95: Mario Kar

Caitlyn Fong

Enrique Gomez

Nicolas Keck

Motivation A

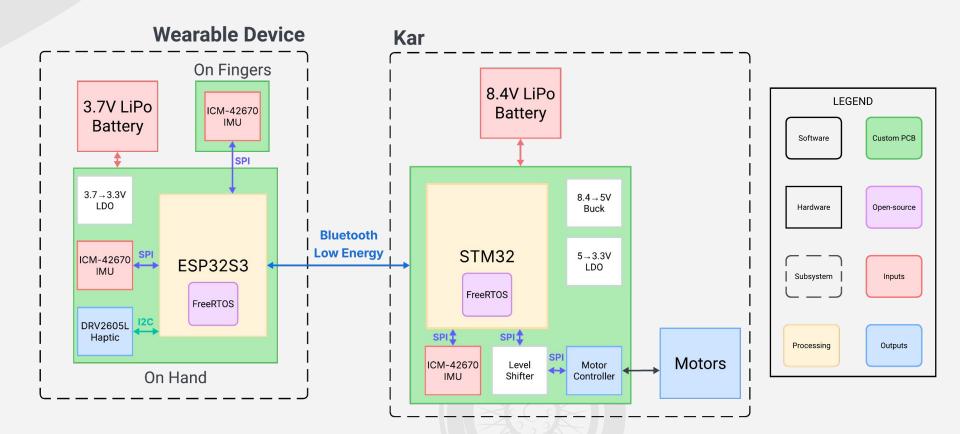
- Traditional RC controls are boring.
- Fresh and playful driving experience.

- Intuitive, immersive control with real feedback.
- USP Case P Driver controls a Kar with hand gestures and feels real-time feedback.

- Glove with gesture sensors, haptics, and Bluetooth.
- Real-time Kar control for steering, acceleration, and braking.

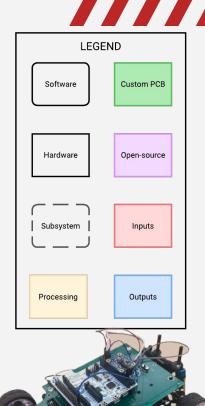
Ethical Considerations

- Uncontrollable Kar driving around.
- Safety inputs and timeouts.

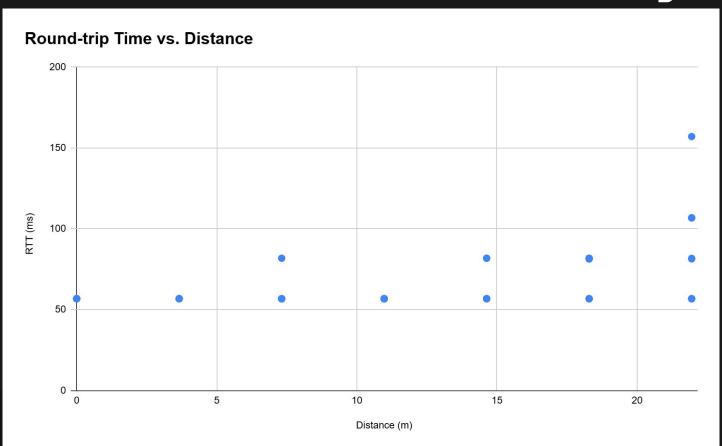

Use-Case 5 Design Requirements [1]

USE-CASE REQUIREMENT	DESIGN REQUIREMENT		
Kontroller is lightweight: 60-80g	Power from LiPo batteries (++Power Density)Custom PCBs for mass control		
Kontroller can support at least 2 hours of use	☐ At least 600mAh of capacity		
Wearable Kontroller for touchless control	 ☐ Glove PCB size shall be <3in² ☐ Electronics shall be unobtrusive on glove 		
Haptic clarity for indicating collisions and acceleration	☐ Intuitive mapping btwn Kontroller IMU & haptic intensity☐ IMU on Kar for collision detection		


Use-Case 5 Design Requirements [2]


USE-CASE REQUIREMENT	DESIGN REQUIREMENT		
30-50ms end-to-end latency	☐ Processing steps on critical path shall be <5ms each		
Intuitive mapping between gestures and Kar motion	Angle of finger tilt shall correspond to Kar velocityRotation of hand shall correspond to Kar turning angle		
Reliable wireless communication up to 10m	□ External antenna for stable 2.4GHz		
Reset input for entering safe/idle state within 30ms	□ Dedicated button on Kontroller and Kar		

Initial Solution Approach



Complete Solution

Verification and Validation - Latency

Verification and Validation – Explicit Tests

Metric	Test Method	Success Output	
End-to-end latency	□ Delay testing□ User testing (1-5 rating)	< 50ms in delay testing, 4/5 average rating	
Control scheme viability	□ User testing (Obstacle course + user rating 1-5)	90% success rate in obstacle course, 4.5/5 average rating	
Kontroller quality	☐ User testing (Multiple user ratings 1-5)	3/5 average rating	
Haptic feedback clarity	☐ User testing (1-3 rating)	2.7/3 average rating	
PCB functionality	□ DRC + Bringup Plan	DRC passes, bringup plan followed successfully	

Results

Buggy behavior leading to some tests having lower preliminary scores

User testing has not yet concluded (~30% complete)

