuitable for controlled or 

repeatable fault experiments. Simulating VRM degradation 

such as partial phase failure risks irreversible hardware damage, 

preventing consistent data collection and model retraining. 

Thus, the method is impractical and cost-prohibitive for 

experimental use. 

1.2 Resistive Load Approach 

The second approach uses power resistors to simulate the 

heat generated by the CPU-VRM power stages. By controlling 

the average voltage via PWM duty cycle, power dissipation can 

be adjusted to represent different load levels or efficiency losses 

matching real VRM behavior. This method means faults can be 

simulated without hardware damage, load conditions are 

repeatable across runs for consistent data collection, and 

efficiency losses can be programmed to represent varying 

degrees of VRM degradation for anomaly detection. 

As shown in Fig. 4 and Fig. 5, the resistors can be configured 

to closely match a VRM efficiency curve obtained from 

manufacturer data sheets [35]. Fig. 4 shows how simulated 

VRM power output increases with CPU load under different 

CPU loads, and Fig. 5 illustrates the corresponding efficiency 

curves. The -5 % and -10 % curves simulate minor and major 

degradation cases, respectively, providing clear separation 

between normal and faulted operation for data labeling. The 

resistive load method was selected as the approach for this 

system because it is more practical and repeatable for 

replicating degradation faults. 

 
Fig. 5. VRM efficiency curves under different CPU loads. 
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2. Loop Construction and Control 

To accurately simulate the behavior of a real-world liquid-

cooling system, the test loop must replicate both the heat 

transfer and flow characteristics found in PC cooling 

applications. Two construction approaches were evaluated: 

using a sealed all-in-one (AIO) cooler and building a custom 

water-cooling loop from individual components. 

2.1 AIO Cooler Approach 

An AIO cooler integrates a pump, radiator, tubing, and water 

block into a compact, factory-sealed unit. AIOs are widely used 

in desktop PCs and small form factor servers because they 

provide simple, efficient self-contained cooling without user 

assembly [10]. However, the sealed configuration prevents 

internal access for installing sensors or injected controlled 

faults such as partial blockages without disassembling and 

permanently altering the device which introduces the risk of 

leakage. Key parameters, like flow rate, total fluid volume, and 

effective loop heat capacity also cannot be measured directly, 

limiting its usefulness for thermal profiling and fault testing. 

2.2 Custom Loop Approach 

A custom water-cooling loop was chosen to provide full 

control over thermal and flow parameters. It uses standard PC 

components: a DC pump, radiator, reservoir, copper water 

block, and flexible tubing. The configuration allows 

measurement and tuning of key parameters: 

1. Pump flow rate which determines the convective heat 

transfer through the water block and radiator. 

2. Radiator thermal resistance is determined from the radiator 

fin surface area, fan speed, and airflow characteristics. 

3. Total fluid volume which defines the system’s transient 

temperature response. 

With these parameters defined, the total heat capacity of the 

loop can be estimated using (2) and the temperature response to 

a step change in input power can be modeled using (4). 

Together, these relations establish a basis for correlating CPU 

or VRM power fluctuations with measurable temperature 

changes. This configuration reproduces realistic single-CPU 

cooling conditions while providing a controllable testbed for 

collecting labeled data under both normal and fault states. 

3. Flow Reduction Simulation Method 

To simulate partial flow restriction in the water loop, two 

approaches were evaluated: mechanically pinching the tubing 

to reduce its cross-sectional area and installing a controllable 

valve to regulate flow. 

The tube pinching method is simple to implement but has 

poor precision and repeatability. Flexible silicone tubing can 

deform inconsistently under pressure, and its stiffness changes 

over time with heat exposure and aging. Small variations in 

applied force can cause large differences in actual flow rate 

which makes it difficult to achieve consistent levels of 

restriction between tests. Furthermore, repeated pinching can 

weaken the tubing and introduce leaks over time. 

The servo-controlled valve provides a more accurate and 

repeatable solution for simulating partial flow restriction. The 

valve position can be precisely adjusted using PWM control. 

By turning the valve to defined angles, the flow rate can be 

reduced by known percentages relative to the fully open 

position. This approach offers greater accuracy, stability, 

repeatability, and long-term durability compared to the tube 

pinching method. 

4. Processors 

Processor selection focused on balancing computing power 

with reliable control. The Raspberry Pi 5 was chosen as the 

main controller because it can easily handle data collection and 

run the machine learning model with its strong processing 

capability [2]. Other small computers such as the NVIDIA 

Jetson Nano or BeagleBone Black were considered, but they are 

either more expensive, consume more power, or require 

additional setup for integration. 

Since the Pi 5 runs a normal Linux operating system, it 

cannot guarantee precise timing for hardware control. To 

provide deterministic operation, a Raspberry Pi Pico 

microcontroller is used alongside the Pi 5. The Pico runs code 

directly on its chip and generates the PWM signals for the pump, 

fan, and valve without an operating system, so its timing is 

predictable and consistent [8]. Alternatives such as the Arduino 

Uno or ESP32 were also considered, but the Pico offered higher 

PWM resolution, simple UART communication, and lower cost. 

5. Sensors 

Accurate temperature sensing is essential for the anomaly 

detection model training. The system requires sensors that can 

detect small temperature changes, fit into the physical layout of 

the cooling loop, and have long-term reliability under 

continuous operation. 

For measuring the radiator inlet and outlet air temperature, 

which are the main features used for power prediction, a 

temperature sensor with enough resolution to measure the small 

temperature response outlined in Section II.1 was required. The 

TMP117 provides ±0.1 °C across the 20-50 °C range and 

communicates using the I²C interface, allowing multiple 

sensors to share one connection line to the Pi 5. Compared with 

other I²C sensors such as the LM75A, which offers only ±0.2 °C 

accuracy, the TMP117 achieves much higher precision while 

remaining cost effective. Unlike analog sensors such as 

thermocouples or thermistors, the TMP117 produces a direct 

digital reading and does not require an ADC. This reduces 

wiring complexity and prevents signal drift from cable length 

or electrical noise. Overall, the TMP117 provides the best 

balance of accuracy, reliability, and cost for this application. 

