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Forget-Me-Not seeks to help users track and find commonly 

misplaced items indoors. It accomplishes this using a Raspberry Pi 
with an attached camera to periodically record pictures of a room, 
run an ML object detection model on the image, and store the 
results such that they can be searched using a Web App, or a 
microphone voice assistant. We sought to achieve 80% object 
detection accuracy within a 10x10 ft room under well-lit 
conditions. Our testing showed that we achieved 75% accuracy 
onboard the Raspberry Pi (YOLO) and an 83% accuracy when 
running a larger model on the cloud (Grounding DINO) for 
predefined objects. We were successfully able to add new objects 
to the model as well.   
 
Index Terms—Camera-based tracking, computer vision, object 
detection, object tracking, Raspberry Pi, real-time location, 
YOLO, machine learning, indoor environments 
 

I. INTRODUCTION 

The “Forget-Me-Not” system addresses the common 
problem of misplacing everyday household items such as keys, 
wallets, and remote controls in indoor environments. The 
primary use case is for families, students, and forgetful 
individuals who often lose track of these items due to busy 
schedules or shared living spaces. Searching for lost objects can 
be frustrating and time-consuming, particularly when people 
are in a rush or trying to manage multiple tasks.  
    Existing solutions have several limitations. For example, 
Bluetooth trackers are often inconvenient because they require 
physical attachment to each item, and have a difficult time 
providing exact location data, all while being too expensive to 
use for all but a few items. Similar complaints can be said about 
GPS trackers or AirTags, which cost a starting $30 per tag. 
What sets Forget-Me-Not apart from thse other technologies is 
that it does not require attaching any physical tags to your items. 
Instead, it relies on advanced machine learning models, like 
YOLOv11 and Grounding DINO, to visually detect objects in 
real-time using a Raspberry Pi camera. Our approach is non-
intrusive, works in the background, and leverages a secure web 
application or voice assistant for user interaction, making it 
both convenient and scalable.  
   By focusing on user-centric design and leveraging state-of-
the-art AI models, our project aspires to provide a practical and 
reliable solution to a common daily problem. 

II. USE-CASE REQUIREMENTS 
We have determined that Forget-Me-Not must meet several 

of the following critical requirements to effectively meet the 
needs of our envisioned customers. 

Our first requirement concerns the capabilities that our 
system should have. Firstly, we would like our system to be able 
to take photographs of the user’s room at a rate of 1 image every 
5 seconds. This would be necessary as we would believe giving 
the user the opportunity to see a photo of their room in a state 
where their object was last seen would be conducive to helping 
find an object.  
    Secondly, our system should provide the user the capability 
to query the system, both through a “voice assistant” frontend 
and a visual frontend. We believe that both are necessary, as the 
voice assistant would provide the user a means to query the 
system if they have lost the device they are looking for, and the 
visual frontend would assist in the case that the model is not 
completely accurate, or the object to be found was the second-
to-last seen version of said object. Each of the frontends have 
unique constraints that help make the user interaction with our 
system more efficient.  
   The audio frontend, we think it would be reasonable for it 
to take 30 seconds between speaking a query and receiving a 
result. This time was chosen because in most cases, finding an 
object on your own should take more than 30 seconds. This 
statement is corroborated with calculations based on data found 
on the “Lostings Lost and Found Statistics” [1] webpage. This 
page claims that the average person spends 2.5 days per year 
searching for lost objects, and that the average person can lose 
up to 9 items per day. With some calculations, as shown below, 
we arrive at the very conservative estimate that 
 

 
 
1.096 min/object spent searching on a given day. If we could 
cut this number in half, it could save the user lots of time in the 
long run. 
   For the web frontend, we would like to ensure that the user 
receives the answer for a query in 10 seconds. This is because 
according to Uptrends, user attention suffers if a webpage is 
stuck loading for more than 10 seconds [2]. 
   For both frontends, we would like to ensure that our system 
returns queries based on data that is at most 30 seconds old. 
According to the National Library of Medicine, short-term 
memory lasts for 30 seconds [3].  
   Regarding our model, we have determined that the system 
needs to achieve at least 80% accuracy in detecting and 
identifying predefined objects within a 10x10 ft room under 
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well-lit conditions (≥3000 lumens per square foot). We have 
chosen these numbers because we believe it is reasonable for 
our tool to miss 1/5 voice queries and still leave users satisfied, 
and because we believe the area and lighting constraints provide 
a reasonable environment for which it would be nontrivial for 
users to remember which objects were always present. 
Additionally, if the object is not initially found, we believe it is 
reasonable for the users to find the unsuccessfully queried 
objects by themselves. The intention of our system is to provide 
support in day-to-day life, and not necessarily be a tool to help 
forgetful dementia patients in life-or-death situations. As with 
any system, we cannot promise a 100% accuracy due to 
limitations of existing technologies.  
   For our objects, we are choosing to initially support finding 
phones, wallets, keys, as they are the most commonly lost 
objects according to the “Lostings Lost and Found Statistics” 
webpage [1]. We also intend to add pencils, pens and markers 
to the list of objects identify as a proof of concept of the fact 
that our search domain can be expanded based on user 
preference. Even more objects may be added in the future. 
   Additionally, we have chosen cost constraints which dictate 
that the hardware setup should not exceed $300, while cloud 
services for continuous usage should be kept under $40 per user 
per month. These numbers account for 3 hardware setups across 
a 2-bedroom house. We based these numbers off security.org’s 
SimpliSafe, an existing product which charges between $250 
and $730 for the hardware, and $32/month as a monthly 
subscription. As this is a successful product, we have reason to  
believe people will buy our product for similar prices [4]. 
   Lastly, privacy is a priority, meaning that access to the 
system must be restricted to authorized users on authenticated 
local devices. These requirements are designed to create a 
system that is both accurate and cost-effective, while 
maintaining a focus on user privacy and efficiency. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
   From a software standpoint, our high-level system 
architecture involves 4 components. An “image capture” 
python script, a “sound capture” python script, our webserver, 
and our “external compute” server. The “image capture” python 
script’s job is to periodically capture pictures of the room, and 
send them to our webserver for processing. The “sound 
capture” python script’s job is to continuously send microphone 
input to our webserver for processing. The webserver’s job is 
to accept requests from our “sensor” scripts, do the necessary 
processing on the desired inputs, and to make the processed data 
available to the user through other HTTP endpoints. One way 
that this is done is by serving the that users use to interact with 
our data. Our “external compute” server exists because the 
Raspberry Pi’s computing power is too limited for some of the 
tasks we expect of it (especially from a latency standpoint). As 
such, the “external compute” server provides http endpoints 
which perform the necessary high-compute tasks, and return the 
value back to the user. 
 
