Use Case

Our aim is to create a boxing game played using computer vision to detect human movements as a
control scheme. Handheld controllers and VR headsets are often bulky and unwieldy, so we aim to
incorporate computer vision to create a less restrictive and more immersive gaming experience, while
providing exercise for users. Our target audience will be gamers and people who enjoy
boxing/exercise.

3 components:

Computer Vision Pipeline (Mediapipe/Python/Unity scripts), Taiming
Video Game (Unity), Shithe

Haptic Feedback Device (Arduino/PCB wristband), Eric

Quantitative Design Requirements

Hardware

Overall design must not be too large/heavy to not impede movement (<100g)

Haptic feedback produced must be noticeable and have different, clearly distinguishable levels
Battery must sustain arduino/motor setup for reasonable amount of time (>20 min)

Wireless communication within reasonable distance (3 meters)

Computer Vision Pipeline

Low latency(<=50 ms response time between user movement and movement being displayed on
screen)

High accuracy(80% accuracy in matching the real-world gestures with Unity avatars over 5
frames.)

Good stability(smooth real-time gesture mapping with minimal fluctuation)

Video Game

High-frame rate, >= 40 FPS on average, no sudden drops in frame rate
Low Latency, <= 50 ms between human movement and movement displayed on screen
Loading time of at most 45 seconds for any required load screens

Overall

Low latency for entire system (<= 100 ms between human movement and haptic feedback)

Solution Approach

Python Important Update:

MediaPipe

Send signal to vibrate

ERM Motor through F;/mon Bleak
Pose Detection

Quaternion Conversion replaced
Transrit lndmerk the naive 3D Coordinate
' Mapping to ensure smooth and
- accurate mapping free of
Camera DisplayDafa ;acm Host ‘ diStO rtions
T : Unity

Open UDP Sockect Open UDP Sockect

Format Coordinate

Transmit signal to Receive landmark
brate data
Collision Detection yora appIng muscies & Setngs
PClLaptop m o . ;
w. Webcam . N 2 5 A :
“Video-Game Gi s Place Character Into Convert Coordinate) <parid “‘Jk \
1 Game Environment Data to Quaternions o } 2 \.
With Game Logic to Drive Game S v "
Character * S |e
<l
AL Y’ v 8 e B
e\ ‘
Newly . Body
Updated ot

| |
Physical Wireless Software
Connection Connection Connection

| | W

Complete Solution

Video game demo where user is able to move around in environment and
throw punches, while receiving haptic feedback

“Fight” against enemy Al, hitting each other until either player wins or loses,
depending on whose health goes to zero first

Test, Verification, Validation - (Watch)

e Weight Test - Weigh watch to determine weight, with and without battery
o Target: 100 g, on par with average watch

e Vibration Test - test vibration capabilities, determine if noticeable and if
distinct levels can be felt

o Target: 2 distinct levels of vibration, for player punch connecting and enemy punch
connecting

e Power Test - Measure power consumption of watch in two ways, while idle

and while vibrating to determine minimum and maximum power consumption

o Target: 1.2 A, this would provide us with 20 minutes of continuous operation for a
400 mAh battery

e Distance Test - Measure maximum connectivity distance of bluetooth
o Target: 3 meters, which is the amount of space we aim to use for our game
e Ping Test - Measure delay between bluetooth signal being sent by Python and
after received by Arduino, using Python time library
o Target: 30 ms

Test, Verification, Validation - (Watch)

Results
Test Target Results
Weight 100 g 53 g
Vibration 2 distinct levels 2 distinct levels
Power 1.2A Min: 50 mA
Max: 77 mA
Distance 3m 20+ m
Ping 30 ms 22 ms

Test, Verification, Validation - (Computer Vision)

e Accuracy Test

(@)

Target Accuracy is 80%, which means in five consecutive n*20ms timestamps, 80 %
of the ground truth-to-game avatar mappings should have less than 10 degrees
difference in each joint angles.

Ground truth data are obtained by measuring arm rotation angles from three views
(front, side, top).

Chosen over 3D inference due to hardware limitations (The latter requires a depth
camera.)

The views above cover 4 D.O.Fs of the human arm and 2 perspectives.

Test, Verification, Validation - (Computer Vision)

e Accuracy Test
o Game Avatar data are obtained by projecting 3D transformations to x, z, and x plane
(corresponding to each view) and extraction rotational values.
o Thetestisrepeated five times for User 1 (height: 1.73m (5’'8”); arm length: 1.74m)
and User 2(height: 1.62m (5'4”); arm length: 1.65m)

Front View | Side View Top View
al 92% 86% 73% Only Top View
a2 3% | Nm 6% Miciapipes imitaton
B1 89% 83% 67% on depth estimation
B2 91% N/A 65%
Total 92.5% 84.5%

Mapping Accuracy Result (Target: 80%)

Test, Verification, Validation - (Video Game)

