# Design Review

Team A1: Isaiah Weekes, Siena Lee, Corin Cho

### Use Case + Use Case Requirements

#### **Problem**

Managing changing skin conditions can be challenging, and existing solutions are often costly, difficult to access, or lack personalization.

#### **Application**

A smart mirror that provides personalized skin analysis for 4 conditions: acne, oiliness, sunburns, and wrinkles Provides skin care recommendations based on the analysis

#### **Use-Case Requirements**

**Accurate Skin Detection** - Want a minimum of 85% accuracy per class

Image Capture + CV Inference
Latency - from the moment of button
pressed for analysis, LCD display should
display information within 7 sec

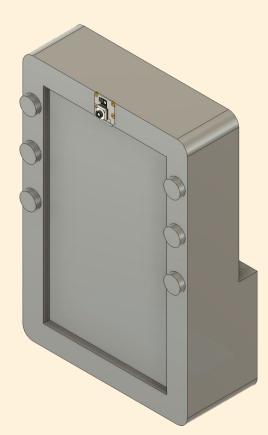
Consistent feedback + Easy User Experience - each user session must provide accurate analysis with appropriate product recommendations. \*\* User study will be conducted

# Quantitative Design Requirements

| Use Case                                                                    | Design Requirements                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Need accurate detection of the skin for the classifications of 4 conditions | Minimum resolution of camera: 12MP  → ensure detailed skin imaging Classification accuracy: >=85% on the 4 skin conditions  → Model capacity up to 60 million parameters to achieve target accuracy.                                                    |
| Low Latency User Experience                                                 | Inference time less than 4 sec per image on RPi<br>Communication from camera to RPI and RPI to screen display<br>→ less than 1 sec<br>End-To-End Latency Goal (capture, analyze, display): ≤ 5sec                                                       |
| Consistent Feedback + Easy User Experience                                  | On-system app (w/ tools like SQLite and Tkinter)  → display current session results + past user session results  Add LED strips around camera for consistent lighting  Make local database of skincare products mapped to 4 classes + confidence levels |

## Solution Approach

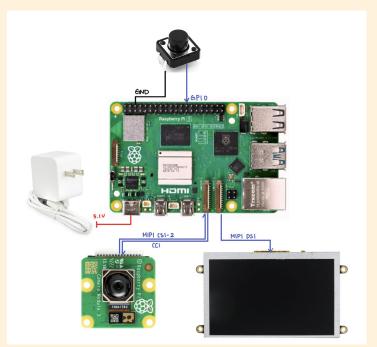
#### **Health & Wellness**

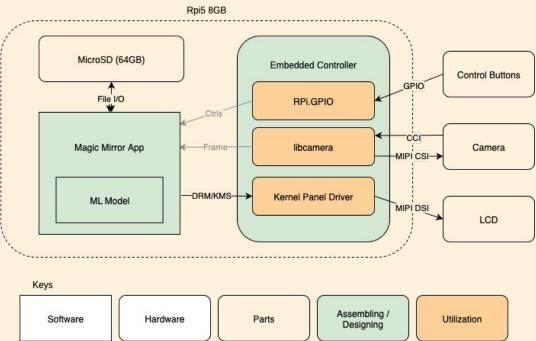

Deliver accessible skin condition analysis with personalized skincare recommendations, allowing users to discover best suited products

#### **Safety**

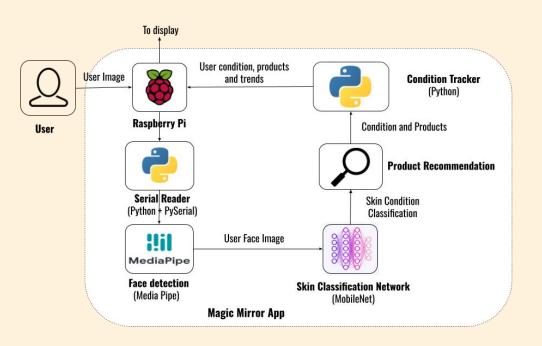
Image data processing is done locally on RPi, minimizing data transmission and focusing on protecting user privacy

#### **Economic**

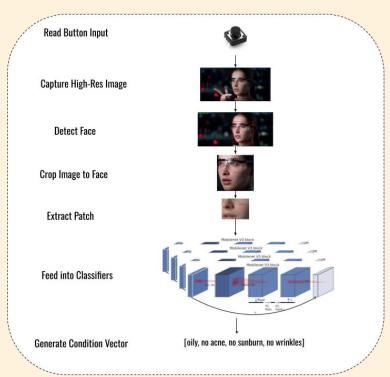

Using affordable components (RPI and open source ML models) helps keep our product cost effective




