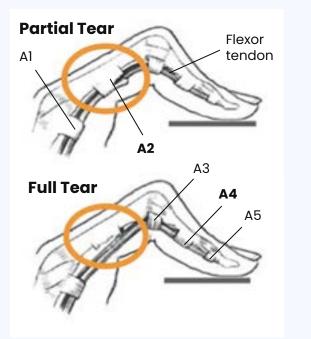

TEAM C1: CLIMB Final Presentation

()

 \bigcirc

Alexander Nguyen, Jubahed Qayum, Joshua Ramos


The Problem & Our Solution

Rock Climbers & Pulley Injuries

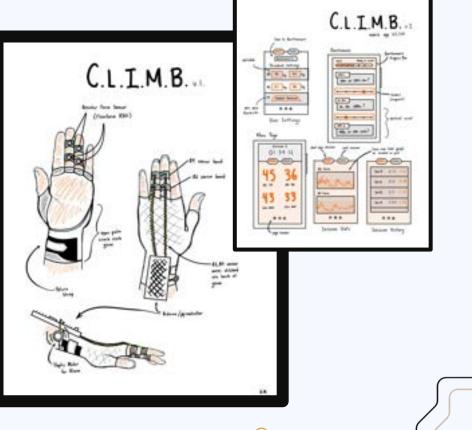
- 44.5 million climbers around the world
- Most common injury
 - Pulley rupture
- 3-12 month recovery

Our Solution

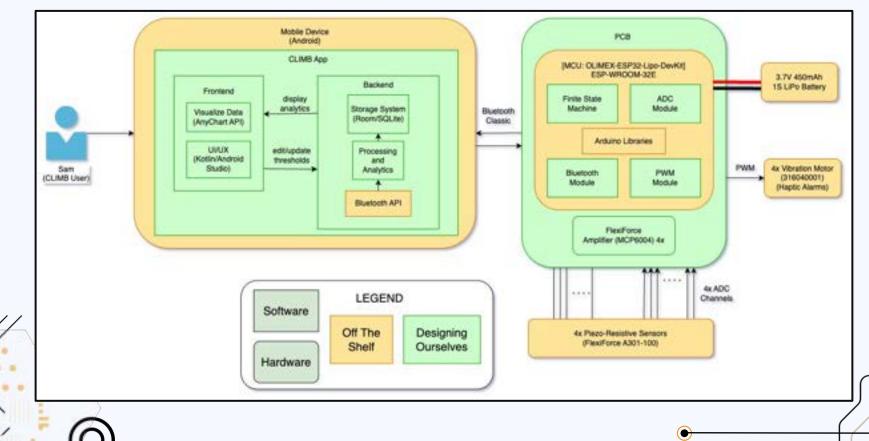
- Comfortable wearable device
- Minimal restrictive effect on climber
- Prevent injury before it happens through alarms
- Provide weight distribution data

Use Case & Design Requirements

Use Case Requirement	Technical Requirement
Comfortable & Unobtrusive	The sensors shall be placed such that less than 30% of per-finger surface area is covered.
Prevent Pulley Injuries	The device shall be sensitive up to 70 lbs of force per sensor.
\rightarrow	On-device haptic alarm shall fire within 200ms from when user's breach the safety threshold.
Provide Useful Feedback	Analytics and suggestive feedback shall display within 10s of workout completion.


Solution Approach

Wearable Glove


- Track force distribution data
 - Piezoresistive sensors
- Pulley Alarms
 - Haptic Motors

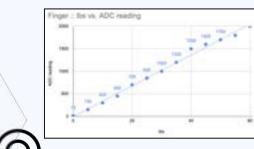
Mobile App

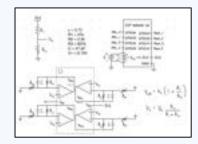
- Determine and set safety thresholds
- Start and end climbing sessions
- Display and analyze session
 data

Complete Solution

Glove (Hardware Solution)

Continuous Force Reading

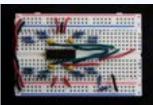

Sampling rate
 T = 0.1s (100ms)