A separate coolant temperature sensor is also installed at the 

reservoir port using a standard G1/4 fitting for compatibility 

with common water-cooling components. This is an analog 

sensor (NTC-based probe, ±1 °C typical accuracy) used as a 

supplementary reading of bulk coolant temperature. 

Since this channel is analog, a few low-cost ADCs were 

considered to connect to the Pi 5 which does not have a built-in 

ADC. Coolant temperature changes slowly, so very high 

sample rates are unnecessary. The key factors for selecting an 

ADC were easy integration with the I²C temperature sensors 

and low noise. Table 1 shows the ADC options considered with 
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their specifications. The ADS1115 was chosen because it 

integrates easily with the other I²C sensors in the Qwiic 

ecosystem and includes a differential input mode for noise 

rejection. 
Table 1. ADC Comparison 

Parameters 
Options 

MCP3008 ADS1015 ADS1115 

Sampling Rate 200 kHz 3.3 kHz 0.86 kHz 

Sampling Depth 10 bit 12 bit 16 bit 

Channel Count 8 4 4 

6. Model Selection 

Several types of models are commonly used for anomaly 

detection, including regression, decision tree, random forest, 

isolation forest, and autoencoder. Each model was evaluated 

based on its ability to detect gradual degradation and accurately 

flag anomalies on correlated sensor data. 

6.1 Tree-based Models 

Tree-based models such as decision tree, random forest, and 

isolation forest are widely used for anomaly detection due to 

their accuracy on static datasets [17], [24], [29]. However, they 

classify each sample independently and cannot capture gradual 

or time-dependent changes. In this system, degradation such as 

partial cooling blockages or reduced VRM efficiency develops 

slowly over time, producing small correlated drifts in 

temperature and power. Tree-based models lack temporal 

awareness, so these drifts are often treated as normal variation 

until the fault becomes severe. Thus, these do not fulfill our use 

case of early detection of gradual degradation. 

6.2 Autoencoder 

Autoencoders achieve high accuracy on multivariate 

anomaly detection tasks, up to 99.37% [30], and perform 

especially well on contextual and temporal data [7], [20]. They 

learn the normal relationships between temperature and power 

over time, reconstructing expected behavior and identifying 

anomalies when the reconstruction error exceeds a defined 

threshold. By tuning this threshold appropriately, the 

autoencoder can detect small deviation that indicate gradual 

system degradation. Thus, autoencoder fulfills our use case of 

detecting slow, progressive degradation over time. 

6.3 Regression 

Although the autoencoder effectively captures gradual 

deviations, the system’s sensor data are strongly correlated 

through predictable thermal relationships defined in (1). Such 

correlations can lead to false positives when normal 

fluctuations, such as transient power spikes, are misclassified 

as faults [4]. To improve alert precision and stability, the system 

uses a hybrid regression and autoencoder model. The regression 

stage preprocess data by predicting power from the sensor data, 

and the autoencoder evaluates the residual between measured 

and predicted power to detect degradation. This hybrid 

approach reduces false positives from correlated data and 

improves response times [4]. 

Elastic Net regression is used instead of L1 (Lasso) or L2 

(Ridge) regularization because correlated inputs, such as 

temperature and power that change together according to (1), 

make the model prone to overfitting, especially since testing 

can only cover a limited range of operating conditions. L1 

forces some coefficients towards zero to remove weak 

predictors while L2 distributes weight more evenly across 

related inputs to avoid instability. Elastic Net combines both 

effects by applying a weighted mix of L1 and L2 penalties 

during training. As a result, Elastic Net makes the regression 

model generalize better to unseen data. 

VI. SYSTEM IMPLEMENTATION 

As described in Section III, the system is implemented as two 

subsystems: the testbed hardware which physically simulates 

the liquid-cooling environment and the model subsystem which 

performs the anomaly detection. The Pi 5 serves as the central 

compute and data acquisition node, and the Pico functions as 

the controller for the testbed hardware. 

1. Testbed Subsystem 

The testbed subsystem implements the physical cooling loop 

used to collect simulation data for model training and to 

validate anomaly detection performance. It includes the water 

loop, heater complex, fault injection assembly, sensor network, 

and power distribution network. The water loop, heater 

complex, and fault injection subsystems are controlled by the 

Pico, which receives UART commands from the Pi 5 specifying 

PWM values for the fan, pump, and SSRs. 

1.1 Water Loop 

The cooling loop is assembled from standard PC liquid-

cooling components to ensure realistic thermal performance 

and maintainability. A 12 V pump circulates coolant from an 

acrylic reservoir through a copper CPU water block and into a 

120 mm radiator. A 12 V fan mounted on the radiator dissipates 

heat from the coolant to ambient air. Both the pump and fan 

receive PWM control signals from the Pico. Coolant flows 

through 6 mm polyurethane tubing secured with clamps and 

brass fittings. The assembled loop holds approximately 300 mL 

of coolant, selected to match the modeled thermal time constant 

derived in Section II.1. A SolidWorks model of the assembled 

loop is shown in Fig. 6, illustrating component placement. 

 

 
Fig. 6. SolidWorks model of the water loop. 
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1.2 Heater Complex 

Two power resistors simulate CPU and VRM power 

dissipation, as shown in Fig. 7. Each 5 Ω, 100 W resistor is 

mounted to an aluminum spreader plate for power dissipation. 

Two SSRs drive the resistors, and the load is varied by PWM 

control from the Pico to the SSRs. The CPU heater operates 

between 20-80 W, and the VRM heater operates between 1-30 

W. The Pico receives PWM commands from the Pi 5 to control 

the SSRs for each programmed load step on the resistors. 

 
Fig. 7. SolidWorks model of the heater complex. 

1.3 Fault Injection Assembly 

Two types of faults are implemented: flow restriction and 

power mismatch. For the first, the Pico uses PWM to control 

two 5 V servo motors that are attached to an in-line valve (Fig. 

