
 InSync
Aakash Sell, Mathias Thomas, Ben Martinez

Use Case

● Rehearsal tool to improve timing between
singer with pianist (or accompaniment)

○ New Musicians
○ Vocalist + Pianist pairs

● Most existing solutions can only measure
performance of one musician

● ECE Areas:
○ Signals & Systems
○ Hardware Systems
○ Software Systems

Motivation:

System needs to provide feedback within a
timeframe that allows musicians to adjust

➔ Sub Requirements:
➔ Provide feedback within 30 millisecond

latency
➔ Find position within piece with an

accuracy of ± 15 milliseconds
➔ Feedback latency synchronized within ±

15 milliseconds

Requirement #1: Real Time feedback

Requirement #2: Post Performance Feedback

Motivation:

Highlight trouble areas; show improvement over
time

Sub Requirements:

➔ Highlight areas where musicians are out of
sync with accuracy within ± 15
milliseconds

➔ Feedback should be available within 30
seconds after recording

Requirement #3: Web Application

Motivation:

Users need a way to receive and store
feedback after each “run”

Sub Requirements:

➔ Scan sheet music and convert to
audio format with 96% accuracy

➔ Store historical data to mark
improvements

Technical Challenges

How do we…

● Accurately convert sheet music to an audio file format
● Add feedback onto sheet music
● Isolate instruments when processing mixed audio on a FPGA
● Algorithmically measure synchronicity between the pianist and singer
● What bounds do we set for margin of error between our 3 data points
● Account for musicality

Solution Approach (High Level)

● Web Application scans in sheet
music which is converted to a
machine readable format

● Sheet music data is sent to timing
algorithm

● FPGA then sends audio data to the
timing algorithm

● The timing algorithm determines
synchronicity and sends it to the
LEDS and Web App

Solution Approach

Software:

➔ Flask web application for backend
➔ Mozart and Werckmeister for

sheet music to audio conversion
➔ Raspberry Pi

◆ Comparing events lists
◆ Generating feedback (timing)

data

Hardware:

➔ FPGA for RTL audio processing
➔ PCB for stoplight array
➔ (2) Cardioid condenser microphones

https://github.com/aashrafh/Mozart/tree/main
https://github.com/werckme/werckmeister

Unit Testing and Verification

Web App

● Scanning sheet music
○ Music should be scanned in < 2

minutes
○ Result should be 96% similar
○ Compare to existing MIDI data

● Unit tests to test basic functionality of the
frontend and backend

Timing Algorithm

● Calibrate with template event lists
○ Use MIDI files to simulate “perfect”

timing
○ Edit recordings to delay to more than 30

mS to ensure timing detection
○ Make sure there is no data blocking if

there is an error from either FPGA or
sheet music with unit tests

○ Ensure that playing the same audio
twice results in the same feedback
output

Unit Testing and Verification (Continued)

Hardware and Audio Processing

● Calibrate with pre-recorded audio files
○ Known timing, pitch, number of notes
○ Aim for 95% transcribing accuracy
○ Compare expected timing and note

quantity
○ Manually measure the delay (Audacity),

verify system aligns within 15mS
● Audio Filtering

○ Start with Isolated tracks
○ Change sound isolation (location) when

95% accuracy reached

Division of Labor

Mathias Aakash Ben

- Music Scanner & Web
Application

- Conversion Algorithm
- Device Integration

- Audio Processor
Hardware (FPGA)

- PCB Design

Schedule (Design Stages)

Stage 1: Designing and Basic Testing

- Using pre-recorded audio to calibrate

Stage 2: RTL Audio and some Feedback

- Existing MIDI, and live audio

Stage 3: Full Web-app and feedback

- PDF Scanning, live audio (MVP)

Schedule (Gantt Chart)