   Some of the logic used within the web server is itself 
interesting, so we will go into greater detail regarding them. In 
particular, we would like to give paranoid users the choice to 

run a working system without ever having to invoke the 
“external compute server”. Our system can be configured to use 
“Local mode” by changing a simple setting. The exact 
semantics of what is done in “local mode” will be covered in 
the “System Implementation” section. 
 

The hardware for our project primarily exists in the form of 
providing all of the necessary hardware functionality in a 
convenient package. As can be seen in Figure 4, we have a 
Raspberry pi case to hold the Raspberry Pi, a “camera 
direction” subsystem, which holds the camera in place, can be 
mounted to a wall or lamp post, and can be angled to point in 
whatever direction best shows the room the system will take 
images of.  
 

When interacting with the system the users have two 
interfaces, a web interface and a voice interface.  The website 
provides a user-friendly interface designed to help users 
efficiently interact with the Forget-Me-Not object-tracking 
system. Each page has been carefully structured to deliver a 
seamless and intuitive experience, ensuring users can quickly 
navigate through the platform’s features. The first interaction 
begins with the Login Page, where users provide their 
credentials to access the system. For new users, the Create an 
Account Page enables them to register by entering their desired 
username and password. Validation ensures secure and accurate 
submissions.  

Fig 1: Home Page, Create an Account Page, Login Page 
Once logged in, users land on the Homepage, which acts as 

the main control center. The homepage features a prominent 
search bar at the top, allowing users to type in the name of an 
object they wish to locate. Along the left panel, a categorized 
list of all tracked objects in the database is displayed, enabling 
users to select an item directly without needing to search. This 
organization ensures that frequently searched objects are 
always within easy reach. When a user initiates a search, the 
main screen dynamically updates to display the most recent 
image of the object’s location, along with the time and date it 
was last detected. On the right panel, a scrollable history of 
previous sightings is displayed, showing thumbnail images and 



18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024 
 

3 

timestamps of earlier detections. This allows users to trace the 
object’s movements and explore its location history manually. 

Fig 2: Main Page 
For hands-free operation, users can switch to the Audio 

Interface by clicking the microphone button located 
prominently on the page. This opens a dedicated audio-query 
page featuring a sleek wave animation to visually represent the 
live audio input. Below the wave animation, the system displays 
a transcription of the user’s query and the system’s response, 
ensuring clarity in communication. The interface is designed to 
provide a modern, interactive feel while maintaining 
accessibility.  

Fig 3: Audio Query Page 
A consistent navigation bar at the top allows users to switch 

between pages easily, such as logging out or accessing account 
settings. The system’s layout is logical and user-focused, with 
attention to detail that ensures all features are easily accessible. 

The voice interface operates much like a home assistant. Our 
“sound capture” script uses the microphone to listen to its 
surroundings and send the data to our webserver. When the 
webserver converts the query to text, and hears the words, “Hey 
John, <User’s question>”, the webserver will run the user’s 
question through our query processing pipeline. Once the query 
is finished processing, the user will hear a response, explaining 
the found object’s location through our system’s speakers. 

There are a few significant differences between our current 
system architecture, and what we planned out for our design 
report. Primarily, we have abandoned the idea of hosting our 
service purely in the cloud. One of our main advantages is that 
we store all user information locally, and we have determined 
that having a cloud backend will require substantially higher 
development costs, to the point where we are no longer 
pursuing it. 

Additionally, we have added an “external compute” server. 
As some of our planned functionality would have prohibitively 
high latency when executed on a raspberry pi, we decided to 
create a server which can be run on a more powerful computer, 
which can do more of the heavy lifting for us. 

Our design process used key engineering principles that 
combines modular design and abstraction. The system was 
broken into smaller components, including image capture, 
processing, querying, and storage, ensuring that each could be 
developed, tested, and refined independently. We used the 
principle of efficiency optimization and balanced it with the 
need for privacy. These guided our design and implementation 
decisions, such as incorporating YOLO for lightweight object 
detection on edge devices and offloading computationally 
intensive Grounding DINO to a high-performance server. The 
integration of Docker containers allowed for portable and 
consistent deployment across devices. Furthermore, systems 
engineering practices, such as feedback loops (e.g., MSE 
threshold filtering to avoid redundant computations), were 
applied to optimize resource utilization. Finally, user-centric 
design principles shaped the web and voice interfaces to ensure 
intuitive interactions. 

Scientific principles that were employed included concepts 
from computer vision, machine learning, and natural language 
processing. This includes those related to feature extraction and 
bounding box detection, to recognize objects in images, and 
probabilistic frameworks to process the images. Our project 
was grounded in mathematical principles, particularly linear 
algebra and probability. Linear algebra was critical for object 
detection models, where operations like matrix multiplications 
underpinned convolutional layers in YOLO and Grounding 
DINO. Probability and statistics were integral for training the 
ML models, calculating object detection confidence scores, and 
evaluating performance metrics like mAP (mean Average 
Precision). Additionally, cosine similarity, a core concept in 
vector mathematics, was employed for matching user queries 
with stored object names in the database. Thresholding based 
on Mean Squared Error (MSE) involved basic statistical 
measures to identify significant changes between consecutive 
frames.  

Another addition to our system is a CAD model designed to 
be put up on a wall that has two pivot points that allow for 
greater freedom in the degree of motion. It also has the option 
of customizing it using different arm lengths to account for any 
further customizations needed.  

Fig 4. CAD print camera holder
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Fig 5: Original block diagram for implementation 

 

 
 

Fig 6: New block diagram for implementation
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I. DESIGN REQUIREMENTS 
The system's design requirements are primarily driven by 

the use case of tracking and identifying misplaced objects in 
indoor environments, and they can be categorized into 
Hardware latency, price, and privacy constraints. 
 