8), allowing partial closure of the valve to restrict flow. To map 

the PWM control commands to actual flow rate reductions, a 

flow meter will be used during calibration to determine the 

correspondence between PWM value and percentage of flow 

rate reduction. 

 

 
Fig. 8. SolidWorks model of the flow restriction fault injection 

assembly. 

For power mismatch faults, the Pico adjusts the PWM duty 

cycle for the VRM SSR-resistor pair to produce an injected 

hidden power that is not reflected in the measured power, 

creating a controlled mismatch between measured and 

predicted power. Both mechanisms are initiated by the Pi 5 

through serial UART command sequences. 

1.4 Sensor Network 

As shown in Appendix, Fig. 10, all sensors connect to the Pi 

5 via I²C for synchronized data acquisition without interfering 

with UART communication with the Pico. A Qwiic shim adds 

convenient access to the 3.3 V, I²C, and ground lines. Two 

TMP117 temperature sensor boards, mounted at the radiator 

inlet and outlet, provide ±0.1 °C accuracy, and an in-line analog 

sensor at the reservoir measures coolant temperature. An 

ADS1115 ADC, daisy-chained with the TMP117s over I²C, 

digitizes the analog signal. Fan and pump tachometers are read 

through GPIO pins to monitor RPM. All sensor data are logged 

locally in InfluxDB on the Pi 5 for model training and validation. 

1.5 Power Distribution and Mechanical Structure 

The system is powered by a 24 V DC supply connected to a 

wall outlet. The Pi 5 has its own power input from wall adapters, 

and the Pico is powered through the Pi 5’s 5V rail. A 24 V to 

12 V DC-DC buck converter powers the pump and fan, and a 

separate 24 V to 5 V converter powers the servos. Each 

converter output is distributed through WAGO terminals to 

create shared power rails for components operating at the same 

voltage. The 24 V supply also powers the SSRs that drive heater 

resistors during load variation. Components are mounted on 

custom cut plates secured to a modular frame of aluminum rods 

and connectors as shown in Fig. 9. 

 

 
Fig. 9. SolidWorks model of hardware system. 

2. Model Subsystem 

The model subsystem performs on-device inference for real-

time anomaly detection. It consists of a regression model for 

power prediction, residual and feature computation, and an 

autoencoder trained on normal operation data. The Pi 5 handles 

all model computation and evaluation locally to maintain low 

latency and continuous operation.  

3.1 Regression Model 

The regression model is implemented in Python using scikit-

learn’s Elastic Net regressor. It is trained using data exported 

from InfluxDB and collected from the testbed operating under 

normal conditions. Each feature, coolant temperature, radiator 

inlet and outlet air temperature, and pump and fan speeds is 

standardized before training. Model coefficients are obtained 

through five-fold cross-validation to minimize mean-squared 

error and prevent overfitting. During operation, predicted 

power values are logged in InfluxDB along with the sensor data 

and commanded heater power from the Pi 5. 

3.2 Residual and 30-Second Window Feature Extraction 

During operation, the Pi 5 computes the residual given by: 

 𝑟 =
𝑃meas−𝑃pred

𝑃meas
 () 

and continuously buffers the most recent 30 seconds of residual 
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data. A Python routine maintains this sliding window and 

computes four summary features every 5 seconds, mean, 

maximum, standard deviation, and slope. These features are 

appended to a rolling data frame and passed to the autoencoder 

input layer. All calculations are performed on the Pi 5 in the 

same process as the regression model to minimize overhead. 

3.3 Autoencoder 

The autoencoder is trained on residual features collected 

every 5 seconds during normal testbed operation, providing 

approximately 17,000 sample per day. It takes in five input 

features, the most recent residual along with the mean, 

maximum, standard deviation, and slope of the residual over a 

30-second window, and learns to reproduce these same values 

as its output. Inside the network, several connected layers first 

compress the input information into a smaller internal 

representation, encoding, and then reconstruct it back to the 

original form, decoding. The difference between the input and 

output is the reconstruction error which measures how much the 

current operating condition deviates from normal behavior. 

After training, the reconstruction error is recorded for many 

normal samples across a range of conditions. The average 

reconstruction error plus three standard deviations is used as the 

threshold for normal operation, corresponding to approximately 

the 99.7 % confidence interval of the training data [25]. This 

threshold ensures that only statistically significant deviations 

are flagged as anomalies. The threshold value is stored in a 

configuration file on the Pi 5 and loaded when the program 

starts. 

At runtime, the Pi 5 evaluates new data every 5 seconds, 

matching the sensor sampling rate. Each inference cycle uses 

the most recent 30 seconds of residual data to generate an 

updated reconstruction error. Since the 30-second window 

already smooths transient noise, a reconstruction error above 

the threshold is immediately considered anomalous. 

Once an anomaly is detected, the Pi 5 classifies the fault type 

based on temperature response patterns. The program compares 

the rate of change of the coolant temperature and the radiator 

outlet air temperature over the last 60 seconds. If the coolant 

temperature rises faster while the outlet air temperature remains 

relatively steady, the anomaly is labeled a flow restriction fault. 

If both temperatures rise together, it is labeled a power 

mismatch fault since additional heat is entering the loop. Each 

detection cycle generates a small JSON packet containing the 

timestamp, anomaly flag, and fault label. This packet is sent to 

the alert subsystem for immediate logging or alert notification. 

When an anomaly is detected, the model writes an entry to a 

local log file and prints an alert to the Pi 5 terminal. Each log 

entry includes the timestamp, fault label, measured and 

predicted power, residual value, and anomaly flag. These 

outputs provide enough detail to verify the model’s decision 

and analyze system behavior during fault conditions. 

VII. TEST, VERIFICATION AND VALIDATION 

To meet the quantitative specifications defined in Section II 

and IV, this section outlines the testing methods used to verify 

and validate the system implementation. The validation plan is 

divided into tests for the hardware design requirements and tests 

for the model and alert system requirements. 

