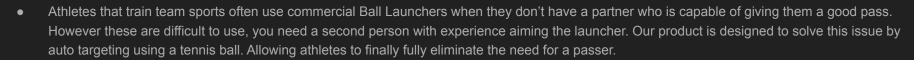
Team B1: Passing Partner


John Pedraza, Miles Wandless, Andrew Wong

Use-Case/Application

Product

• Launcher that autotargets and shoots a Tennis ball without manually adjusting for different pass types and positions

Problem

Why a Tennis Ball?

- Physical/Budget Constraints. A tennis ball is the lightest ball that we can launch that is still heavy enough to have a predictable flight path similar to that of balls used in other sports. Best ball for a proof of concept
- Tennis balls are the most widely used training balls across all sports. Despite being proof of concept, it is still widely applicable

Use Case-Requirements

- Launch a tennis ball 20+ feet
- Sense and locate target at least 25 feet away
- Ability to turn left and right from 0 to 180 degrees
- Track individual within entire range of motion in front of launcher
- Margin of error: < 3.5 ft from chest of an individual on accurate shot
- Should be 80%. Accuracy of an untrained person when throwing a ball 20+ feet

Design Requirements

Ball Launching

- Launch a 58 gram tennis ball 20 + feet
 - Exit velocity of 7.73 m/s with optimal launch angle of 45 degree
 - At least 1.73 Joules of force
 - Assuming 24 inch friction wheels need an RPM of 1453.01
 - Taking 2 inch distance of contact with the ball we would have
 0.8664Nm of torque
 - Motor attached to wheel needs to output 131.83 watts
- Motor Driver needs to be able to be able to support 2 motors using 132
 Watts. Support 24 Volts and 30 Amps in order to drive the DC motors
- Should be recognizable/in line with commercial launcher design. Athletes should see design and have confidence in the ball launching mechanism

Design Requirements

Launcher Base

• Base needs to be able to rotate ~12 lbs which is the weight of our launcher

Camera Requirements

- Camera must be compatible with our micro controller in order for us to draw data, and should support CV
- Camera needs at least 25 feet of depth perception as this information is necessary in order to determine
 launch speed required to reach target

CV Requirements

- Microcontroller capable of running CV, minimum dual-core cpu, 4GB RAM
- Camera must be able to output ~30FPS to reasonably track a person

Solution Approach

Launching the Ball

- Two high friction Polyurethane wheels
- Wheels connected to two 24V ~18A DC motors with ~80% efficiency rotating in opposite directions. Each motor is capable of generating ~345 Watts, with a torque of 1.11Nm
- Following launcher design of many current commercial launchers
- Easier to control speed, possibly enable us to adjust launch angle and add spin later
 on

Feeding ball to Launcher

- Plan on having a stopping arm driven by a servo which will release the ball down a track into the wheels of our launcher
- Rotating Launcher (X-Axis)
 - Ring gear driven by stepper motor to rotate center of the base, which will sit on ball bearings
 - Stepper motor will drive the lid with a ~4:1 gear ratio, in conjunction with this gearing the stepper will have ~0.69Nm of torque, enough to turn the structure sitting on ball bearings

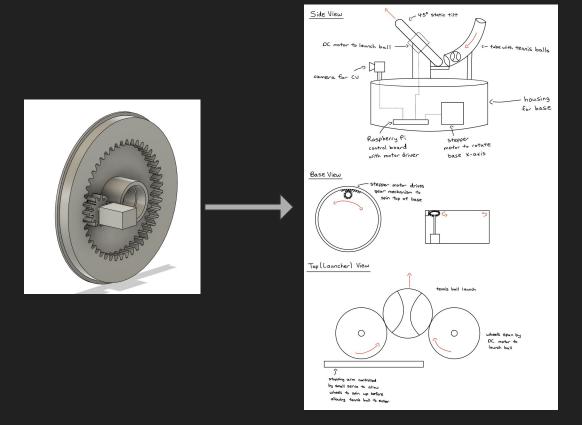
Solution Approach

Computer Vision

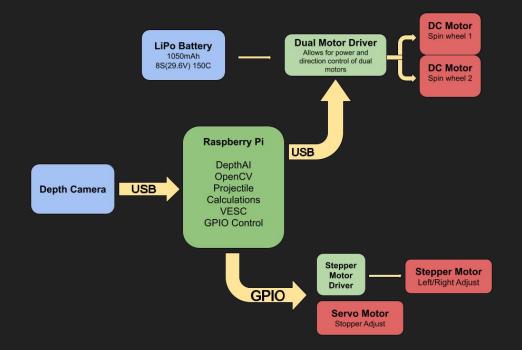
- Oak D Pro attached to the center of the base of the launcher
- Camera has 36 feet of depth perception, compatible with Raspberry Pi, and
 CV support
- Camera sends depth information, CV program identifies location of a person, RPi determines where to turn based on targets orientation with the center of the cameras view

