\
R\

N W

3 \

NPT
LYy

~
AN

\\
[Ir‘ \ 4

Use Case

e Rehearsal tool to improve timing between Q i
singer with pianist (or accompaniment)
o New Musicians
o Vocalist + Pianist pairs
e Most existing solutions can only measure Fhop R
performance of one musician
e ECE Areas:
o Signals & Systems
o Hardware Systems Q
o Software Systems

e eI

e GeONEERONNGEER RN .,

Requirement #1: Real Time feedback

Motivation:

System needs to provide feedback within a
timeframe that allows musicians to adjust

e 3

e 2
-
e 3

Sub Requirements:

Provide feedback within 30 millisecond
latency

Find position within piece with an
accuracy of £ 15 milliseconds
Feedback latency synchronized within +
15 milliseconds

&
\
R

b

L

VW RN, N

Requirement #2: Post Performance Feedback

Motivation:
Highlight trouble areas; show improvement over e

time

Sub Requirements:

- bedi wie und am Mor _ gen, noc
LG s 'i E E T ==
y, :{ J -'O‘J 1«0 - J = =¢
—y——t—_! I el i
| 5 o e Em———— E Sreswencsi o S o e

=> Highlight areas where musicians are out of
sync with accuracy within £ 15
milliseconds

=> Feedback should be available within 30
seconds after recording

s
5

Requirement #3: Web Application

Motivation:

Users need a way to receive and store |
feedback after each “run”

Sub Requirements:

=> Scan sheet music and convert to
audio format with 96% accuracy

-> Store historical data to mark
improvements

\/

B WL e . WSRO NN N e

.....
R

Technical Challenges g

How do we...

Accurately convert sheet music to an audio file format

Add feedback onto sheet music

|solate instruments when processing mixed audio on a FPGA
Algorithmically measure synchronicity between the pianist and singer
What bounds do we set for margin of error between our 3 data points
Account for musicality

e e NN NN

Solution Approach (High Level)

e \Web Application scans in sheet m*

music which is converted to a
machine readable format T""”Q Da‘a

e Sheet music data is sent to timing
algorithm

e FPGA then sends audio data to the
timing algorithm

e The timing algorithm determines
synchronicity and sends it to the
LEDS and Web App

Solution Approach
Software: Hardware:
=> Flask web application for backend - FPGA for RTL audio processing
=> Mozart and Werckmeister for -=> PCB for stoplight array
sheet music to audio conversion => (2) Cardioid condenser microphones

=> Raspberry Pi
€ Comparing events lists
€ Generating feedback (timing)
data

https://github.com/aashrafh/Mozart/tree/main
https://github.com/werckme/werckmeister

Unit Testing and Verification

Web App Timing Algorithm
e Scanning sheet music e (Calibrate with template event lists
o Music should be scanned in < 2 o Use MIDI files to simulate “perfect”
minutes timing
o Result should be 96% similar o Edit recordings to delay to more than 30

mS to ensure timing detection

o Make sure there is no data blocking if
there is an error from either FPGA or
sheet music with unit tests

o Ensure that playing the same audio
twice results in the same feedback
output

o Compare to existing MIDI data
e Unit tests to test basic functionality of the
frontend and backend

-

Pre-existing
Mid

= Compare
Results

Generated
Midi

Sheet Music

Y

K 4 Y &7

\/

Unit Testing and Verification (Continued)

Hardware and Audio Processing

e Calibrate with pre-recorded audio files
o Known timing, pitch, number of notes
o Aim for 95% transcribing accuracy
o Compare expected timing and note
quantity
o Manually measure the delay (Audacity),
verify system aligns within 15mS
e Audio Filtering
o Start with Isolated tracks
o Change sound isolation (location) when
95% accuracy reached

Isolated Audio Tracks

.

Shared Space

"l (Acoustically Dampened)

.

h 4

Any Space

h 4

A

Y

Viahakis Recording Studio

HOA 227

Weigand Gym

2 0] (0N

A0 0N

Y

L)
s

D

Division of Labor

Mathias Aakash Ben
- Music Scanner & Web - Conversion Algorithm - Audio Processor
Application - Device Integration Hardware (FPGA)

- PCB Design

:
N

D

Schedule (Design Stages)

Stage 1: Designing and Basic Testing
- Using pre-recorded audio to calibrate
Stage 2: RTL Audio and some Feedback
- Existing MIDI, and live audio
Stage 3: Full Web-app and feedback
- PDF Scanning, live audio (MVP)

Stage 1

Stage 2

Pre Existing Midi

Stage 3

A 4

Pre Existing Midi

In-Sync(No feeback)

A 4

Midi From Sheet
Music

A

In-Sync(Piped
feedback)

v

Pre-Recorded Audio

Live Audio

In-Sync(Real-Time
Feedback)

Live Audio

EGRA Y A o

\/

SR S W N\ R W 8
Schedule (Gantt Chart)

0812024 /152024 92212024 9202024 10/6/2024 101132024 1012012024 1012772024 132024 11102024 111712024 11/2412024 121172024 121812024
Task Week 4 Week 5 joek & k10 Week 11 Week 14 15

Deliverables.

Abstract

Website Setup

Design Presentation Sides.
Design Presentation

ign Document
Ethic Assignment
Interim Demo
Final Presentation Sides
Final Presentation Sides
End of Semester Deliverables.
Music Scanner & Application
Research Proposed Scanning methods.
Setup application skeloton
Implement basic frontend
Initial Sheet Music to tex! implementation
Sheet Music to audio implementation
Test and Improve issues with scanning
Implement REST APIs for backend
Polish user interface

Research FPGA Options and Choose Platform

Research and Design (No RTL)

Record Live Audio

Generate Event List Package (Desig

Audio Fitering and solation
Integration Testing

Implement RTL

Siack

Conversion Algorithm

Acquire and setup Raspberry Pi

Sound Recording and Data Analysis.

Begin identiying or

Add sheet music data to algorithm

Integrate stoplight system
Send data back to web app for post performance feedback
algorithm with more complex and faster pleces

Testing and Integration
Setup communication pipeline from P to FPGA
Setup communication pipeline from app to algorithm
Create testing audio files

S Music testing