1. Testbed Requirements Tests 

1.1 Heater Control Accuracy 

To verify that the CPU and VRM heaters maintain power 

control accuracy within 2 % RMs, both channels are swept 

across their respective operating ranges: 20-80 W for the CPU 

heater and 1-30 W for the VRM heater. For each commanded 

PWM level, the voltage is measured using a digital multimeter 

(DMM). The resistance of each resistor is measured beforehand 

using the same DMM to ensure consistent calibration. The 

instantaneous power at each setting is then computed as: 

 𝑃 =
𝑉2

𝑅
 () 

where 𝑉 is the measured voltage across the resistor and 𝑅 is its 

measured resistance. 

The expected heater power from the Pi 5’s PWM command 

is compared against the calculated 𝑃 value from measurements. 

The test passes if the RMS deviation between commanded and 

measured power is less than 2 % across the full range, 

confirming that the power control system maintains sufficient 

accuracy to prevent control noise from interfering with the 10 % 

anomaly detection threshold. 

1.2 Pump and Fan Control Accuracy 

The pump and fan are swept from 20 % to 100 % PWM duty 

in 5 % increments. For each step, the Pi 5 records steady-state 

RPM from the tachometer output over a 10 second window. The 

measured RPMs are compared to the commanded values to 

verify control accuracy within ±2 %. The test passes if all 

readings remain within this tolerance, confirming that the PWM 

control maintains stable and repeatable flow and airflow during 

operation. 

1.3 Valve Control Accuracy 

The servo-controlled valve is tested from 0 % to 30 % 

restriction in 5 % increments. Actual flow rate is measured 

using an inline flowmeter during this test for each setting, and 

each position is repeated three times to evaluate repeatability. 

A lookup table mapping PWM command to flow rate reduction 

percentage is generated from these measurements. The test 

passes if flow restriction error and repeatability are both within 

±2 %, verifying that the valve can reliably produce calibrated, 

repeatable flow faults. 

2. Model Validation Tests 

2.1 Abnormal Power Detection Validation 

To validate abnormal power detection under realistic 

operating conditions, the system is tested across multiple CPU 

heater workloads ranging from 20-80 W. For each test, the 

VRM heater power is increased by +10 % relative to the 

corresponding CPU load to simulate degraded efficiency faults. 

The workloads include steady-state levels as well as dynamic 

usage patterns such as step changes, ramp-up and ramp-down 

transitions, and short idle-to-load spikes to reflect real processor 
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behavior. 

The Pi 5 logs measured and predicted power continuously, 

recording the time of fault injection and the alert trigger. The 

test passes if the model detects a sustained greater than 10 % 

deviation for at least 30 seconds across all tested workloads and 

issues an alert within 1 second of the threshold crossing. This 

verifies that the anomaly detection pipeline reliably 

distinguishes true power and mismatches from normal 

workload transients and meets both the magnitude and timing 

requirements defined in the use-case specification. 

2.2 Abnormal Flow Detection Validation 

To validate the system’s ability to detect blockages in the 

coolant loop, tests are conducted with the CPU and VRM 

heaters operating under a range of workloads. To isolate the 

fault, the VRM will be kept at normal efficiency. For each test, 

the servo valve applies a 20 % flow restriction, determined from 

the PWM to flow rate lookup table. The restriction is applied 

both during steady-state operation and during load transitions 

such as ramp-up, ramp-down, and idle-to-load conditions. 

The Pi 5 records the time of fault initiation and the alert 

trigger for each trial. The test passes if the model detects a 

sustained greater than 20 % flow reduction that persists for at 

least 30 seconds and raises a flow fault alert within 1 second of 

threshold persistence. 

2.3 Model Accuracy Validation 

To verify regression model accuracy, predicted power values 

are logged along with measured heater power during fault-free 

runs across varying workloads as described in Section 2.1. 

RMSE (9) is computed from the measured and predicted power, 

and the test passes if RMSE is less than 2 % of the average 

measured power across all runs. 

To validate anomaly detection accuracy, the autoencoder is 

evaluated using logged datasets from fault-free and fault-

injected runs. The data is divided into 30 second windows, and 

for each window the model outputs an anomaly flag and 

anomaly label. These predicted flags and anomaly labels are 

then compared against the know true anomaly flags and fault 

labels for the same time intervals. The FPR and FNR are 

computed from this comparison, and the test passes if both 

remain below 5 %. 

2.4 Latency Validation 

End-to-end latency is measured from the time the regression 

model computes the predicted power corresponding to the 30th 

second of a sustained fault to the time the alert message is 

displayed in the Pi 5 terminal. This captures the delay of the 

detection and alert pipeline once the 30 second persistence 

requirement has been satisfied. 

Time stamps for the final regression computation and the 

alert display are logged automatically. The total latency is the 

difference between the two. The test passes if the average 

latency across power and flow fault trials remains below 1 

second, confirming that the combined inference and alert 

transmission processes meet the real-time performance 

requirement. 

VIII. PROJECT MANAGEMENT 

1. Schedule 

The overall project schedule is shown in Fig. 11 in the 

Appendix. The project is divided into six phases. The first four 

include physical construction, research, data collection 

software development, and valve and PWM control 

development. These can run in parallel with minimal 

dependencies to split work efficiently. Once the testbed and 

control systems are completed, the final two phases, data 

collection and model bring-up, proceed sequentially. These 

phases rely on the completed hardware to generate datasets for 

training and validating the anomaly detection model.  

2. Team Member Responsibilities 

The project is divided as follows: 

• Kristina is responsible for hardware integration, 

CAD modeling, and testbed assembly, and will also 

lead anomaly detection model development 

• Jacob is in charge of Pi 5 software development, 

including sensor data collection, database 

integration, and alert system implementation. He 

will also lead data collection. 

• Aidan will develop and test the valve control and 

PWM control code, ensuring accuracy and precision 

for the heater complex, fan, pump, and servo valves. 

All team members will collaborate on system integration, 

debugging, and the final ML model bring-up. 

3. Bill of Materials and Budget 

The complete Bill of Materials is provided in Table 2. 

4. TechSpark Use Plan 

We do not plan to use TechSpark for this project. 

