
18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024

1

Forget-Me-Not seeks to help users track and find commonly

misplaced items indoors. It accomplishes this using a Raspberry Pi
with an attached camera to periodically record pictures of a room,
run an ML object detection model on the image, and store the
results such that they can be searched using a Web App, or a
microphone voice assistant. We sought to achieve 80% object
detection accuracy within a 10x10 ft room under well-lit
conditions. Our testing showed that we achieved 75% accuracy
onboard the Raspberry Pi (YOLO) and an 83% accuracy when
running a larger model on the cloud (Grounding DINO) for
predefined objects. We were successfully able to add new objects
to the model as well.

Index Terms—Camera-based tracking, computer vision, object
detection, object tracking, Raspberry Pi, real-time location,
YOLO, machine learning, indoor environments

I. INTRODUCTION

The “Forget-Me-Not” system addresses the common
problem of misplacing everyday household items such as keys,
wallets, and remote controls in indoor environments. The
primary use case is for families, students, and forgetful
individuals who often lose track of these items due to busy
schedules or shared living spaces. Searching for lost objects can
be frustrating and time-consuming, particularly when people
are in a rush or trying to manage multiple tasks.
 Existing solutions have several limitations. For example,
Bluetooth trackers are often inconvenient because they require
physical attachment to each item, and have a difficult time
providing exact location data, all while being too expensive to
use for all but a few items. Similar complaints can be said about
GPS trackers or AirTags, which cost a starting $30 per tag.
What sets Forget-Me-Not apart from thse other technologies is
that it does not require attaching any physical tags to your items.
Instead, it relies on advanced machine learning models, like
YOLOv11 and Grounding DINO, to visually detect objects in
real-time using a Raspberry Pi camera. Our approach is non-
intrusive, works in the background, and leverages a secure web
application or voice assistant for user interaction, making it
both convenient and scalable.
 By focusing on user-centric design and leveraging state-of-
the-art AI models, our project aspires to provide a practical and
reliable solution to a common daily problem.

II. USE-CASE REQUIREMENTS
We have determined that Forget-Me-Not must meet several

of the following critical requirements to effectively meet the
needs of our envisioned customers.

Our first requirement concerns the capabilities that our
system should have. Firstly, we would like our system to be able
to take photographs of the user’s room at a rate of 1 image every
5 seconds. This would be necessary as we would believe giving
the user the opportunity to see a photo of their room in a state
where their object was last seen would be conducive to helping
find an object.
 Secondly, our system should provide the user the capability
to query the system, both through a “voice assistant” frontend
and a visual frontend. We believe that both are necessary, as the
voice assistant would provide the user a means to query the
system if they have lost the device they are looking for, and the
visual frontend would assist in the case that the model is not
completely accurate, or the object to be found was the second-
to-last seen version of said object. Each of the frontends have
unique constraints that help make the user interaction with our
system more efficient.
 The audio frontend, we think it would be reasonable for it
to take 30 seconds between speaking a query and receiving a
result. This time was chosen because in most cases, finding an
object on your own should take more than 30 seconds. This
statement is corroborated with calculations based on data found
on the “Lostings Lost and Found Statistics” [1] webpage. This
page claims that the average person spends 2.5 days per year
searching for lost objects, and that the average person can lose
up to 9 items per day. With some calculations, as shown below,
we arrive at the very conservative estimate that

1.096 min/object spent searching on a given day. If we could
cut this number in half, it could save the user lots of time in the
long run.
 For the web frontend, we would like to ensure that the user
receives the answer for a query in 10 seconds. This is because
according to Uptrends, user attention suffers if a webpage is
stuck loading for more than 10 seconds [2].
 For both frontends, we would like to ensure that our system
returns queries based on data that is at most 30 seconds old.
According to the National Library of Medicine, short-term
memory lasts for 30 seconds [3].
 Regarding our model, we have determined that the system
needs to achieve at least 80% accuracy in detecting and
identifying predefined objects within a 10x10 ft room under