Passing = Higher than 40 FPS average with no sudden frame drops far below that target.
Tested FPS through the use of Unity’s built in statistics.
Result: Passed with min average FPS of 50 on lower end laptop, Max 250 on desktop
2. Passing = Low Latency with <= 50 ms between human movement and movement in video
game.
Result: Passed with 35 ms ping between computer vision and unity scripts
3. Passing = 100% Accurate hit detection in game with dynamic damage calculation
depending on where is hit
Result: Passed with damage detection working properly

1% Play Focused ~ &% ' E8 Stats Gi2

Statistics
Audio:
Level: -74.8 dB DSP load: 0.1%
Clipping: 0.0% Stream load: 0.0%
Graphics: |250.9FPS (4.0ms) |

CPU: main 4.0ms render thread 1.9ms
Batches: 147 Saved by batching: 0
Tris: 24.9k Verts: 46.4k

Screen: 706x525 - 4.2 MB

SetPass calls: 26 Shadow casters: 90
Visible skinned meshes: 28

Animation components playing: 0

Animator components playing: 2

DeSig N Tra d e—OffS Calman Filtered:

Smoother at the cost
of a 600ms latency!

e Smoothing: Lerp (Linear Interpolation) VS. Calman Filter
o Lerp transitions between two values (in our case, the target (next
UDP received set of coordinates) and the current set of coordinates) » >
over time by blending a fraction of the target value into the current
value, ensuring smooth transitions between poses rather than
snapping to the target positions immediately.
Lerp(a,b,t) = (1 —t)a + tb Lerped:
Fast,

o The Kalman filter is a mathematical algorithm that estimates the but less smoother

true state of a system by combining noisy measurements and
predictions based on system dynamics.
o Lerp Pros: Simple to implement, Computationally Efficient; -
Cons: No noise handling, Constant smoothing rate (Introducing J
lag for fast-changing data
Calman Filter Pros: Noise Robustness, Predictive Power;
Cons: Computationally intensive, Higher Latency

Design Trade-offs

e Lerp (Linear Interpolation) Internal Trade-off

for (int i = 0; i < pred3d.Count; i++)

{

pred3dCurrent[i] = Vector3.Lerp(pred3dCurrent[i], pred3d[i], Time.deltaTime x MULTIPLIER);

}

pred3dCurrent[i] starts at the current position of the joint.
pred3d[i] is the new position detected by the pose detection system for that joint.
Vector3.Lerp moves pred3dCurrentli] closer to pred3d[i] based on a smoothing factor (Time.deltaTime * MULTIPLIER).

High Time.deltaTime reduces latency by speeding up the lerping process, but it compromises smoothness
by making transitions abrupt.

Large MULTIPLIER -> Smaller latency BUT worse smoothing performance

Small MULTIPLIER -> Better smoothing performance BUT larger latency

Project Management / Next Steps

[STE S RILIE Computer Vision Boxing

DEVELOPMENT DEBUGGING TESTING
10f7 10/14 10/21
M/ TWRFMTWRFMTWRFMTWREFMTWR F M T/ WR FMTWRF

PCT OF TASK
TASK TITLE TASK OWNER DURATION COMPLETE

Project Conception and Initiation

Interim Demo Al 10/23/24 | 11/18/24 100.00%
Final Presentation Slides Al 1/19/24 | 1201)24 100.00%
Poster PDF Al 12/x/24 0.00%
Final Youtube Video w Wordpress Link Al 12/x/24 0.00%
Public Demo Al 12/x/24 0.00%
Final Report Al 12/x/24 0.00%
Project Implementation

Computer Vision Research Eric 9/9/24 9/15/24 100.00%
Game Design Research/Brainstorming Shithe, Taiming | 9/26/24 | 10/20/24 100.00%

Game Creation - Game Logic Shithe, Taiming | 10/13/24 | 10/18/24 100.00%

Game Creation - CV Integration Taiming 0/a/24 | 10/23/24 100.00%
Game Creation - CV Tuning Taiming 122 | 12fl24 0.00%

Game Creation - Graphics Shithe ol30/24 | 1018124 100.00%
Game Creation - Debugging/Polish Shithe, Taiming | 10/7/24 | 10/28/24 100.00%

Game Creation - Switching Character
Models Shithe,Taiming | 12/2/24 | 12/9/24 0.00%

Hardware - Research Eric ol6l24 | 9l22l24 100.00%
Hardware - PCB Design Eric ol23/24 | ol29l24 100.00%
Hardware - Parts Turnaround Eric 9ol24 | 10/14/24 100.00%
Hardware - Assembly Eric 10/14/24 | 10/18/24 100.00%
Hardware - Arduino Code Eric 10/23/24 | 10/25/24 100.00%
Hardware - Debugging Eric 10/2824 | /1524 100.00%
Hardware - Testing Eric 11/18/24 | 11/29/24 100.00%
Integration - Beta Testing Al 1202024 | 1209024 0.00%

Integration - Alpha Testing Al 11/23/24 | 12715024 80.00%