5. Risk Mitigation Plans 

One risk is that the combined anomaly detection model may 

not meet the FPR and FNR targets because of differing thermal 

patterns between power and flow faults. If this occurs, the 

system will use two separate autoencoder-based models: one 

trained specifically to detect abnormal power mismatches and 

another to detect abnormal flow restrictions. This separation 

allows each model to learn feature patterns relevant to its fault 

type and apply individually tuned reconstruction error 

thresholds to improve detection accuracy and reduce 

misclassification. 

Another risk is that the fan and pump could overcool the 

system which would be an inaccurate simulation of a real PC or 

server. Temperature changes from injected faults may become 

too small to detect reliably as a result. To address this, fan and 

pump speeds will be reduced during calibration to increase the 

coolant temperature rise and better simulate real PC and server 

thermal conditions. 

Fault injection and high-load testing pose risks of 

overheating, coolant leakage, or thermal damage if control 

signals fail. The Pico includes a heartbeat safety routine that 

continuously monitors communication with the Pi 5. If 

communication is lost, the Pico automatically drives the pump 
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and fan to maximum speed, opens the valve fully, and disables 

both heaters, returning the system to a safe state. 

IX. RELATED WORK 

1. IoT Module for Vacuum Pump Preventative Maintenance 

[14] 

This project develops an IoT module designed to attach 

directly to vacuum pumps for predictive maintenance. The 

system collects vibration, acoustic, and temperature data to 

identify abnormal performance patterns that could indicate 

mechanical wear or impending failure. It represents a growing 

trend in integrating IoT hardware with machine learning to 

improve equipment reliability and operational efficiency. 

Compared to our project, their system depends heavily on the 

deployment of physical sensors and embedded hardware for 

data acquisition. Our project's main goals are automatic alerting 

and data-driven anomaly identification without the need for an 

add-on module. While monitoring the health of physical 

systems is a common goal of both projects, ours places more 

emphasis on using existing sensors to monitor the system rather 

than integrating additional sensors. 

2. Autoencoder Based Anomaly Detection and Explained 

Fault Localization in Industrial Cooling Systems [16] 

This study examines the ability of autoencoders to locate and 

detect issues in extensive industrial cooling systems. The 

system can identify instances in which specific sensor readings 

substantially vary from typical operating behavior by 

calculating the reconstruction error between observed and 

predicted data. Our project and this method are very similar in 

that they both use feature reconstruction and unsupervised 

learning to identify anomalies in complex data. Our effort 

focuses on flexible anomaly detection in a controlled testbed 

setting, whereas their work focuses on high-dimensional 

industrial cooling systems. This is the primary difference in 

application scope. Autoencoders are a useful tool for 

identifying abnormalities in physical systems that have multiple 

interconnected variables. 

3. Industrial IoT System for Pump Condition Monitoring 

[21] 

This project offers an industrial Internet of Things 

framework for monitoring on mechanical pump health. To 

anticipate possible mechanical deterioration before failure 

happens, the system gathers temperature and vibration data in 

real time and uses signal analysis algorithms. By fusing sensor 

input with cloud-based data analytics, its design prioritizes 

scalability and dependability in industrial settings. Although the 

general objective of predictive maintenance is the same as ours, 

its implementation is different. In contrast to their work, which 

relies on physical sensors and rule-based signal processing, our 

study uses machine learning algorithms to automatically 

identify deviations and learn typical system behavior. While 

both methods highlight the value of proactive monitoring, our 

research uses AI models rather than fixed thresholds to increase 

intelligence and adaptability. 

X. SUMMARY 

This project demonstrates a preventative maintenance alert 

system that detects early signs of degradation in liquid-cooled 

PCs and servers before critical temperature thresholds are 

reached. Using a hybrid regression and autoencoder model, the 

system identifies gradual changes in power dissipation 

efficiency that indicate coolant blockages as well as hidden 

increases in power loss that signal VRM degradation. By 

analyzing real-time thermal and power data, it provides early 

warnings that allow operators to perform maintenance during 

planned service windows instead of after a server outage. 

The approach establishes a framework for integrating 

predictive thermal diagnostics into cooling systems by 

leveraging existing temperature sensors and RPM feedback. 

Remaining work includes data collection, training the model on 

normal and fault conditions, validating its performance, and 

refining detection thresholds for consistent accuracy across 

workloads. Once completed, the prototype will demonstrate a 

practical method for anomaly detection in PC and server 

thermal management. 

GLOSSARY OF ACRONYMS 

ADC – Analog-to-Digital Converter 

AIO – All-In-One 

AUC – Area Under the Curve 

BMC – Baseboard Management Controller 

CPU – Central Processing Unit 

DC-DC – Direct Current to Direct Current (converter) 

DMM – Digital Multimeter 

FNR – False Negative Rate 

FPR – False Positive Rate 

GPIO – General Purpose Input/Output 

I²C – Inter-Integrated Circuit 

JSON – JavaScript Object Notation 

ML – Machine Learning 

PID – Proportional Integral Differential 

Pi 5 – Raspberry Pi 5 

Pico – Raspberry Pi Pico 

PWM – Pulse Width Modulation 

Qwiic – Quick Interface for I²C Connection (System by 

SparkFun) 

RMSE – Root Mean Square Error 

RPM – Revolutions Per Minute 

SSR – Solid-State Relay 

UART – Universal Asynchronous Receiver-Transmitter 

VRM – Voltage Regulator Module 

REFERENCES 

[1] Advanced Thermal Solutions, “ATS Liquid Cooling eBook Select 
Technical Articles on Liquid Cooling and its Various Roles in the 

Thermal Management of Electronics,” QATS. Available: 

https://www.qats.com/cms/wp-content/uploads/Liquid-Cooling-
eBook2.pdf 

[2] A. Allan, “Benchmarking Raspberry Pi 5,” Raspberry Pi, Oct. 20, 2023. 

https://www.raspberrypi.com/news/benchmarking-raspberry-pi-5/ 
[3] B. Azkaei, K. C. Joshi, and G. Exarchakos, “Machine Learning-Driven 

Anomaly Detection for 5G O-RAN Performance Metrics,” IEEE 

INFOCOM 2025 - IEEE Conference on Computer Communications 

https://www.raspberrypi.com/news/benchmarking-raspberry-pi-5/


18-500 Design Project Report: AnomAIy 10/10/2025 

 

13 

Workshops (INFOCOM WKSHPS), pp. 1–6, May 2025, doi: 
https://doi.org/10.1109/INFOCOMWKSHPS65812.2025.11152997. 