Forget-Me-Not

Giancarlo Zaniolo, Ethan Muchnik and Swati Anshu

Department of Electrical and Computer Engineering, Carnegie Mellon University

18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024

2

well-lit conditions (≥3000 lumens per square foot). We have
chosen these numbers because we believe it is reasonable for
our tool to miss 1/5 voice queries and still leave users satisfied,
and because we believe the area and lighting constraints provide
a reasonable environment for which it would be nontrivial for
users to remember which objects were always present.
Additionally, if the object is not initially found, we believe it is
reasonable for the users to find the unsuccessfully queried
objects by themselves. The intention of our system is to provide
support in day-to-day life, and not necessarily be a tool to help
forgetful dementia patients in life-or-death situations. As with
any system, we cannot promise a 100% accuracy due to
limitations of existing technologies.
 For our objects, we are choosing to initially support finding
phones, wallets, keys, as they are the most commonly lost
objects according to the “Lostings Lost and Found Statistics”
webpage [1]. We also intend to add pencils, pens and markers
to the list of objects identify as a proof of concept of the fact
that our search domain can be expanded based on user
preference. Even more objects may be added in the future.
 Additionally, we have chosen cost constraints which dictate
that the hardware setup should not exceed $300, while cloud
services for continuous usage should be kept under $40 per user
per month. These numbers account for 3 hardware setups across
a 2-bedroom house. We based these numbers off security.org’s
SimpliSafe, an existing product which charges between $250
and $730 for the hardware, and $32/month as a monthly
subscription. As this is a successful product, we have reason to
believe people will buy our product for similar prices [4].
 Lastly, privacy is a priority, meaning that access to the
system must be restricted to authorized users on authenticated
local devices. These requirements are designed to create a
system that is both accurate and cost-effective, while
maintaining a focus on user privacy and efficiency.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
 From a software standpoint, our high-level system
architecture involves 4 components. An “image capture”
python script, a “sound capture” python script, our webserver,
and our “external compute” server. The “image capture” python
script’s job is to periodically capture pictures of the room, and
send them to our webserver for processing. The “sound
capture” python script’s job is to continuously send microphone
input to our webserver for processing. The webserver’s job is
to accept requests from our “sensor” scripts, do the necessary
processing on the desired inputs, and to make the processed data
available to the user through other HTTP endpoints. One way
that this is done is by serving the that users use to interact with
our data. Our “external compute” server exists because the
Raspberry Pi’s computing power is too limited for some of the
tasks we expect of it (especially from a latency standpoint). As
such, the “external compute” server provides http endpoints
which perform the necessary high-compute tasks, and return the
value back to the user.

 Some of the logic used within the web server is itself
interesting, so we will go into greater detail regarding them. In
particular, we would like to give paranoid users the choice to

run a working system without ever having to invoke the
“external compute server”. Our system can be configured to use
“Local mode” by changing a simple setting. The exact
semantics of what is done in “local mode” will be covered in
the “System Implementation” section.

The hardware for our project primarily exists in the form of
providing all of the necessary hardware functionality in a
convenient package. As can be seen in Figure 4, we have a
Raspberry pi case to hold the Raspberry Pi, a “camera
direction” subsystem, which holds the camera in place, can be
mounted to a wall or lamp post, and can be angled to point in
whatever direction best shows the room the system will take
images of.

When interacting with the system the users have two
interfaces, a web interface and a voice interface. The website
provides a user-friendly interface designed to help users
efficiently interact with the Forget-Me-Not object-tracking
system. Each page has been carefully structured to deliver a
seamless and intuitive experience, ensuring users can quickly
navigate through the platform’s features. The first interaction
begins with the Login Page, where users provide their
credentials to access the system. For new users, the Create an
Account Page enables them to register by entering their desired
username and password. Validation ensures secure and accurate
submissions.

Fig 1: Home Page, Create an Account Page, Login Page
Once logged in, users land on the Homepage, which acts as

the main control center. The homepage features a prominent
search bar at the top, allowing users to type in the name of an
object they wish to locate. Along the left panel, a categorized
list of all tracked objects in the database is displayed, enabling
users to select an item directly without needing to search. This
organization ensures that frequently searched objects are
always within easy reach. When a user initiates a search, the
main screen dynamically updates to display the most recent
image of the object’s location, along with the time and date it
was last detected. On the right panel, a scrollable history of
previous sightings is displayed, showing thumbnail images and

18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024

3

timestamps of earlier detections. This allows users to trace the
object’s movements and explore its location history manually.

Fig 2: Main Page
For hands-free operation, users can switch to the Audio

Interface by clicking the microphone button located
prominently on the page. This opens a dedicated audio-query
page featuring a sleek wave animation to visually represent the
live audio input. Below the wave animation, the system displays
a transcription of the user’s query and the system’s response,
ensuring clarity in communication. The interface is designed to
provide a modern, interactive feel while maintaining
accessibility.

Fig 3: Audio Query Page
A consistent navigation bar at the top allows users to switch

between pages easily, such as logging out or accessing account
settings. The system’s layout is logical and user-focused, with
attention to detail that ensures all features are easily accessible.