#### **Our Approach**


- Build a standing smart mirror (12 inch \* 8 inch) for daily skin analysis
- Lower budget solution with only one RPI board and a cost efficient camera and screen
- Keep all of our user data locally on the RPi board so that user privacy is protected
- Have a local database on skincare (w extensive research and expert feedback) for accurate recommendations based on skin condition classification + confidence level

### System Specification: Hardware






### System Specification: Software

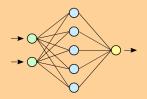


#### Image Processing Pipeline



### Implementation Plan - Software

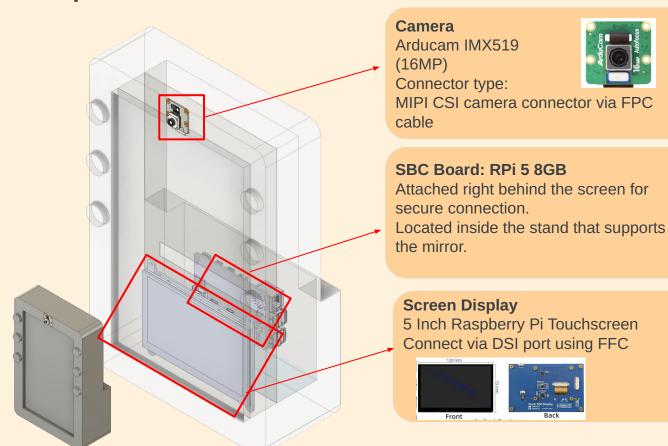





**Downloaded + Data Augmentation** 






#### **Pre-training + Fine Tuning**



**Custom-Built App** 



### Implementation Plan - Hardware



#### **Additional Components**

#### Two Way Mirror Glass:

Attach the mirror film to the frame and use a cardboard cutout with a display window so the film's back is fully black except where the display shows

#### LED Light Strips:

Attach to the wooden frame along the top two-thirds of the mirror to provide lighting, controlled by an on/off switch. Wooden Frame:

Laser-cut plywood





### Test, Verification, and Validation

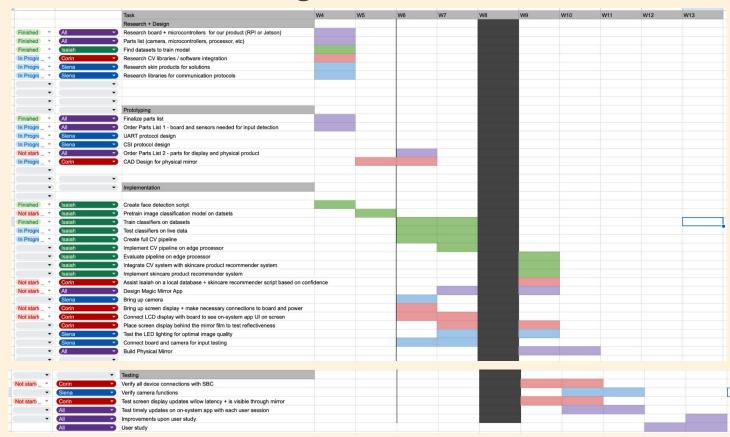
| Test                                              | Criteria                                                                                                                                       |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Input (Camera and<br>Control Buttons)<br>Accuracy | Of all commands inputted by<br>the user, >= 95% of generated<br>responses (image captured and<br>button triggered events) shall be<br>relevant |
| Face Detection and Feedback Accuracy              | System can detect users and give correct positioning feedback >= 95% of usage                                                                  |
| ML Model<br>Classification<br>Accuracy            | 85% accuracy for each condition in test datasets                                                                                               |

| Test                         | Criteria                                                                                                                                      |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| System App                   | Responds successfully to inputs tested >=95% of usage  Utilize memory and create trend graph after 3 days of usage, reflecting >=95% accuracy |
| Image Capture to LCD Latency | No input/output will take longer than 5 seconds  (Failure control: ML accelerator)                                                            |
| LCD Accuracy                 | >=95% of the display shown<br>shall reflect what is driven by<br>the systems app (current                                                     |

analysis result or trend)

9

### Test, Verification, and Validation


#### **User Study**

- Run 5 user tests for at least a week, more preferably with people with different skin conditions and have had previous consultation with a professional
- Gather the following data and feedback:
  - Camera to display latency
  - Analysis accuracy compare with professional consultation
  - Rated UI/UX on a scale of 1 to 5
  - Trend mechanism reflects past data

### **Project Management**

| Team Member | Task                                                                                                                                                                                   |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Siena       | Sub-device Communication (Camera and buttons)                                                                                                                                          |
| Corin       | <ul> <li>Device Integration</li> <li>Primarily will be focusing on screen display / mirror film</li> <li>Will also be working with CAD model to plan out precise placements</li> </ul> |
| Isaiah      | Systems App  • Face detection  • ML model training                                                                                                                                     |
| All         | Mirror building + System App Integration                                                                                                                                               |

### Schedule Moving Forward