[4] T. Baranwal, A. Das, S. Varada, S. Das, and M. R. Haider, “Machine 

learning-based anomaly detection of correlated sensor data: An 
integrated principal component analysis-autoencoder approach,” 2025. 

doi: https://doi.org/10.1109/LANMAN66415.2025.11154513. 

[5] S. Barbhuiya, Z. Papazachos, P. Kilpatrick, and D. Nikolopoulos, 
“RADS: Real-time Anomaly Detection System for Cloud Data Centres,” 

Nov. 2018. Accessed: Oct. 07, 2025. [Online]. Available: 

https://arxiv.org/pdf/1811.04481 
[6] T. L. Bergman, Fundamentals of heat and mass transfer: Theodore l. 

Bergman ... [et al.]. Wiley, 2017. Available: 

https://books.google.com/books?id=OViz0AEACAAJ 
[7] M. Braei and S. Wagner, “Anomaly detection in univariate time-series: 

A survey on the state-of-the-art,” Apr. 2020, doi: 

https://doi.org/10.48550/arXiv.2004.00433. 
[8] J. Butts, “7 superpowers of a Raspberry Pi Pico that beat the regular Pi,” 

XDA, Feb. 07, 2025. https://www.xda-developers.com/7-superpowers-

of-a-raspberry-pi-pico-that-beat-the-regular-pi/ (accessed Oct. 07, 2025).  
[9] Cadence PCB Solutions, “What is Signal to Noise Ratio and How to 

calculate it?,” Cadence, 2023. 

https://resources.pcb.cadence.com/blog/2020-what-is-signal-to-noise-

ratio-and-how-to-calculate-it 

[10] Corsair Gaming, “AIOs vs Custom Cooling: Which is better?,” Corsair, 

Feb. 27, 2025. https://www.corsair.com/us/en/explorer/diy-
builder/custom-cooling/aios-vs-custom-cooling-which-is-

better/?srsltid=AfmBOoqya4ifCpr-06fITmZ32-kLRk16-
NrOELtz8ozdEUVOeTSyd5pl (accessed Oct. 07, 2025). 

[11] Dell, “PowerEdge Servers Error and Event Messages Reference Guide | 

Dell European Distribution Business,” Dell, 2018. 
https://www.dell.com/support/manuals/en-ed/poweredge-

t560/error_event_message_guide_b/thrmthermal-event-

messages?guid=guid-5f92b138-10fd-4e73-9e2f-eae4e6f53c7e&lang=en-
us (accessed Oct. 07, 2025). 

[12] EKWB, “Custom CPU Loop,” EKWB, Aug. 18, 2021. 

https://www.ekwb.com/solutions/custom-loop/#needed-components 
(accessed Oct. 07, 2025).  

[13] EKWB, “EK-D5 PWM G2 Motor (12V DC PWM Pump Motor),” 

EKWB, 2025. https://www.ekwb.com/shop/ek-d5-pwm-g2-motor-12v-
dc-pwm-pump-motor?srsltid=AfmBOor-

VThyuhWKKJLnjKZ7HyHAnfcVi6aTsEZjXuRUY_bDfmWiiQfy 

(accessed Oct. 07, 2025). 
[14] G. Fedder, “IoT Module for Vacuum Pump Preventative Maintenance,” 

Carnegie Mellon University Electrical & Computer Engineering Student 

Project Tracker. https://spt.apps.ece.cmu.edu/project/1581 
[15] N. Hidayat, R. F. Iskandar, and M. Rokhmat, “Personal computer 

temperature control using PID control based liquid cooling system,” 

2015, pp. 169–171. doi: 
https://doi.org/10.1109/ICACOMIT.2015.7440199. 

[16] S. Holly et al., “Autoencoder based Anomaly Detection and Explained 

Fault Localization in Industrial Cooling Systems,” arXiv.org, 2022. 
https://arxiv.org/abs/2210.08011 (accessed Oct. 07, 2025). 

[17] A. Huč, J. Šalej, and M. Trebar, “Analysis of Machine Learning 

Algorithms for Anomaly Detection on Edge Devices,” Sensors, vol. 21, 
no. 14, p. 4946, Jul. 2021, doi: https://doi.org/10.3390/s21144946. 

[18] Intel, “Information about Temperature for Intel® Processors,” Intel. 

https://www.intel.com/content/www/us/en/support/articles/000005597/p
rocessors.html 

[19] B. Justice, “Intel Core i5-12400 CPU Performance Review,” The FPS 

Review, Feb. 22, 2022. https://www.thefpsreview.com/2022/02/22/intel-
core-i5-12400-cpu-performance-review/9/ (accessed Oct. 07, 2025). 

[20] J. R. Ky, B. Mathieu, A. Lahmadi, and R. Boutaba, "ML Models for 

Detecting QoE Degradation in Low-Latency Applications: A Cloud-
Gaming Case Study," in IEEE Transactions on Network and Service 

Management, vol. 20, no. 3, pp. 2295-2308, Sept. 2023, doi: 

10.1109/TNSM.2023.3293806. 
[21] Y. Lee, C. Kim, and S. J. Hong, “Industrial Internet of Things for 

Condition Monitoring and Diagnosis of Dry Vacuum Pumps in Atomic 

Layer Deposition Equipment,” Electronics, vol. 11, no. 3, p. 375, Jan. 
2022, doi: https://doi.org/10.3390/electronics11030375. 

[22] Lenovo, “Liquid Cooling vs. Air Cooling: Which Option is Best for 

You? | Lenovo US,” Lenovo, 2021. 
https://www.lenovo.com/us/en/glossary/liquid-cooling-vs-air-

cooling/?orgRef=https (accessed Oct. 07, 2025). 