The voice interface operates much like a home assistant. Our
“sound capture” script uses the microphone to listen to its
surroundings and send the data to our webserver. When the
webserver converts the query to text, and hears the words, “Hey
John, <User’s question>”, the webserver will run the user’s
question through our query processing pipeline. Once the query
is finished processing, the user will hear a response, explaining
the found object’s location through our system’s speakers.

There are a few significant differences between our current
system architecture, and what we planned out for our design
report. Primarily, we have abandoned the idea of hosting our
service purely in the cloud. One of our main advantages is that
we store all user information locally, and we have determined
that having a cloud backend will require substantially higher
development costs, to the point where we are no longer
pursuing it.

Additionally, we have added an “external compute” server.
As some of our planned functionality would have prohibitively
high latency when executed on a raspberry pi, we decided to
create a server which can be run on a more powerful computer,
which can do more of the heavy lifting for us.

Our design process used key engineering principles that
combines modular design and abstraction. The system was
broken into smaller components, including image capture,
processing, querying, and storage, ensuring that each could be
developed, tested, and refined independently. We used the
principle of efficiency optimization and balanced it with the
need for privacy. These guided our design and implementation
decisions, such as incorporating YOLO for lightweight object
detection on edge devices and offloading computationally
intensive Grounding DINO to a high-performance server. The
integration of Docker containers allowed for portable and
consistent deployment across devices. Furthermore, systems
engineering practices, such as feedback loops (e.g., MSE
threshold filtering to avoid redundant computations), were
applied to optimize resource utilization. Finally, user-centric
design principles shaped the web and voice interfaces to ensure
intuitive interactions.

Scientific principles that were employed included concepts
from computer vision, machine learning, and natural language
processing. This includes those related to feature extraction and
bounding box detection, to recognize objects in images, and
probabilistic frameworks to process the images. Our project
was grounded in mathematical principles, particularly linear
algebra and probability. Linear algebra was critical for object
detection models, where operations like matrix multiplications
underpinned convolutional layers in YOLO and Grounding
DINO. Probability and statistics were integral for training the
ML models, calculating object detection confidence scores, and
evaluating performance metrics like mAP (mean Average
Precision). Additionally, cosine similarity, a core concept in
vector mathematics, was employed for matching user queries
with stored object names in the database. Thresholding based
on Mean Squared Error (MSE) involved basic statistical
measures to identify significant changes between consecutive
frames.

Another addition to our system is a CAD model designed to
be put up on a wall that has two pivot points that allow for
greater freedom in the degree of motion. It also has the option
of customizing it using different arm lengths to account for any
further customizations needed.

Fig 4. CAD print camera holder

Pivot 1

Pivot 2

Arm

Wall mount

Pi
camera
cover

18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024

4

Fig 5: Original block diagram for implementation

Fig 6: New block diagram for implementation

18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024

5

I. DESIGN REQUIREMENTS
The system's design requirements are primarily driven by

the use case of tracking and identifying misplaced objects in
indoor environments, and they can be categorized into
Hardware latency, price, and privacy constraints.

A. Hardware Constraints
The system requires cameras with a resolution of 1080p to

ensure that the objects are captured in sufficient detail for
accurate detection. This resolution strikes a balance between
providing clear images and managing data size for processing.
The cameras need to capture images every 5 seconds to
maintain up-to-date information on object locations without
overburdening the system’s processing capabilities. Notably, it
took one of our group members 5 seconds to slowly walk across
their room, meaning our system should reasonably capture any
instance where an object is briefly placed, before being picked
up and transported again. Additionally, each camera must have
a field of view (FOV) of 40 degrees to ensure adequate
coverage of the room. While this FOV might seem narrow, it
helps the system focus on specific areas and reduces image
distortion from the fisheye effect, optimizing object detection.

B. Latency Constraints
To ensure real-time operation, the system must meet specific

latency targets. For the “Monitor” workflow, which involves
capturing and processing images, preprocessing the image data
must occur within 1 second, while object detection through
machine learning models should take 5 seconds. The webserver
“ping” latency should be within 1 second, and the entire
process, including database writing and cross-component
latencies, should be complete within 13 seconds, ensuring that
the system remains responsive.