A. Hardware Constraints 
The system requires cameras with a resolution of 1080p to 

ensure that the objects are captured in sufficient detail for 
accurate detection. This resolution strikes a balance between 
providing clear images and managing data size for processing. 
The cameras need to capture images every 5 seconds to 
maintain up-to-date information on object locations without 
overburdening the system’s processing capabilities. Notably, it 
took one of our group members 5 seconds to slowly walk across 
their room, meaning our system should reasonably capture any 
instance where an object is briefly placed, before being picked 
up and transported again. Additionally, each camera must have 
a field of view (FOV) of 40 degrees to ensure adequate 
coverage of the room. While this FOV might seem narrow, it 
helps the system focus on specific areas and reduces image 
distortion from the fisheye effect, optimizing object detection. 

 
B. Latency Constraints 
To ensure real-time operation, the system must meet specific 

latency targets. For the “Monitor” workflow, which involves 
capturing and processing images, preprocessing the image data 
must occur within 1 second, while object detection through 
machine learning models should take 5 seconds. The webserver 
“ping” latency should be within 1 second, and the entire 
process, including database writing and cross-component 
latencies, should be complete within 13 seconds, ensuring that 
the system remains responsive.  

We chose these values because they seemed like reasonable 
targets for each of our subsystems. Ultimately, what matters is 
the performance of our whole pipeline, since that is what is 
ultilately observable by the end user. These requirements serve 
more as general guidelines than necessarily hard and fast rules. 
Even then, it is still useful to compartmentalize latency goals, 
to give individuals working on the project a more concrete 
target to aim for. Our object detection latency will realistically 
take the most time out of our full pipeline. Given that the 
inference frameworks we have easy access to are largely single-
core, and we want to be able to take a picture every 5 seconds, 
it seems reasonable to require that object detection takes 5 
seconds. This generates an additional implicit hardware 
requirement where given that a 1080p image has 2 million 
pixels, and an estimate that we should be using ~500 
instructions per pixel of processing power on the original 
image, our processor should be able to support 2MFLOPS. 

 Regarding our database latency, our end querying from the 
user will require at least a 2 calls from the database, one to get 
the URLs associated with an image, and a second to retrieve the 
image (regardlesss of architecture). Given our desired end-to-
end time of 10 seconds 5 seconds seemed like a good choice. 
Additionally, by pinging google.com, we can assume that a 
relatively “normal” ping is somewhere around 20-100ms, 
which should fit within our 1 second margin unless there are 
issues with the system.  

For the “Query” workflow, which is responsible for 
providing users with information about the location of objects, 
speech-to-text processing should take no more than 10 seconds 
(it will also occupy a large portion of our runtime), followed by 
the webserver ping latency, which should take less than 1 
second. Next, we list that the database read latency should 
require less than 5 seconds, leaving 10 seconds for an additional 
processing we would like to do using LLMs. The total latency 
for a query response should not exceed 30 seconds, allowing 
users to quickly find misplaced items. The rationale for this was 
discussed above. 

 
C. Privacy 
One of our system’s main selling points is that users can run 

a self-contained system without needing to share private 
information with the outside world. As such, we require that at 
the very least, our users are able to run some version of the 
system (minimum object detection, one querying pipeline) 
completely locally. If anything is not run locally, we should 
guarantee that no private image is ever persistently stored off of 
the Raspberry Pi. 

 

II. DESIGN TRADE STUDIES 

A. SQLite3 database selection 
Multiple database types were tested to determine the type 

of database we would use to maximize performance. Even 
though this wasn’t the bottleneck of our system, it helps us 
understand and justify the use of the SQLite database for high 
frequency writes and updates.  

Fig. 7 1000 INSERT operations across the different database types 

For 1000 inserts, SQLite 3 performs better than PostgreSQL 
(0.223s vs. 4.373s) but is slightly slower than MySQL 
(0.114s). SQLite still provides consistent and reliable 
performance. 
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Fig. 8 2000 INSERT operations done in 1 transaction across the different 
database types 

   For 20,000 inserts in one transaction, SQLite 3 significantly 
outperforms PostgreSQL (0.757s vs. 4.900s) and is only 
marginally slower than MySQL (2.184s).  This demonstrates 
SQLite’s efficiency in handling batch operations when 
transactions are optimized. 

Fig. 9 1000 UPDATE operations across the different database types 

SQLite 3 outperforms the other database types 1000 
updates, completing the operation in just 0.638 seconds 
compared to PostgreSQL and MySQL, which take 1.739s 
and 8.410s, respectively. This makes SQLite a strong 
candidate for applications requiring frequent modifications 
to the data. 

Based on this preliminary testing, along with the fact that 
SQLite operates without the need for a dedicated server 
process. This is ideal for resource-constrained environments 
like the Raspberry Pi, which has limited computational 
power and memory if we were to store it on the Pi. Since it 
is serverless, it requires no additional setup or maintenance 
unlike the other databases. This aligns perfectly with the 
project’s design goals of simplicity and minimal overhead. 
For a system storing images’ metadata, the data volume is 
likely not enormous. SQLite is optimized for smaller-scale 
databases and offers quick access without the complexity of 
managing a full-fledged database system. SQLite 3 was 
chosen for its lightweight, serverless architecture and robust 
performance in operations critical to the system, such as 
updates, deletes, and efficient batch transactions. 

B. Model Selection 
Apart from having to select the model's name 
YOLO/Grounding DINO etc, there also had to be testing with 
various different parameters. These parameters included but 
were not limited to amount of augmentations for each training 
image, epochs, and the size of training dataset. Thus both 
Grounding DINO and YOLO were trained/evaluated in a 
couple dozen different ways with custom built 
Training/Validation scripts. In order to validate the pros and 
cons of every model there were 2 main metrics used: MAP-50 
and time to run. The former essentially takes care of assessing 
how good accuracy is while time just measures how long it 
takes to run each model. For the data below, we will show the 
direct comparisons for the models running on the GPU and 
Raspberry Pi. 
 