[23] Lenovo, “VRM Explained: Protect Your PC’s Vital Components | 
Lenovo US,” Lenovo, 2021. 

https://www.lenovo.com/us/en/glossary/vrm/?orgRef=https (accessed 

Oct. 07, 2025). 
[24] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” 2008 Eighth 

IEEE International Conference on Data Mining, Dec. 2008, doi: 

https://doi.org/10.1109/icdm.2008.17. 
[25] D. Mindrila and M. Phoebe, “Confidence Intervals,” 2013. Available: 

https://www.westga.edu/academics/research/vrc/assets/docs/confidence_

intervals_notes.pdf 
[26] R. Ness, “Water Cooling Calculator - Ness Engineering Inc.,” Ness 

Engineering Inc., 2015. https://www.nessengr.com/technical-data/water-

cooling/ 
[27] Noctua, “Noctua PWM specifications white paper,” Noctua. Available: 

https://noctua.at/pub/media/wysiwyg/Noctua_PWM_specifications_whit

e_paper.pdf 
[28] Pier Paolo Ippolito, “Introduction to Autoencoders: From The Basics to 

Advanced Applications in PyTorch,” DataCamp, Dec. 14, 2023. 

https://www.datacamp.com/tutorial/introduction-to-autoencoders 
[29] A. K. Sah and V. K, “Anomaly-based intrusion detection in network 

traffic using machine learning: A comparative study of decision trees 

and random forests,” 2024, pp. 1–7. doi: 

https://doi.org/10.1109/ICNWC60771.2024.10537451. 

[30] O. A. Saleh and M. Cevik, “Secure edge-based smart grid 

communication using lightweight authentication modeling with 
autoencoders and real-world data,” Discover Computing, vol. 28, no. 1, 

Jun. 2025, doi: https://doi.org/10.1007/s10791-025-09643-w. 
[31] Sanyo Denki, “Understanding Fan Life,” Sanyo Denki. 

https://www.sanyodenki.com/global/america/documents/Sanyo_Denki_

America_Understanding_Fan_Life.pdf (accessed Oct. 07, 2025). 
[32] S. Strutt, C. Kelley, H. Cisco, T. Singh, and Reuters, “Data Center 

Efficiency and IT Equipment Reliability at Wider Operating 

Temperature and Humidity Ranges,” DOE, Jan. 2012. Accessed: Oct. 
07, 2025. [Online]. Available: 

https://www.energy.gov/sites/prod/files/2013/12/f5/data_center_efficien

cy_and_reliabilit_at_wider_operating_ranges.pdf 
[33] V. Subramaniam, “AMD Ryzen 5 7600 65 W Review: Midrange 

US$220 gaming sweet spot that outperforms Core i9-12900K and all 

Zen 3 CPUs in single-core,” Notebookcheck, Apr. 27, 2023. 
https://www.notebookcheck.net/AMD-Ryzen-5-7600-65-W-Review-

Midrange-US-220-gaming-sweet-spot-that-outperforms-Core-i9-

12900K-and-all-Zen-3-CPUs-in-single-core.708080.0.html (accessed 
Oct. 07, 2025). 

[34] TDK-Lambda Americas, “Efficiency Calculations for Power 

Converters,” TDK, 2020. 
https://www.us.lambda.tdk.com/resources/blogs/20120905.html 

[35] Texas Instruments, “TPS53647 4-Phase, D-CAP+, Step-Down, Buck 

Controller with NVM and PMBusTM Interface for ASIC Power and 
High-Current Point-of-Load,” Texas Instruments, Feb. 2017. 

https://www.ti.com/lit/ds/symlink/tps53647.pdf?ts=1759773351728&ref

_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS5
3647 

[36] “Unitrends, “Downtime: Causes, Costs and How to Minimize It | 

Unitrends,” Unitrends, Mar. 22, 2021. 
https://www.unitrends.com/blog/downtime-causes-costs-and-how-to-

minimize-it/ 

[37] A. Webber, “Calculating Useful Lifetimes of Embedded Processors 
Calculating Useful Lifetimes of Embedded Processors,” Texas 

Instruments, 2014. Accessed: Oct. 07, 2025. [Online]. Available: 

https://www.ti.com/lit/an/sprabx4b/sprabx4b.pdf?ts=1758537291456&r
ef_url=https 

[38] J. Worch, K. Sado, A. R. J. Downey, J. Khan, and E. Santi, “Real-Time 

Blockage Detection and Autonomous Recovery in Liquid-Cooled 
Systems Using Digital Twins: *The Views Expressed are Those of the 

Author and do not Reflect the Official Policy or Position of the 

Department of Defense or the U.S. Government.*,” 2025 IEEE Electric 
Ship Technologies Symposium (ESTS), pp. 543–549, Aug. 2025, doi: 

https://doi.org/10.1109/ests62818.2025.11152430. 