ID	Metric	Level	Reference	Test	Success Criteria	Pass?
T1	Controller weight 60-80g	1	UC-1	Physically weigh controller	Weight within bounds	78.5g
1239	Perceived controller weight		_	Receive feedback in user testing using 1-5 Linkert		Preliminarily
T2	not too heavy		T1	scale	3/5 average on Linkert scale	yes
Т3	Controller wearable	1	UC-2	Inspection		Yes
T4	Perceived controller wearability is high	2	Т3	Receive feedback in user testing using 1-5 Linkert scale	3/5 average on Linkert scale	Preliminarily yes
T5	Intuitivity of control scheme - Driving ability	1	UC-3	Users test driving ability in obstacle course	90% of drivers pass course with <2 crashes	Broken reverse feature
T6	Intuitivity of control scheme - User perception	2	T6	Receive feedback in user testing using 1-5 Linkert scale	4.5/5 average on Linkert scale	Preliminarily yes
T7	Haptic feedback system is clear to user	1	UC-4	Receive feedback in user testing using 1-3 Linkert scale	2.7/3 average on Linkert scale	Preliminarily no
Т8	End-to-end latency 30-50ms	1	UC-5	Perform RTT testing at standardized distances 0-20m, and LED delay test at 10m	<50ms up to target range of 10m	28.3ms at 10m
Т9	Perceived latency is not too high	2	T8	Receive feedback in user testing using 1-5 Linkert scale	4/5 average on Linkert scale	Preliminarily yes
T10	Wireless communication is reliable up to 10m	1	UC-6	Perform packet loss test from standardized ranges of 0-10m	<1% packet loss at and below 10m	Yes
T11	Kar reset input implemented	1	UC-7	Observation	-	Yes
T12	Kar reset input latency <30ms	1	UC-7	Test operation of reset input, perform delay test using oscilliscope	Kar stops within 30ms of reset input	5ms
T13	Kontroller reset input implemented	1	UC-7	Inspection	-	Yes
T14	Kontroller reset input latency <50ms	1	UC-7	Test operation of reset input, latency verified by T8	Kar stops within 50ms of reset input	29.1ms at 10m
T15	Kontroller power supplied by LiPo battery	1	DR-1	Inspection	-	Yes
T16	Kontroller electronics will be implemented on custom PCB	1	DR-1	Inspection	-	Yes
T17	Kontroller PCB size <3in^2	1	DR-2	Measurement	Area within bound	2.56in^2
T18	Angle of finger tilt corresponds to Kar velocity	1	DR-3	Demonstration	Tilting finger should clearly cause Kar to accelerate	Yes
T19	Rotation of hands corresponds to Kar turn	1	DR-3	Demonstration	Rotating hand should clearly cause Kar to turn	Yes
	Two-way communication implented between Kar and					
T20	Kontroller		DR-4	Demonstration	-	Yes
T21	IMU integrated into Kar	1	DR-4	Inspection	-	Yes
T22	Magnetometer integrated into Kar	1	DR-4	Inspection	-	Yes
T23	Processing steps on critical path <5ms each		DR-5	Each major processing step will be timed using on-MCU timers	Processing steps meet timing requirement	Yes
T24	PCB shall be manufacturable	2	T16	PCB shall be verified using design rule check tuned to JLCPCB's specifications	DRC pass	Yes
	Manufacured PCB shall meet project specifications		T16	Finished PCB will be tested for continuity, functionality, and be assembled according to bringup plan	PCB functional for project use	Some reworking required

Trade-offs

Performance Vs. Quality

- Glove "quality"
 metrics pass at
 3/5 rating
- Based on
 use-case,
 experience
 trumps
 wearability +
 weight

Skillset Vs. Design

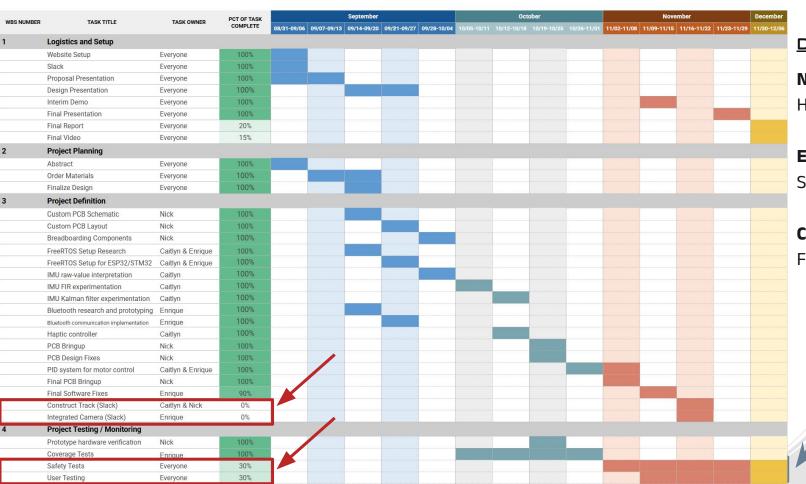
- Our strengths are custom electronics, and embedded firmware
- Mechanical design offloaded, to detriment of control, cost

Cost Vs. Everything

- Third PCB cut
- No spare parts
- IMUs scrounged + switched out
- No PCB assembly from fab
- PCB complexity reduced

GANTT CHART - MARIO KAR

PROJECT TITLE Mario Kar


PROJECT MANAGER Scrum Master Enrique

COMPANY NAME Mario Kar

DATE

L Wallo Kal

Division of Labor

Nick

Hardware

Enrique

Software/Firmware

Caitlyn

Firmware

Next Steps

Testimonials

"This is awesome!"

- Spencer Li

"It's intuitive, but not functional."

- Liam Carden

(The battery died)