 
Fig. 10 GPU Metrics For MAP-50 vs  Time for inference 

Fig. 11 Rasp Pi Metrics For MAP-50 vs Time for inference 
 
 
So as one can see the larger and more accurate the model, the 
slower it is to run. Through the above charts we were able to 
see just how much slower. While larger YOLO models did 
indeed slow down significantly there were always at least 
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running at a speed within the same order of magnitude both on 
the GPU and Rasp Pi. GIven that there was not much to be 
gained from yolov11x vs l, it was decided to use yolov11l. 
Meanwhile the Grounding DINO model couldn’t run on the Pi 
taking over 30 minutes which would make it impossible to 
fulfill the design requirement of image processing in 25 
seconds. However, it could run the GPU and while it was a lot 
slower than all the YOLO models it was still fast enough that 
using it could be justified with it seeing almost 0.1 improvement 
over the next closest model in MAP50. 
 

 
 
In addition to inference speed being important, training time was 
too. With a larger number of epochs, the training time scaled 
linearly with epoch growth while the performance of the model 
started levelling off. Thus, it was chosen that the breadth of 
exploration of various training parameters were more important 
than the incremental gains from each additional epoch. Thus, 
training for grounding DINO was stopped at 12 epochs. Similar 
tradeoffs were done with each parameter for training and from that 
a rough approximation of the optimal model for both YOLO and 
Grounding DINO was obtained. 

III. SYSTEM IMPLEMENTATION 
A. Webserver 

As every software component interacts with the webserver in 
some way, it will be useful to first cover how it was 
implemented.  

The webserver was written in Python using Flask as its 
framework. Flask’s primary capability is that it allows us to 
specify python functions to behave as “HTTP endpoints”. In 
other words, when Flask receives a HTTP request, it sets up a 
global context with the contents of the request, and invokes the 
Python function which corresponds to the URL for that request.  

Using Flask’s built-in runtime by itself is not enough to 
guarantee properties that our system desires. As discussed 
previously, our webserver needs to have the ability to run both 
low-latency (website login, querying) tasks, and much longer-
running tasks (ML Obj. Det. Inference). Given that Flask’s 
default runtime is single threaded, short-running requests would 
get blocked behind long-running ones, unnecessarily increasing 
their latency. As such, we chose to run our Flask code with 
gunicorn. Gunicorn is a high-performance webserver that 
shares the Flask runtime’s ability to interact with Flask python 

code, but has the added ability to start up multiple worker 
processes. As such, so long as our webserver has at least 1 more 
worker process than there are long-running tasks, short-length 
tasks should be able to run without needless latency spikes.  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig X: Here is a diagram of how our webserver is laid out. Currently, the 
weberver is set up to run on the Raspberry Pi. 

 
Lastly, NGINX is in charge of directing HTTP requests to 

gunicorn. NGINX is a second webserver capable of load-
balancing requests between other servers. Our original idea was 
that using NGINX would allow us to balance requests between 
multiple gunicorn instances, allowing our previously proposed 
cloud implementation to be scalable. We no longer use this 
functionality, but as NGINX allows users to set up firewalls, we 
kept it in case we had time to dedicate towards additional 
security. 
 

Throughout the development of the webserver, most things 
went relatively straightforwardly (Though it certainly was time-
consuming). However, there were a few pivotal moments where 
we decided “change directions”. 

The first time was when we decided to pivot away from 
supporting a cloud backend and focus on our Raspberry Pi 
implementation. This decision arose from the fact that there 
seemed to be many concerns regarding the privacy of user data 
on the cloud. When considering the additional development 
cost involved with having privacy, scalability, and a cloud 
backend, all while still needing a hardware camera to record all 
of the necessary data, we decided to abandon the idea.  

The second time came when after our interim demo, when 
the reviewers were thoroughly unimpressed with the 
performance of our local object detection model in a few 
specific scenarios. Because of this, we realized the importance 
of having as good of an object detection model as possible. At 
this point a group member had already been investigating the 
feasibility of a model much more advanced than YOLOv11, 
and had found that it was too large to be easily run on the 
Raspberry pi. As such, we changed our system architecture such 
that we could call a separate webserver running on a much more 
powerful machine to do our high-compute tasks. 
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B. Image Processing Pipeline 
The image processing pipeline’s primary task is to capture, 
process, and store information about an individual’s room in a 
way that can be easily queried. The simplest way to describe 
how this subsystem works is to trace through what happens at 
each step. 
The first part of this pipeline involves the “image capture” 
Python script. This script periodically captures an image using 
a camera, and sends it to the webserver through an authenticated 
HTTP message to an endpoint. In our presentation, this script 
was running on the Pi alongside the webserver, but as the two 
communicate over HTTP, this script could be running on any 
device with a camera. If the used libraries are not supported on 
the alternate device, it should be very easy to write a new 
camera module which can be imported by the existing script. 
Once the image is sent, to the webserver, it performs a simple 
Mean-Squared-Error comparison against the previously sent 
image. If the error is below a certain threshold, the image is 
deleted, and a response is sent back to the script. This saves 
computation power, by ensuring that we only run ML object 
detection on relevant images. Presumably, we can say that if 
there is no difference between two images, not many objects 
have moved. 

If it is sufficiently different, ML Object Detection is run on 
the image. If the system is in “local mode”, YOLOv11 ran 
locally on the Pi. If the system is not in “local mode”, the image 
is sent to the “extra compute” server over a HTTP request, 
where GroundingDino is run on the image, and its bounding 
boxes are returned. Both YOLOv11 and GroundingDino are 
only capable of detecting a closed set of objects. 
After this, a heuristic, which quantifies how many new objects 
were seen in an image (compared to the previous image), is 
calculated. (In this heuristic, an object is considered the same 
as another object if their label is the same, and their bounding 
boxes are sufficiently close.) If a user has filled up their 
allocated storage, this heuristic is used to delete the image with 
the least new objects seen, with age serving as a tiebreaker. The 
image adjacent to the deleted image then recalculates its 
heuristic value. 
Finally, the captured image, along with all of its bounding 
boxes, and heuristic value, are stored in an SQLite database. 
 
Getting all of the pieces for this subsystem assembled was 
somewhat straightforward; It did not take much effort to just get 
the system working. However, there was additional testing done 
to optimize this subsystem, as the ML object detection is one 
of, if not the most expensive part of our system. We ran tests to 
find the largest model we could run on the Pi given our time 
constraints, tried different inference backends to see if any were 
faster, and explored various other options. What we ultimately 
learned was just how expensive ML really is, and that one of 
the best ways to save on CPU cycles is to reduce the amount of 
ML you really need to do. 
 