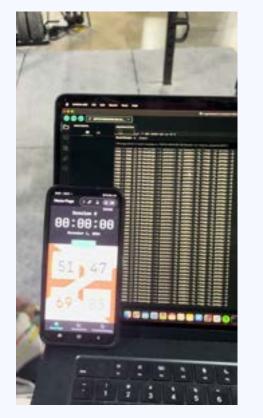

Maintain Distinct Thresholds

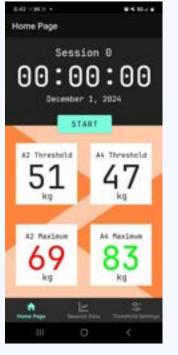
- Four sensors & pulleys per hand
- Target A2, A4, pulleys: middle and ring fingers

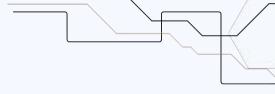
Fire Haptic Motor Alarms

- Increased risk \rightarrow stronger alarms







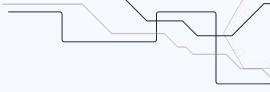

Mobile App (Software Solution)

Serial Monitor of Output Message (Enter to send message to TEP/12 WROOM-DA Module' on View/ou urbanial-00015 and w wave it is established --> painters b, minister a, range b, parket w 5200 [] CR Readings ---- pointer: 4, middle: 0, ring: 6, pinky: 1 CR Readings ---- pointer: 4, middle: 0, ring: 6, pinky: 0 CR Readings ---> pointer: 4, middle: 0, ring: 7, pinky: 0 CR Readings ---- pointer: 4, middle: 0, ring: 0, pinky: 0 CR Readings ---- pointer: 4, middle: 0, risor 7, pinky: 1 CR Readings --- pointer: 4, middle: 8, ring: 7, pinky: 8 CR Readings --> pointer: 2, middle: 0, ring: 6, pinky: 0 CR Readings --> pointer: 4, middle: 1, ring: 7, pinky: 8 TIME = 10000 [] CE CALIMATION COMPLETE - pointerCR: 4, middleCR: 3, ringCR: 6, pinkyCR: 3 pointer: 4 lbs, middle: 1 lbs, ring: 6 lbs, pinky: 0 lbs TIME = 10110 || pointer: 4 Ubs, middle: 1 Ubs, ring: 6 Ubs, pinky: 8 Ubs 18218 [] painter: 3 lbs, widdle: 1 lbs, ring: 5 lbs, pinky: # lbs 18310 [] peinter: 3 lbs, middle: 2 lbs, rine: 5 lbs, pinky: 0 lbs 10410 || pointer: 4 lbs, middle: 1 lbs, ring: 6 lbs, pinky: 8 lbs 18510 || pointer: 3 lbs, middle: 0 lbs, ring: 6 lbs, pinky: 0 lbs 10618 [] painters 4 lbs, middles 1 lbs, rings 7 lbs, pinkys 8 lbs 10710 || painter: 3 lbs, middle: 0 lbs, rine: 6 lbs, pinky: 0 lbs 10810 [] painter: 3 lbs, middle: 1 lbs, ring: 6 lbs, pinky: 8 lbs TIME = 10918 || painter: 3 lbs, middle: 0 lbs, ring: 6 lbs, pinky: 0 lbs TIME = 11010 [] pointer: 3 lbs, widdle: 0 lbs, ring: 6 lbs, pinky: 0 lbs TIME = 59111 || pointer: 13 lbs, middle: 11 lbs, ring; 6 lbs, pinky: 18 lbs TIME = 59211 || pointer: 32 lbs, middle: 56 lbs, ring: 51 lbs, pinky: 44 lbs TIME = 59311 || painter: @ lbs, middle: 7 lbs, ring: 3 lbs, pinky: -1 lbs TIME = 59411 || pointer: -1 lbs, middle: 2 lbs, ring: 0 lbs, pinky: -2 lbs TIME = 59511 || pointer: -1 lbs, middle: 1 lbs, ring: 1 lbs, pinky: -1 lbs TIME = 59611 || pointer: @ lbs, middle: 4 lbs, ring: 5 lbs, pinky: -2 lbs 50711 II paintage & the middler 18 the ginar & the minker of the TIME = 59811 || pointer: 30 lbs, middle: 13 lbs, ring: 12 lbs, pinky: 24 lbs TIME = 59911 || pointer: 39 lbs, middle: 15 lbs, ring: 14 lbs, pinky: 32 lbs TIME = 60011 || pointer: 47 lbs, middle: 15 lbs, ring: 16 lbs, pinky: 35 lbs TIME = 60111 || pointer: 40 lbs, middle: 17 lbs, ring: 19 lbs, pinky: 31 lbs TIME = 60211 || pointer: 48 lbs, middle: 18 lbs, ring: 23 lbs, pinky: 41 lbs