Projectile Motion/Targeting

- o From camera data, calculations on trajectory/speed done by Raspberry Pi
- System will not track the person until the ball is launched

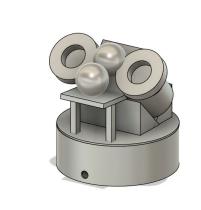

Motor and Camera Control

- Chose a motor driver that supports 60 Volts and 50A, which is enough to drive the 2 high power DC motors
- Chose a Raspberry Pi 5 because we will be running CV and motor control from it, so it will be powerful enough to handle both
- Raspberry Pi has multiple USB ports we can use to connect to the Oak D
 Pro and the Motor Driver


Physical Orientation and Solution Changes

- Entire launcher will rotate along with base
- Camera will be placed in front of launcher on the lid of the base
- Raspberry Pi and motor controller located inside base
- Removed Vertical tilt
 - Unnecessary to achieve final goal
 - Having motors strong enough to tilt 12 lbs would stretch our budget

Block Diagram


- Camera provides visual information to RPi over USB
- RPi running DepthAi(depth camera library) and OpenCV
- RPi will use VESC to control DC motor speed with motor driver board over USB
- Battery will be connected directly to motor driver board
- RPi will use GPIO pins to control the stepper motor driver and servo motor

Implementation Plan

- Rotating base design took inspiration from another open source project online
- Most of the housing will be 3d printed in a few pieces and assembled
 - Likely the base will be one piece and the lid will be another
- Borrowed a RPi 5, Camera and DC Motor Driver
- We will be using pre-existing software libraries like OpenCV in addition to our targeting algorithm
- We will be buying wheels, motors, and battery

Testing

Basic Launch Test

- 20+ feet: Manually tilting launcher 45 degrees with max voltage
- Apply various voltages to motors to check max and minimum distance
- Perform this test a few times, simply want to ensure our launcher can reach proper distance
- Mitigate risk by getting motors stronger than required, have backup launching plan if fails

Rotational Test

- Add 1.5x weight of theoretical launcher weight (18lbs)
- Test rotational speed and accuracy
- Mitigate risk by getting motors stronger than necessary, can change gear ratio for more torque if failed

Computer Vision Test

- Ensure camera has a 95% accuracy rate at detecting a person within 6-25 ft range
- Ensure depth perception works between 6- 25 feet
- Redo tests above with different levels of lighting
- Mitigate risk by having camera range longer than launch range

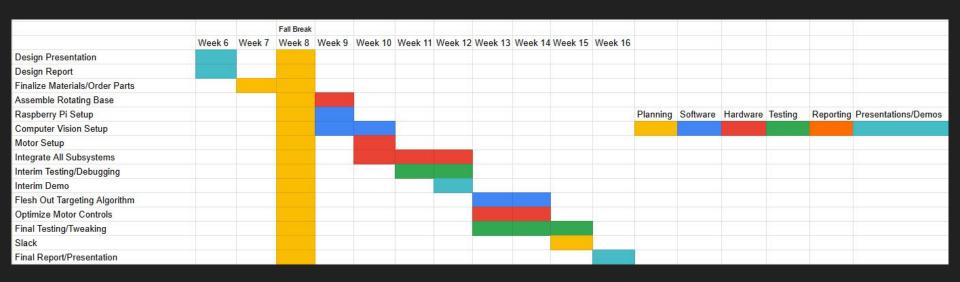
Testing

Calculation Test

- Confirm algorithm correctness by manually moving our camera
- Successful test indicated by target being in line with the center of the camera after we follow its rotational directions
- This test will be done many times at different distances and angles from the camera
- If failed, simply adjust parameters

Integration Tests

- After combining all parts, move to different areas within receiving area. Make sure that the camera rotates the
 base to be facing you. Should do this many times, Draw a straight line with a tape measure from the middle of
 the camera. If the target is within 3.5 feet of the target then this test is a success
- Risk is mitigated by previous unit testing, if failed likely an only interconnection issue


Live Test

- Launch a live ball. Mark where you are standings, as well as where the middle of your chest is. Move to catch
 the ball after launch and stand still
- Risk is mitigated by all previous testing

Division of Labor

John	Andrew	Miles
 Person Identification/tracking Identifying targeting height Depth perception algorithm Identifying and determining rotational information Plinterfacing Handle Camera to Pi communication/connection Translating targeting algorithm by andrew to be used for motor control Structure Assembly Testing and tweaking physical build of the rotational base Testing Calculation tests Integration tests Computer Vision Test 	Targeting/Physics Calculations	 Wotor Control Use motor driver board to control dual DC motors Use stepper motor driver to control stepper motor Use direct GPIO pins to control servo PI interfacing Connect Pi to main motor board via USB and other motors via GPIO Convert projectile calculations into motor movement and power Structure Assembly Design and print 3d model of structure Testing Rotational Test Integration Test Live Test

Gantt Chart