C. Audio Processing Pipeline 
The main purpose of the audio processing pipeline is to 
constantly listen for questions from the user, and to answer with 
the predicted location of the object when asked. It can also be 
effectively described by going through the steps it takes. 

This pipeline begins with the “Audio processing” script. This 
script sets up the microphone to always be recording data, and 
performs a simple loop, where it sends captured microphone 
bytes to a webserver HTTP endpoint, and sends more once the 
HTTP request returns.  

The webserver then sends the bytes to the “extra compute” 
server so that a OpenAI Whisper, a speech-to-text model can be 
run on it. 

Once the webserver receives the translation of the speech 
bytes, it checks to see if the keywords, “Hey John” are present 
in the string. If they are, the webserver then uses LangChain, an 
LLM prompting framework, with a series of prompts with the 
goal of isolating the singular word referring to the object you 
are looking to find from the full query. As an examply, if you 
asked, “Where are my sunglasses?”, this step would return the 
string, “sunglasses” This word may not necessarily be a word 
that is present in our database, so our webserver then converts 
this word into a Word2Vec embedding using the HuggingFace 
transformers library. Next, this embedding is compared to the 
embeddings of the closed set of objects previously detected, and 
in our database. The existing object with the closest embedding 
(calculated using cosine vector similarity) is chosen. As another 
example, “sunglasses” may not be a part of our closed set of 
detected objects, whereas “eyeglasses” are. Even though they 
may not be the same word, our ML object detection model 
would still detect sunglasses and categorize them as 
“eyeglasses”, and this step would allow us to find the desired 
object in our database. 

After this step, the webserver would find the most recent 
appearance of this object in our database, and submit the image 
(containing the bounding box) along with a prompt requesting 
relational information to GPT vision. GPT vision would return 
a sentence about where the desired object is located in relation 
to the objects around it. Finally, this sentence will be read out 
loud through Forget-Me-Not's speakers using the macSpeaker 
text-to-speech python library. 
 

D. Web Interface 
The web interface allows users to interact with the object 

tracking system. It is designed to be intuitive and efficient, 
enabling both manual and voice-based interactions. The 
interface seamlessly connects to the backend infrastructure for 
querying, displaying object locations, and managing user 
accounts. 

The pipeline begins with the user’s interaction on the 
frontend. If the user submits a text-based query through the 
search bar, the input is sent via an API call to the querying 
endpoint. For voice-based queries, the pipeline involves 
capturing audio input, transcribing it into text, and extracting 
the object of interest. Once the query reaches backend, the 
webserver processes the query by parsing the text or the audio 
inputs. The object name is matched against existing database 
entries using vector cosine similarity to find the closest match. 
The most recent image containing the matched object is 
retrieved. The system also fetches a history of images to provide 
a visual timeline. For the audio query, it displays the transcribed 
text.  
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The backend supports multiple RESTful endpoints, each 
catering to specific functionality: 
Authentication Endpoint: Handle user login, logout, and 
account creation. These endpoints validate input data, 
communicate with the database, and return success or failure 
responses. 
Image Query Endpoints: Allow users to search for specific 
objects. When a query is made, the backend processes the 
request and retrieves relevant image data from the database. 
Audio Query Endpoint: Captures and processes voice 
commands, leveraging machine learning models for speech-to-
text conversion and object detection queries. 
Image Acquisition Endpoint: Manages incoming images from 
the Raspberry Pi, validates them, and stores processed metadata 
in the database. 

Authentication in the system is handled using JSON Web 
Tokens (JWT) for secure, stateless communication. During 
login, users submit their credentials, which are verified against 
hashed values in the SQLite database. Upon successful 
authentication, the server generates a signed JWT containing 
the user’s identifier and session metadata. This token is sent to 
the client and included in subsequent requests via the 
Authorization header. The	server validates the token’s	signature 
and expiry before processing requests, ensuring only 
authenticated users can access protected endpoints. 
 

E. Hardware 
The physical design of the Raspberry Pi and camera holder 

required a detailed and iterative approach to meet the functional 
requirements of the project. The holder needed to be wall-
mounted with an adjustable angle to maximize the field of view 
for object detection while maintaining stability. The design also 
had to account for the compact size of the Raspberry Pi and 
camera module, ensuring it could house and protect the 
hardware components without obstructing functionality or 
airflow. To achieve adjustability, I initially designed a ball-and-
socket joint mechanism. This mechanism allowed for a full 
range of motion and precise camera positioning, which seemed 
ideal for flexible installations. Using CAD software, I created 
multiple models, each with different socket tolerances and ball 
dimensions to ensure smooth movement while preventing 
slippage. However, after testing, this design failed due to strain-
induced deformations in the joint material under the weight of 
the camera and Pi. Specifically, the plastic used in 3D printing 
deformed at the socket under prolonged stress, reducing 
adjustability over time. Simulations run on the CAD models 
highlighted the stress concentrations at the socket due to the 
uneven distribution of the camera’s weight. Additionally, 
during real-world testing, the joint loosened over time, failing 
to hold the camera steady. This was particularly problematic 
because even slight vibrations or shifts in the camera angle 
could significantly affect the object detection system’s 
performance. To address these issues, during the design phase, 
I used CAD simulations to analyze the performance of the 
hinge-based setup. Finite Element Analysis (FEA) was 
employed to simulate the stress distribution on the hinge and 
mounting bracket under the combined weight of the Raspberry 

Pi and camera. This revealed that the critical stress points 
occurred near the screw joints and along the hinge pivots. To 
address this, I increased the hinge thickness and selected screws 
with a larger thread diameter to distribute the load more evenly. 
I also simulated repeated angle adjustments to ensure the 
system could withstand regular use without material wear. 
These simulations demonstrated that the hinge design was far 
more robust than the ball-and-socket joint, with minimal 
deformation under load.  
   The modularity of the design also made it easy to mount and 
dismount, providing flexibility for customization with different 
arm lengths and camera placements. This hinge-based solution 
was a significant improvement over the initial ball-and-socket 
design, addressing stability issues while maintaining the 
adaptability needed for the project. 
 