TIME = 64311 || pointer: 44 lbs, middle: 35 lbs, ring: 36 lbs, pinky: 39 lbs TIME = 64411 || pointer: 0 lbs, middle: 11 lbs, ring: 10 lbs, pinky: -2 lbs

Testing Requirements

11 -

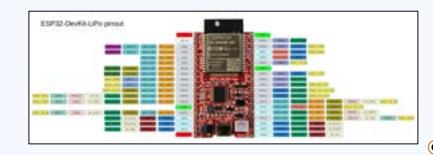

 (\cap)

Testing (Goal)	Specification
Ergonomic Validation	Survey 20 random climbers to determine usability (yes/no), WTP (\$), and obtrusiveness (%)
Durability Verification & Validation	Sensitivity drift and wear/tear is measured after each of 20 static & dynamic uses (2 minutes /) with 80kg applied (drift to be within 2.5%)
Safety Verification	 (1) Verify that a constant 0 – 60 lbs is consistent (within 5%) at each 5lb increment reading over 20 trials (2) Verify that at least one alarm is triggered within 100ms when force reading is within 20% of threshold at a 99% success rate (3) Verify that second alarm fires within 200ms of threshold excession with a 99% success rate
Feedback Verification	Verify that 20 (~96kb) batches (batch/use) ship to the mobile device within 10s at a 95% success rate
\sim	

Hardware Testing Results

Specification	Requirement	Result
Sensitivity drift	< 2.5%	~ 2%
Reading Consistency	< 5%	~ 3%
Alarm Fire	> 99%	100%
Battery Life	> 3 Hours	Ongoing
CLIMB Survey	20 Climbers	Ongoing (5)

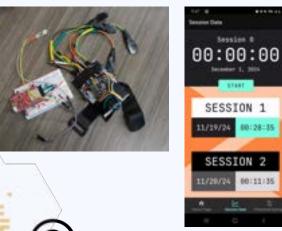
"Yeah I'd use that as long as my fingertips and palm are free, it'd definitely save people from getting pulleys." ~ fellow climber at ICB


Software Testing Results

Specification	Requirement	Result
Bluetooth Pairing Time	< 5s	~ 1s
Bluetooth Distance	> 10ft	30ft
Bluetooth Shipment Time	< 5s	~ 3s
Time to load 3kB from database	< 3s	~ 2s
Data visualization Time (Charts)	< 2s	Ongoing

Design Tradeoffs

- MCU
 - ESP32 → ~(25 x 18 x 3)mm, clk: 240MHz, built-in BT Classic/LE support, ~0.6W, 15 ADCs
 - Olimex → ~15\$, smaller, has on-board power jack, reduces the need to design/purchase LDO and add complexity to PCB
 - Adafruit $\rightarrow \sim 8$, larger size, no LDO (& power-jack)
 - STM32FRE \rightarrow (68 x 53 x 13)mm, clk: 160MHz, ~ 0.3W, no built-in BT support, 9 ADCs
- Sensor attachment
 - Tape → more grip flexibility, modularity, greater placement accuracy
 - Nylon Rings → greater placement consistency, less grip



Looking Ahead & Proj Management

Next Steps

- Add second glove
- PCB & Capsule
- Display data retrieved from database
 - Analytics
 - Session history

Schedule

