

Dynamic mapping and path-planning for a robot vacuum Team C3 - Nick Zhong, Kevin Huang, Matthew Coyle

SUBSCRIBE

ARTIFICIAL INTELLIGENCE

A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?

Use Case

- Have you ever been frustrated by your Roomba?
- We've identified a gap in the robot cleaning industry:
- 4 broad classes of traversal
 - "Bump and Turn" random navigation = SLOW, STATIC MAPPING
 - Gyroscope zigzag = SLOW, STATIC MAPPING
 - Camera-based visual mapping = GETS STUCK, LOSES MAP
 - Cost prohibitive advanced models are over \$2000
- ECE AREAs: Software Systems & Signals

There's a need for a dynamic cleaning robot that is fast and precise

What is MapSweep?

We aim to make an autonomous cleaning robot that employs a 3D LiDAR for room mapping and collision avoidance. This contrasts from traditional collision-based mapping robots like Roomba. From this, we aim to achieve:

- Less collision with walls & furniture which could cause wear and tear
- Faster cleaning by more planning an efficient route to cover the entire area. This would save time and energy
- Superior mapping accuracy. 3D LiDARS can produce superior, more detailed room maps which can ensure a more thorough cleaning

Use-Case Requirements - Technical Considerations

Requirement	Justification
Mapping Accuracy: 95% coverage of the given testing space	Allowing for error in vehicle odometry as well as anticipating certain errors are not able to be reached
Precision: Be able to reach within a distance of 2 inches to an obstacle at the closest point	A distance of 2 inches allows for a slight bounding box around obstacles to increase safety while not giving up our mission of cleaning coverage
Minimal Collision: 0 Collisions	Objective of project surrounds the issue of household safety (knocking over things). We don't want collision.

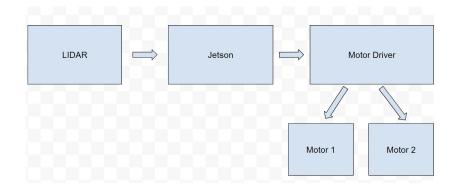
Use Case Requirements - Real World Considerations

Requirement	Real World Considerations
Mapping Accuracy: 95% coverage of the given testing space	95% mapping accuracy gives good enough mapping for path planning while not having to spend additional energy for marginal gains.
Precision: Be able to reach within a distance of 2 inches to an obstacle at the closest point	Designed to accommodate for dynamic obstacles like pets, or children. Not getting too close is safer.
Minimal Collision: 0 Collisions	Prevent damage to household items, which can contribute to longevity of furniture and robot.

Technical Challenges

- 1. Real-time data processing and dynamically adjusting the path would be computationally intensive. How effectively we can avoid collision given potentially high latency could be an issue
- 2. Accurate odometry could also be difficult
- 3. Differentiating between permanent and temporary obstacles how do we navigate around obstacles without unnecessary detours or even just completely halting the process
- 4. Battery duration is a concern. We will be running a lot of hardware off the battery so getting decent uptime could be a problem
- 5. Hardware integration will be sure to give some challenges

Solution Approach: Software


- 1. 3D LiDAR Room Mapping
 - a. 360 degree View
 - b. 30m scan distance with 43200 points/s , 11Hz circum scanning freq, 180Hz ver scanning freq
- 2. Path Planning Algorithm
 - a. Separate 3D map into grids, then run A* Algorithm
- 3. Real-Time Path Adjustment Algorithm
 - a. Use of SLAM techniques
- 4. Robot Location
 - a. Use of Odometry from motor encoders
 - b. Lidar localization within map of the room

Tools

- ROS
- Odometry with Motor encoders
- OpenCV for LiDAR data processing

Solution Approach: Hardware

- 1. Jetson for real-time path planning algorithm and map creation
- 2. Lidar for room mapping
- 3. DC motors with encoders for odometry
- 4. Battery pack for long lasting cleaning without downtime

Testing, Verification, and Metrics

Requirement	Testing
Mapping Accuracy: 95% coverage of the given testing space	Manual measurement of the room compared to the 3D mapping with measuring tape. Room size: 12' x 20', Table size: 5' x 5', 4 chairs or random arrangement
Precision: Be able to reach within a distance of 2 inches to an obstacle at the closest point	Taping a perimeter 2in off all the objects in the testing area and making sure it reaches these points
Minimal Collision: 0 Collisions	Analyze via visual inspection for any collisions.

Division of Labor

Task	Team Member
Path Planning	Kevin + Nick
Lidar Room Mapping	Nick + Kevin
Robot Design and Hardware	Matthew

Schedule

				Initial Creation Integration																			Optimization								DONE															
Task				w	EEK 1			V	VEEK	2			WE	EK 3		WEEK 4 WEEK 5 WEEK 6															WEEK	7			WEE	K 8		WEEK 9					WEEK 10			
Number	TASK TITLE	DURATION	м	т	WRF		м	т	T W R		F	мт		WR		м	т	w	R	F	м	т١	WF	R F	м	т	w	R	FN	и т	w	R	F	м	т и	/ R	F	м	т	w	R	FM	т	w	R	F
1	Hardware Selection & Purchase	5																																												
2	LiDAR Mapping Research	2																																												
2.1	LiDAR Data Acquisition Implementation	3																																												
2.2	LiDAR Room Mapping Algorithm	5																																												
3	Robot Design	4																																												
3.1	Robot Base Assembly	2																_																												
3.2	Motor and Sensor Mounting	2																																												
3.3	Microcontroller & Wiring	3															_	_																												
4	LiDAR Integration with Robot	7																																												
5	Robot Odometry Fine Tuning	6																																												
6	Path Planning Design	4																																												
6.1	Initial Robot Navigation Integration	5																																												
6.2	Obstacle Detection & Collision Avoidance	5																																												
7	Testing & Optimization	7																																												
8	Final Debugging & Documentation	3																																												