

TEAM C6: Skateback A smart electric skateboard

Tioluwani Ajani, Jason Hoang, Sharon Li

a

USE CASE

Problem: Commuters, students, and beginners need a convenient, eco-friendly way to travel. Current electric skateboards are hard to retrieve and lack autonomous features.

SkateBack:

- Smart electric skateboard with "return to me" feature
- Controlled via a web app
- Displays real-time stats: speed, battery life, and environmental impact

ECE Areas: Hardware, Software Systems, Signals

....-

USE-CASE REQUIREMENTS

TOP SPEED	15 mph ± 1 mph
RANGE	5 miles ± 0.25 miles per charge
AUTONOMOUS RETURN ACCURACY	At least 80% successful retrieval within a 1-meter margin
OBSTACLE DETECTION	90% accuracy
SAFETY GUARANTEE	98% collision avoidance
LOAD CAPACITY	Skateboard must support up to 220 lbs while maintaining performance
LATENCY	Web app commands executed with ≤ 100 ms delay

- 333

SOLUTION APPROACH

IMPLEMENTATION PLAN

DESIGN TRADEOFFS

Camera	Lidar	Belt Motor	Hub Motor
 Clearer Object View Poorer depth perception Less expensive More effective in gauging object size 	 Less computation on the board More immune to different environments 	 More Torque More complex design and moving parts Susceptible to jamming if items get into the belts 	 Less overheating More streamlined and clean design Much quieter

WEB APP ARCHITECTURE

WEB APP UI MOCKUP

Connect Your Skateboard

I have been Described a scontinual Spri-en-plus manufactual and Diag within a memory of grad statestand. X. Ohnis Higher Sensett: No Study pand minimum

Looking for Skateboards...

Connected to Sharon's Skateboard!

WEB APP UI MOCKUP

TESTING, VERIFICATION AND VALIDATION

Test	Measurement	Test Input	Test Output	Risks
Speed Test	15 mph ± 1 mph	Accelerate and decelerate on vary terrain (flat, inclined), rider weight, and motor load	Speed should remain within 14-16 mph	Failure to maintain a consistent speed and reach a top speed
Battery Efficiency & Range	5 miles ± 0.25 miles per charge	Continuous ride over varied terrain and rider loads (150-240 lbs)	Travel 5 miles on a single charge	Battery drains too quickly, insufficient power for "Return to Me" function
Return to Me Accuracy	80% success rate within 1-meter margin	Recall skateboard over varying distances (5m, 10m, 50m, etc) with/without obstacles	Skateboard returned to user and retrieved within 1-meter margin smoothly	Pathfinding issues due to GPS/IMU inaccuracies

TESTING, VERIFICATION AND VALIDATION

Test	Measurement	Test Input	Test Output	Risks
Obstacle Detection	Detect objects within 100ms, 90% accuracy	Set obstacle course with varied object sizes (rocks, trees, etc.)	Skateboard successfully avoids obstacles within design requirement	Slow or no detection at all, especially in fast-moving or small obstacles
Latency Test	Command response ≤ 100ms	Send commands from web app (accelerate, deccelerate, etc.)	Response time should be ≤ 100ms	Bluetooth disconnects, delayed execution of commands
End-to-End Integration	No interruptions in 2+ mile trip	Combine all features, ride continuously for 2 miles	System functions smoothly for the entire trip	Loss of connectivity or inconsistency between components

PROJECT MANAGEMENT

Tioluwani Ajani

Pathfinding/GPS Integration, and Core Performance

Jason Hoang

Board Assembly, Obstacle Avoidance, and Computer Vision

Sharon Li

Web Application, Software Development, and Board Manufacture

