
Use Case
Our aim is to create a boxing game played using computer vision to detect human movements as a
control scheme. Handheld controllers and VR headsets are often bulky and unwieldy, so we aim to
incorporate computer vision to create a less restrictive and more immersive gaming experience, while
providing exercise for users. Our target audience will be gamers and people who enjoy
boxing/exercise.

3 components:
Computer Vision Pipeline (Mediapipe/Python/Unity scripts), Taiming
Video Game (Unity), Shithe
Haptic Feedback Device (Arduino/PCB wristband), Eric

Quantitative Design Requirements
Hardware

● Overall design must not be too large/heavy to not impede movement (<100g)
● Haptic feedback produced must be noticeable and have different, clearly distinguishable levels
● Battery must sustain arduino/motor setup for reasonable amount of time (>20 min)
● Wireless communication within reasonable distance (3 meters)

Computer Vision Pipeline

● Low latency(<=50 ms response time between user movement and movement being displayed on
screen)

● High accuracy(80% accuracy in matching the real-world gestures with Unity avatars over 5
frames.)

● Good stability(smooth real-time gesture mapping with minimal fluctuation)

Video Game

● High-frame rate, >= 40 FPS on average, no sudden drops in frame rate
● Low Latency, <= 50 ms between human movement and movement displayed on screen
● Loading time of at most 45 seconds for any required load screens

Overall

● Low latency for entire system (<= 100 ms between human movement and haptic feedback)

Solution Approach

Important Update:

Quaternion Conversion replaced
the naive 3D Coordinate
Mapping to ensure smooth and
accurate mapping free of
distortions

Complete Solution
● Video game demo where user is able to move around in environment and

throw punches, while receiving haptic feedback

● “Fight” against enemy AI, hitting each other until either player wins or loses,

depending on whose health goes to zero first

Test, Verification, Validation - (Watch)
● Weight Test - Weigh watch to determine weight, with and without battery

○ Target: 100 g, on par with average watch

● Vibration Test - test vibration capabilities, determine if noticeable and if

distinct levels can be felt
○ Target: 2 distinct levels of vibration, for player punch connecting and enemy punch

connecting

● Power Test - Measure power consumption of watch in two ways, while idle

and while vibrating to determine minimum and maximum power consumption
○ Target: 1.2 A, this would provide us with 20 minutes of continuous operation for a

400 mAh battery

● Distance Test - Measure maximum connectivity distance of bluetooth
○ Target: 3 meters, which is the amount of space we aim to use for our game

● Ping Test - Measure delay between bluetooth signal being sent by Python and

after received by Arduino, using Python time library

○ Target: 30 ms

Test, Verification, Validation - (Watch)
Results

Test Target Results

Weight 100 g 53 g

Vibration 2 distinct levels 2 distinct levels

Power 1.2 A Min: 50 mA
Max: 77 mA

Distance 3 m 20+ m

Ping 30 ms 22 ms

Test, Verification, Validation - (Computer Vision)

● Accuracy Test
○ Target Accuracy is 80%, which means in five consecutive n*20ms timestamps, 80 %

of the ground truth-to-game avatar mappings should have less than 10 degrees

difference in each joint angles.

○ Ground truth data are obtained by measuring arm rotation angles from three views

(front, side, top).

○ Chosen over 3D inference due to hardware limitations (The latter requires a depth

camera.)

The views above cover 4 D.O.Fs of the human arm and 2 perspectives.

Test, Verification, Validation - (Computer Vision)
● Accuracy Test

○ Game Avatar data are obtained by projecting 3D transformations to x, z, and x plane

(corresponding to each view) and extraction rotational values.

○ The test is repeated five times for User 1 (height: 1.73m (5’8’’); arm length: 1.74m)

and User 2(height: 1.62m (5’4’’); arm length: 1.65m)

Front View Side View Top View

α1 92% 86% 73%

α2 93% N/A 76%

β1 89% 83% 67%

β2 91% N/A 65%

Total 92.5% 84.5% 70.25%

Only Top View

underperforms due to

MediaPipe’s limitation

on depth estimation

Mapping Accuracy Result (Target: 80%)

Test, Verification, Validation - (Video Game)

1. Passing = Higher than 40 FPS average with no sudden frame drops far below that target.

Tested FPS through the use of Unity’s built in statistics.

Result: Passed with min average FPS of 50 on lower end laptop, Max 250 on desktop

2. Passing = Low Latency with <= 50 ms between human movement and movement in video

game.

Result: Passed with 35 ms ping between computer vision and unity scripts

3. Passing = 100% Accurate hit detection in game with dynamic damage calculation

depending on where is hit

Result: Passed with damage detection working properly

Design Trade-offs

● Smoothing: Lerp (Linear Interpolation) VS. Calman Filter
○ Lerp transitions between two values (in our case, the target (next

UDP received set of coordinates) and the current set of coordinates)

over time by blending a fraction of the target value into the current

value, ensuring smooth transitions between poses rather than

snapping to the target positions immediately.

○ The Kalman filter is a mathematical algorithm that estimates the

true state of a system by combining noisy measurements and

predictions based on system dynamics.

○ Lerp Pros: Simple to implement, Computationally Efficient;

○ Cons: No noise handling, Constant smoothing rate (Introducing

lag for fast-changing data

○ Calman Filter Pros: Noise Robustness, Predictive Power;

○ Cons: Computationally intensive, Higher Latency

Calman Filtered:
Smoother at the cost
of a 600ms latency!

Lerped:
Fast,
but less smoother.

Design Trade-offs

● Lerp (Linear Interpolation) Internal Trade-off

○ pred3dCurrent[i] starts at the current position of the joint.

○ pred3d[i] is the new position detected by the pose detection system for that joint.

○ Vector3.Lerp moves pred3dCurrent[i] closer to pred3d[i] based on a smoothing factor (Time.deltaTime * MULTIPLIER).

High Time.deltaTime reduces latency by speeding up the lerping process, but it compromises smoothness
by making transitions abrupt.

Large MULTIPLIER -> Smaller latency BUT worse smoothing performance

Small MULTIPLIER -> Better smoothing performance BUT larger latency

Project Management / Next Steps