https://doi.org/10.1109/INFOCOMWKSHPS65812.2025.11152997
https://doi.org/10.1109/LANMAN66415.2025.11154513
https://arxiv.org/pdf/1811.04481
https://books.google.com/books?id=OViz0AEACAAJ
https://doi.org/10.48550/arXiv.2004.00433
https://www.xda-developers.com/7-superpowers-of-a-raspberry-pi-pico-that-beat-the-regular-pi/
https://www.xda-developers.com/7-superpowers-of-a-raspberry-pi-pico-that-beat-the-regular-pi/
https://resources.pcb.cadence.com/blog/2020-what-is-signal-to-noise-ratio-and-how-to-calculate-it
https://resources.pcb.cadence.com/blog/2020-what-is-signal-to-noise-ratio-and-how-to-calculate-it
https://www.corsair.com/us/en/explorer/diy-builder/custom-cooling/aios-vs-custom-cooling-which-is-better/?srsltid=AfmBOoqya4ifCpr-06fITmZ32-kLRk16-NrOELtz8ozdEUVOeTSyd5pl
https://www.corsair.com/us/en/explorer/diy-builder/custom-cooling/aios-vs-custom-cooling-which-is-better/?srsltid=AfmBOoqya4ifCpr-06fITmZ32-kLRk16-NrOELtz8ozdEUVOeTSyd5pl
https://www.corsair.com/us/en/explorer/diy-builder/custom-cooling/aios-vs-custom-cooling-which-is-better/?srsltid=AfmBOoqya4ifCpr-06fITmZ32-kLRk16-NrOELtz8ozdEUVOeTSyd5pl
https://www.corsair.com/us/en/explorer/diy-builder/custom-cooling/aios-vs-custom-cooling-which-is-better/?srsltid=AfmBOoqya4ifCpr-06fITmZ32-kLRk16-NrOELtz8ozdEUVOeTSyd5pl
https://doi.org/10.1109/ICACOMIT.2015.7440199
https://www.thefpsreview.com/2022/02/22/intel-core-i5-12400-cpu-performance-review/9/
https://www.thefpsreview.com/2022/02/22/intel-core-i5-12400-cpu-performance-review/9/
https://doi.org/10.1109/icdm.2008.17
https://www.nessengr.com/technical-data/water-cooling/
https://www.nessengr.com/technical-data/water-cooling/
https://www.datacamp.com/tutorial/introduction-to-autoencoders
https://doi.org/10.1109/ICNWC60771.2024.10537451
https://doi.org/10.1007/s10791-025-09643-w
https://www.energy.gov/sites/prod/files/2013/12/f5/data_center_efficiency_and_reliabilit_at_wider_operating_ranges.pdf
https://www.energy.gov/sites/prod/files/2013/12/f5/data_center_efficiency_and_reliabilit_at_wider_operating_ranges.pdf
https://www.notebookcheck.net/AMD-Ryzen-5-7600-65-W-Review-Midrange-US-220-gaming-sweet-spot-that-outperforms-Core-i9-12900K-and-all-Zen-3-CPUs-in-single-core.708080.0.html
https://www.notebookcheck.net/AMD-Ryzen-5-7600-65-W-Review-Midrange-US-220-gaming-sweet-spot-that-outperforms-Core-i9-12900K-and-all-Zen-3-CPUs-in-single-core.708080.0.html
https://www.notebookcheck.net/AMD-Ryzen-5-7600-65-W-Review-Midrange-US-220-gaming-sweet-spot-that-outperforms-Core-i9-12900K-and-all-Zen-3-CPUs-in-single-core.708080.0.html
https://www.ti.com/lit/an/sprabx4b/sprabx4b.pdf?ts=1758537291456&ref_url=https
https://www.ti.com/lit/an/sprabx4b/sprabx4b.pdf?ts=1758537291456&ref_url=https


18-500 Design Project Report: AnomAIy 10/10/2025 

 

14 

 

Fig. 10. Full system block diagram. 
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Fig. 11. Gantt Chart. 
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Table 2. Bill of Materials 

Description Model # Manufacturer Quantity Cost @ Total 

Raspberry Pi 5 8GB SC1432 Raspberry Pi 1 $0.00 $0.00 

Raspberry Pi Pico WH 

RP2040 
SC0919 Raspberry Pi 1 $7.00 $7.00 

RPi Pico Expansion 

Board 
DFR0848 DFRobot 1 $4.90 $4.90 

64GB MicroSD Card SC0339L Raspberry Pi 1 $0.00 $0.00 

Qwiic Shim 15794 SparkFun Electronics 1 $1.95 $1.95 

Pin Header 61300621821 Würth Elektronik 1 $0.37 $0.37 

TMP117 Temperature 

Sensor 
4821 

Adafruit Industries 

LLC 
2 $11.50 $23.00 

Qwiic Cable Kit 15081 SparkFun Electronics 2 $0.00 $0.00 

Servo Motor MG996R Deegoo 2 $0.00 $0.00 

Silicone Tubing - YSIL 1 $10.99 $10.99 

G1/4 Tube Fitting 
Adapter 

- Yosoo Health Gear 1 $7.72 $7.72 

G1/4 Fitting Plug 

LYSB01DVV

5XNS-
ELECTRNCS 

BXQINLENX 1 $9.99 $9.99 

G1/4 Temperature 

Sensor Fitting 
TCWD-V1 Barrow 1 $13.99 $13.99 

ADS1115 ADC 1085 
Adafruit Industries 

LLC 
1 $14.95 $14.95 

Aluminum Radiator - Corsair 1 $59.99 $59.99 

Fan 
ACFAN00305

A 
Arctic 1 $8.49 $8.49 

Water Pump - Sanpyl 1 $36.14 $36.14 

Water Reservoir - Serounder 1 $18.17 $18.17 

CPU Water Block - BXQINLENX 1 $15.98 $15.98 

5 Ohm 100W Resistor HS100 5R F Ohmite 2 $12.37 $24.74 

Solid State Relay SSR-25DD BlueStars 1 $18.99 $18.99 

24V to 5V DC-DC 

Buck Converter 
EA50-5V Tobsun Electronics 1 $9.99 $9.99 

24V to 12V DC-DC 
Buck Converter 

EA120-12V Tobsun Electronics 1 $9.39 $9.39 

AC/DC Converter 24V LRS-100-24 
MEAN WELL USA 

Inc. 
1 $15.00 $15.00 

Cross Connector - uxcell 5 $0.00 $0.00 

Panel Connector LRSP-SK8-4P VI-CHAN 2 $9.99 $19.98 

Shaft Collar ASDS-ZH128 Esedese 2 $12.99 $25.98 

Flange Connector - daier 1 $7.99 $7.99 

100mm Linear Motion 
Rod 

- Vigorous 2 $9.99 $19.98 

200mm Linear Motion 

Rod 
8DG Generic 1 $0.00 $0.00 

300mm Linear Motion 
Rod 

8DG Generic 1 $14.88 $14.88 

400mm Linear Motion 

Rod 

Rods8-

400MM-4P 
akkacm 2 $17.99 $35.98 

Acrylic Floor Plate - Sculpteo 2 $22.82 $45.64 

Aluminum 
Motherboard Plate 

- SendCutSend 1 $18.24 $18.24 

Grand Total $500.41 

 