F. ML Training subsystem 
While in previous sections it was taken for granted that the 

models work as expected and categorize relevant objects there 
was a lot of work that went into the training infrastructure. The 
reason we could not just use the default models is because said 
models were not optimized for the types of objects we wanted 
to detect. For example, most of the data the models were trained 
on was on outdoor pictures which our model would not have to 
really deal with as an at home solution. And with every 
extraneous class that the model had to detect the overall 
accuracy went down forcing us to investigate training. 

Because there were two models – Grounding DINO and 
YOLO – there were two separate frameworks created for 
training said models and evaluating them.  

For YOLO there was an extensive custom-built framework 
which allowed one to train any model with various amounts of 
epochs, batch size, parameters. In addition, functionality was 
added in one could add custom data that was augmented to the 
training/validation/test datasets. On top of the training script in 
the framework there was also a validation script which could 
use the exact same datasets specified for the training data with 
the typical train/validation/test breakdown to validate the 
model. That ensured training data was not being used to test the 
model. So, when both the training/validation scripts were run 
relevant metrics were outputted into a specific folder which 
contained each of the dozens of values for the parameters in its 
title so one could know which training runs were conducive to 
the best results. 

For grounding DINO there was less work to do implementing 
a training framework as there was already an opensource 
training/testing framework called mmdetection. Through trial 
and error with various prompts for the object class sets and 
epochs we were able to satisfactorily train Grounding DINO to 
primarily focus on the objects were most interested in. 

IV. TEST, VERIFICATION AND VALIDATION 
Note: ML testing results are probably more important and 
should go first 
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A. Object Detection Model Performance 

 
Table I: Model Accuracy 

 Req MAP-50 MAP-50-95 Pass 

YOLOv11m-
e20 

0.8 0.669 0.530 No 

YOLOv11l-
e50 
 

0.8 0.745 0.598 No 

Grounding 
DINO-e12 

0.8 0.833 0.642 Yes 

 
The following measurements were meant to assess just how 
accurate the underlying models are. The number next to the 
metric means the amount of overlap with the ground truth 
needed to classify the labelling as a success. Thus MAP-50 
counts something as a success when the overlap is 50% of total 
are of both boxes while MAP50-95 takes metrics at intervals of 
5 from 50-95 and averages the scores. We opted to go with 
MAP-50 because we don’t actually care about the bounding box 
being perfect, just that it identifies the object correct and can 
roughly point our query answerer in the right direction of where 
that object may be. 
 
Given the requirement was 0.8 Accuracy, only the Grounding 
DINO model truly passed. And from the tradeoff chart it was 
determined that the speed drawbacks of the Grounding DINO 
model were not too extreme if inference was run on the GPU. 
 

B. System Latency Measurements 
This section directly relates to our timing requirements in our 

use-case and design requirements sections. Getting results for 
these sections was relatively straightforward; All we had to do 
is run the necessary workflows and time how long they took. 

 
Here are our results: 

 
Table II: Image Processing Pipeline 

Event Requirement Measured Pass? 

Camera 
Preprocessing 

1s 0.0253s Pass 

Webserver 
Overhead 

1s 8.00*10^-
7s 

Pass 
 

Object 
Detection  

5s 3.35s Pass 
 

(YOLO – on 
RPI) 
Object 
Detection 
(DINO – On 
Desktop) 

5s 0.66 Pass 
 

Database 
Write 

5s 0.12s 
 

Pass 
 

Total 13s 3.54s Pass 
 

 
 

Table III: Website Query Pipeline 
Event Requirement Measured Pass? 
Serve 
Webpage 

1s 0.00297s Pass 

Text query 
roundtrip 

1s 0.0007954s Pass 

Serve photo 1s 0.0079801s Pass 
Total 3s 0.0110s Pass 

Note: These times were recorded from the perspective of the 
server. It is difficult to time how long your browser takes to load 
images, etc. 
 

Table IV: Voice Query Pipeline 
Event Requirement Measured Pass? 
Speech-To-
Text model 

10s 1.53sec Pass 
 

Web Server 
Overhead 

1s 8.00*10^-
7s 

Pass 

Database 
Read 

5s 0.00254s 
 

Pass 

Additional 
ML 

10s 6.53s Pass 
 

Total 30s 8.06254 Pass 
From what can be seen in this section, all our components 

pass the outlined latency requirements. If any values appear to 
be different from what was observed at the demo, it is likely 
because they were taken in more ideal conditions – the 
Raspberry Pi may have been less hot, the server may have been 
running for less time, and there may have been more 
background noise. In particular, we believe there may have 
been a bottleneck could be fixed with a little bit of extra 
debugging, but we couldn’t get around to it by the time of the 
presentation. 
 

C. Cost Calculation 
This section relates to our cost requirements. 
 
Hardware Costs: 
The hardware costs for our project can be estimated using our 
bill of materials. 
 
For a system with 1 Raspberry Pi and its affiliated hardware, 
the costs are as follows: 
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Raspberry Pi 5: $80.00 
Raspberry Pi Camera Module: $35.00 
Camera Module Connector Wire: $8.00 
3d Printer Filament: ~$5.00 
USB Microphone: $20.00 
USB Speaker:  $16.00 
Velcro Strips: $9.00 
= $173.00 
 
These costs fall below our initially required hardware cost quota 
of $300. 
 
Additionally, if the user would like to add an extra camera to an 
already existing system, the cost will be substantially cheaper 
than our calculated $173. Given that our entire system is build 
using materials which facilitate development, we believe we 
can drastically cut the total cost of our product in the future. 
 
 
Ongoing Costs (Cloud): 

This section will show some rudimentary calculations which 
estimate the cost per-user of using the “extra compute” server.  

In our current design, we have 2 workloads running on the 
“extra compute”; The ML object detection model from the 
image processing pipeline, and the speech recognition from the 
audio query pipeline.  

 
We are choosing not to include the speech recognition 

workload in this pipeline. This is because once we optimize our 
design, we do not believe it will use much GPU time. While 
running our webserver, we have noticed that CPU utilization 
seems to be generally low. As a result, we believe that it should 
not be difficult to create a small, simple model that always runs 
on the Pi, whose only job is to recognize the model’s keywords. 
With such a model, we would only have to run the large, 
expensive speech-to-text model when we run a query, and since 
users are probably not submitting queries all the time, the GPU 
cost of this workload will be negligible compared to the time 
spent doing ML object detection. 
 

