
'''

import mido

load the MIDI file

midi_file = mido.MidiFile('eyetrackingoutput.mid')

note_events = [] # to store note events WITH timing

iterate through MIDI messages

for track in midi_file.tracks:

current_time = 0

for msg in track:

current_time += msg.time # Accumulate the time for each

message

if msg.type == 'note_on' or msg.type == 'note_off':

append relevant note info and timing to note_events

note_events.append({

'type': msg.type,

'note': msg.note,

'velocity': msg.velocity,

'time': current_time

})

print(note_events) # for debugging

ticks_per_beat = midi_file.ticks_per_beat

bpm = 120

ms_per_tick = (60000 / (bpm * ticks_per_beat))

for event in note_events:

event['time_ms'] = event['time'] * ms_per_tick

need to send to appropriate ports?

with open('note_data.h', 'w') as f:

f.write("NoteEvent note_schedule[] = {\n")

for event in note_events:

time_ms = int(event['time_ms'])

note = event['note']

velocity = event['velocity']

f.write(f" {{ {time_ms}, {note}, {velocity} }},\n")

f.write("};\n")

'''

hi, this code below produces some unwanted phantom notes, but

no weird zero-duration notes

import mido

import time

def parse_midi_file(midi_file_path):

"""

Parses a MIDI file and extracts note-on events with their

respective durations.

Params:

midi_file_path (str): Path to the MIDI file

Returns:

list of tuples, wherein each tuple contains the note and

its duration in seconds

"""

midi = mido.MidiFile(midi_file_path)

notes = []

active_notes = {} # dictionary to store start times for

active notes

absolute_time = 0 # tracks total elapsed time from start of

the track

for msg in midi:

absolute_time += msg.time

check for a note-on event with velocity > 0 (start of a

note)

if msg.type == 'note_on' and msg.velocity > 0:

active_notes[msg.note] = absolute_time # record the

start time of the note

#cCheck for note-off events OR note-on with velocity 0

(end of a note)

elif msg.type in ['note_off', 'note_on'] and msg.note in

active_notes:

calculate duration based on the difference from

start time

start_time = active_notes.pop(msg.note)

duration = absolute_time - start_time

notes.append((msg.note, duration)) # append note

WITH its duration

return notes

def simulate_note_playback(notes):

"""

Simulates playback of notes by printing each note and waiting

for its duration.

Parameters:

notes (list of tuples): Each tuple contains a note and

its duration in seconds.

"""

print("Starting simulated note playback...")

for note, duration in notes:

print(f"Playing note: {note} for {duration:.2f} seconds")

time.sleep(duration)

print("Playback complete.")

def format_notes_for_firmware(notes):

"""

Formats notes into a structure suitable for firmware

transmission.

Parameters:

notes (list of tuples): Each tuple contains a note and

its duration.

Returns:

str: Formatted data string ready for UART transmission.

"""

formatted_data = ""

for note, duration in notes:

formatted_data += f"Note: {note}, Duration:

{duration:.2f}s\n"

return formatted_data

if __name__ == "__main__":

midi_file_path = "/Users/shravyaks/Documents/sample.mid"

notes = parse_midi_file(midi_file_path)

print("Parsed notes:", notes)

simulate_note_playback(notes)

Format data as it would be for firmware transmission

firmware_data = format_notes_for_firmware(notes)

print("\nFormatted data for firmware transmission:\n",

firmware_data)