To calculate the cost of ML object detection per user with 
GroundingDino, we rented an ‘NV6ads A10 v5’ instance on 
Azure, and measured the runtime of GroundingDino while 
running on the VM.  

 
Cost of VM/Month (pay as you go): $331.42 

 
First, we calculate how many inferences we can do in a month. 
 
GroundingDino Inference Latency: 0.656s 
 
(1 / 0.656 s/inf) * 60s/m * 60m/hr * 24hr/day * 30day/mo  
=3985800 inferences/month 
 

Next, we calculate how many inferences a client is expected 
to make in a month. Based on our own tests, in an empty room, 
(where nothing can move, as there is no one in the room to move 
anything) MSE thresholding was able to prevent ML from 
running on 207/209 images, or 99.04% of images. Additionally, 
as an estimate, we imagine the average person might spend 8 
hours moving around in their room, the rest being spent 
outdoors or sleeping. For this test, we will be making the 
conservative assumption that we must do ML object detection 
on every image where a person is in their room, even though 
MSE should be able to filter some out. Remember that the 
cameras take an image every 5 seconds by default. 

 
0.2 imgs/sec * 1/3 of day spent in room + .0096 * (2/3 of day 
spent in room) = 0.0730 imgs/sec on average 
 
0.0730 imgs/sec * 60s/m * 60m/hr * 24hr/day * 30day/mo =  
= 189388 inferences/mo 
 
189388 inferences/mo / 3985800 inferences/mo =  
4.75% of GPU time taken by the average user per month 
 
$331.42 * 0.0475 = $14.26 per user per month 
 
This value falls far below our goal of $40 per user per month. 

V. PROJECT MANAGEMENT 

A. Schedule 
The schedule is split up according to individual 

responsibilities with slack time of an average of 2 days included 
in the timeline. The largest time allocation is for system 
integration, with slack time of a week built-in. As seen in Table 
X attached in the appendix. The green bars show the actual time 
allotted for the work described in the first column whereas the 
red bars display the buffer time of having tit completely done. 
There were no significant changes in the schedule from the one 
in the design report. The 3 of us were able to stick to our 
schedules and used the buffer time if it was necessary. We 
worked with each other and played off each other’s strengths 
and knowledge to help speed up the work.  

  

B. Team Member Responsibilities 
Ethan’s primary responsibility in the project is the machine 

learning component, where his focus was on optimizing the 
model for accuracy, performance, and generalization. He 
worked on improving the detection algorithms, and to train and 
integrate Grounding DINO with the system, to ensure that the 
system can identify objects in various indoor environments with 
high precision. Ethan also put in significant amount of work to 
integrate LangChain, vector embeddings and GPT Vision API 
calls to finalize and implement the audio pipeline. He also 
played a secondary role in optimizing performance across the 
overall system, ensuring that both the web server and database 
integrate efficiently with the machine learning model. Lastl 
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Swati worked on setting up the database and hardware 
configurations along with the CAD models, which are critical 
for the system’s backend infrastructure. She ensured that data 
related to detected objects is stored correctly and accessed 
efficiently. In addition to database management, she also 
worked on the audio processing pipeline instead of the 
preprocessing optimization, by establishing a rudimentary 
pipeline to transcribe, call to GPT Vision and output the 
relational information. She also created the frontend UI and 
endpoints to integrate the backend and frontend. Her secondary 
responsibility involved collaborating with Ethan and Giancarlo 
to troubleshoot any performance issues that arise in the database 
or hardware setup, ensuring smooth communication across all 
system subsystems. 

  
Giancarlo was primarily responsible for the web server 

structure, setup, and instrumentation. His role ensures that the 
server can handle incoming data and process requests 
efficiently, providing users with quick access to object 
detection results. He also worked closely with Ethan to 
integrate the machine learning model into the web server and 
with Swati to ensure smooth data flow from the database to the 
user interface. This coordination allowed the system to operate 
seamlessly, balancing the needs of each subsystem. He also 
worked on creating a second inference server for Grounding 
DINO integration and execution. His secondary responsibility 
involved performance testing and latency testing in order to 
determine the necessary optimizations.  
 

C. Bill of Materials and Budget 
Table X shows the detailed breakdown of parts that we 

require for our system and the estimated total cost for its 
development. We did not use the Jetson Nano due to resource 
constraints. Only addition is the Raspberry Pi 5 camera cable 
since the existing samples weren’t compatible. 

D. Risk Management 
   Critical risks for this project included the fact that none of us 
have worked with databases before so figuring out the correct 
configuration and the integration, post-setup will be a 
challenge. This just required time and communication to figure 
out. Swati and Giancarlo coordinated to ensure the database 
specifications matched the webserver and ML model interfaces.  
Secondly, the amount of data needed to train the 
ML model is substantially large and there are limited online 
datasets for the indoor images we need – hence we created our 
own bounding boxes for around 1000 images to train the model 
further. Ethan and Swati worked on this easy, but time-
consuming task. There was no significant risk other than time 
commitment which was managed by spreading this task over 2 
weeks. Lastly, another critical risk was the final integration of 
the entire system, as none of us have worked on creating 
interfaces for multiple different systems and different 
datatypes. This involved extra research and debugging. 
Giancarlo spent a lot of time ensuring that the interfaces match 
and also created dummy inputs and outputs to test his systems 
before the actual ones were created to ensure faster and 
smoother integration. 

   Hence, our primary risk was training the ML model for our 
system to meet the design specification. These risks were 
mitigated by allotting time for just for the creation of the 
training dataset manually and using annotation tools to speed 
up the process. Moreover, Ethan spent a lot of time researching 
on other alternatives and found Grounding DINO as a solution 
that would ensure that it meet our design specifications. Other 
than that, we approached the integration risks modularly and 
debugged each subsystem and interface which helped minimize 
complications. Lastly, we figured out how to use services we 
hadn’t used before by learning on the spot, understanding the 
demands of our system and implementing the necessary steps 
efficiently. Furthermore, dividing the team responsibilities, 
with each member focusing on mastering a particular service or 
software ensured a smoother integration process.  

VI. ETHICAL ISSUES 
Our product raises several ethical concerns, primarily 

regarding privacy, security, and equitable access. Our system 
relies on capturing and analyzing images within personal 
spaces, which may lead to the surveillance of users and visitors. 
Users might be unaware of the system’s operation, or stored 
data could be vulnerable to unauthorized access. These risks 
could adversely affect individuals’ privacy, leading to potential 
misuse of sensitive information or even exploitation in 
malicious scenarios. 

To mitigate these concerns, we have implemented multiple 
safeguards. All captured images are stored locally on the 
device, minimizing exposure to third-party access or 
centralized data breaches. Additionally, user authentication is 
managed through JWT (JSON Web Tokens) to ensure only 
authorized individuals can access the system. Consent is 
emphasized throughout setup, and users are offered tools to 
configure retention policies and control data collection. Users 
are given the option of using local compute or the remote 
compute and are made aware of all the risks associated with 
remote data transfer. 

The users would be made aware of all the potential and 
foreseeable risks associated with using our system in order to 
warn them against potential risks. We have made an effort to 
keep it as secure as possible but will continue working on 
encryption algorithms and secure data transfers to make the 
system even more robust.  
	

VII. RELATED WORK 
Several existing projects and products are similar to the 

system we are proposing. A notable example is Tile [5], a small 
Bluetooth-based tracking device that helps users find misplaced 
objects like keys, wallets, and phones. Tile’s strength lies in its 
simplicity and user-friendly mobile app interface, which allows 
users to track items using a connected smartphone. However, 
Tile requires physical attachment of the tracking device to each 
item, which our project aims to avoid by using computer vision 
to detect items in an environment without the need for 
individual trackers. 

Another similar product is the Apple AirTag [6], which uses 
Ultra-Wideband (UWB) technology along with the “Find My” 
app to locate lost items. Like Tile, it also requires physical 
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attachment to objects. Though it leverages precise location 
detection, it does not provide a solution for automatically 
tracking objects across a room in the way that our system does. 

On the more technical side, systems such as Amazon Go 
“Just Walk Out” technology [7] stores utilize computer vision 
and machine learning for object detection and tracking. The 
Amazon Go system is much more advanced and tracks multiple 
users and objects in real time, relying heavily on cloud 
infrastructure. While impressive, the scale and complexity of 
Amazon Go surpasses what our project is targeting, which is 
smaller indoor environments. 

Cortexica Vision Systems [8] also offers vision-based object 
recognition for retail and inventory management, similar in 
principle to our approach but with a focus on industrial use 
cases. 

Our system differs from these existing solutions by focusing 
on a low-cost, camera-based, non-invasive solution for 
individual users, such as families or students, to locate 
commonly misplaced items without attaching tracking devices. 
Furthermore, the use of machine learning models for indoor 
object detection ensures that the solution remains scalable and 
adaptable to various environments. 

 

VIII. SUMMARY 
Our system successfully met the majority of the design 

specifications, including real-time object detection, voice and 
text querying capabilities, and seamless integration between the 
Raspberry Pi, web server, and database. However, some 
performance limits remain, particularly in object detection 
accuracy during poor lighting conditions and when handling 
highly similar objects. The system’s latency for certain 
operations, such as processing voice queries or running 
computationally intensive models like Grounding DINO, also 
revealed opportunities for optimization. Given more time, we 
could explore further fine-tuning of the object detection models, 
optimizing database queries, and leveraging hardware 
acceleration to improve overall efficiency. 

A. Future work 
While the project was developed within the scope of the 

semester, we are considering continuing this work to enhance 
its usability and performance. Future efforts could focus on 
building a more robust dataset for training models to recognize 
diverse objects and deploying a hybrid cloud-local processing 
architecture for faster response times. Additionally, we aim to 
improve the user interface to make it more intuitive and 
accessible, especially for users with disabilities, and explore the 
incorporation of advanced edge AI chips for better real-time 
processing on the Raspberry Pi. 

B. Lessons Learned 
For future student groups addressing similar applications, we 

would recommend prioritizing modularity in the system design 
to simplify debugging and scaling. Prototyping early and testing 
in real-world conditions helped us identify and address 
limitations quickly, which we found extremely helpful. 
Additionally, balancing computational demands between edge 
devices and external servers is necessary for creating a 
responsive yet cost-effective system. Lastly, keeping user needs 

and ethical considerations in mind while designing your system 
helps define the purpose of the project.  

GLOSSARY OF ACRONYMS 
RPi – Raspberry Pi  
AWS – Amazon Web Services 
FOV – Field of View 
GPU – Graphics Processing Unit 
ML – Machine Learning 
RDS – Relational Database Service 
YOLO – You Only Look Once 
VM – Virtual Machine 
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Table V: Schedule and task breakdown 

 
 
 
 

Description  Manufacturer Quantity  Cost / item  Price Paid (in 
class) 

Total Total Paid (in 
class) 

Raspberry Pi V4 
8GB 

Raspberry Pi 2 $75.00 $0.00 $150.00 $0.00 

Raspberry Pi V5 
8GB 

Raspberry Pi 1 $80.00 $0.00 $80.00 $0.00 

NVIDIA Jetson 
Nano 4GB 
Developer Kit 

NVIDIA 1 $300.00 $0.00 $300.00 $0.00 

Raspberry Pi 
Camera Module 3 
Wide 

Raspberry Pi 3 $35.00 $0.00 $105.00 $0.00 

3D Printer 
Filament 

PLA Printer 
Filament 1kg 

1 $20.00 $0.00 (previously 
owned) 

$20.00 $0.00 

TKGOU 
Conference USB 
Microphone 

TKGOU 1 $20.00 $20.00 $20.00 $20.00 

USB Laptop 
Speaker  

LIELONGREN1 1 $16.00 $16.00 $16.00 $16.00 

Velcro strips VELCRO 1 $9.00 $9.00 $9.00 $9.00 

Rpi 5 Camera 
Ribbon 

Wonrabai 1 $8.00 $8.00 $8.00 $8.00 

Total: $95.00 
 

 Table VI: Cost Breakdown 
 