We chose these values because they seemed like reasonable
targets for each of our subsystems. Ultimately, what matters is
the performance of our whole pipeline, since that is what is
ultilately observable by the end user. These requirements serve
more as general guidelines than necessarily hard and fast rules.
Even then, it is still useful to compartmentalize latency goals,
to give individuals working on the project a more concrete
target to aim for. Our object detection latency will realistically
take the most time out of our full pipeline. Given that the
inference frameworks we have easy access to are largely single-
core, and we want to be able to take a picture every 5 seconds,
it seems reasonable to require that object detection takes 5
seconds. This generates an additional implicit hardware
requirement where given that a 1080p image has 2 million
pixels, and an estimate that we should be using ~500
instructions per pixel of processing power on the original
image, our processor should be able to support 2MFLOPS.

 Regarding our database latency, our end querying from the
user will require at least a 2 calls from the database, one to get
the URLs associated with an image, and a second to retrieve the
image (regardlesss of architecture). Given our desired end-to-
end time of 10 seconds 5 seconds seemed like a good choice.
Additionally, by pinging google.com, we can assume that a
relatively “normal” ping is somewhere around 20-100ms,
which should fit within our 1 second margin unless there are
issues with the system.

For the “Query” workflow, which is responsible for
providing users with information about the location of objects,
speech-to-text processing should take no more than 10 seconds
(it will also occupy a large portion of our runtime), followed by
the webserver ping latency, which should take less than 1
second. Next, we list that the database read latency should
require less than 5 seconds, leaving 10 seconds for an additional
processing we would like to do using LLMs. The total latency
for a query response should not exceed 30 seconds, allowing
users to quickly find misplaced items. The rationale for this was
discussed above.

C. Privacy
One of our system’s main selling points is that users can run

a self-contained system without needing to share private
information with the outside world. As such, we require that at
the very least, our users are able to run some version of the
system (minimum object detection, one querying pipeline)
completely locally. If anything is not run locally, we should
guarantee that no private image is ever persistently stored off of
the Raspberry Pi.

II. DESIGN TRADE STUDIES

A. SQLite3 database selection
Multiple database types were tested to determine the type

of database we would use to maximize performance. Even
though this wasn’t the bottleneck of our system, it helps us
understand and justify the use of the SQLite database for high
frequency writes and updates.

Fig. 7 1000 INSERT operations across the different database types

For 1000 inserts, SQLite 3 performs better than PostgreSQL
(0.223s vs. 4.373s) but is slightly slower than MySQL
(0.114s). SQLite still provides consistent and reliable
performance.

18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024

6

Fig. 8 2000 INSERT operations done in 1 transaction across the different
database types

 For 20,000 inserts in one transaction, SQLite 3 significantly
outperforms PostgreSQL (0.757s vs. 4.900s) and is only
marginally slower than MySQL (2.184s). This demonstrates
SQLite’s efficiency in handling batch operations when
transactions are optimized.

Fig. 9 1000 UPDATE operations across the different database types

SQLite 3 outperforms the other database types 1000
updates, completing the operation in just 0.638 seconds
compared to PostgreSQL and MySQL, which take 1.739s
and 8.410s, respectively. This makes SQLite a strong
candidate for applications requiring frequent modifications
to the data.

Based on this preliminary testing, along with the fact that
SQLite operates without the need for a dedicated server
process. This is ideal for resource-constrained environments
like the Raspberry Pi, which has limited computational
power and memory if we were to store it on the Pi. Since it
is serverless, it requires no additional setup or maintenance
unlike the other databases. This aligns perfectly with the
project’s design goals of simplicity and minimal overhead.
For a system storing images’ metadata, the data volume is
likely not enormous. SQLite is optimized for smaller-scale
databases and offers quick access without the complexity of
managing a full-fledged database system. SQLite 3 was
chosen for its lightweight, serverless architecture and robust
performance in operations critical to the system, such as
updates, deletes, and efficient batch transactions.

B. Model Selection
Apart from having to select the model's name
YOLO/Grounding DINO etc, there also had to be testing with
various different parameters. These parameters included but
were not limited to amount of augmentations for each training
image, epochs, and the size of training dataset. Thus both
Grounding DINO and YOLO were trained/evaluated in a
couple dozen different ways with custom built
Training/Validation scripts. In order to validate the pros and
cons of every model there were 2 main metrics used: MAP-50
and time to run. The former essentially takes care of assessing
how good accuracy is while time just measures how long it
takes to run each model. For the data below, we will show the
direct comparisons for the models running on the GPU and
Raspberry Pi.

Fig. 10 GPU Metrics For MAP-50 vs Time for inference

Fig. 11 Rasp Pi Metrics For MAP-50 vs Time for inference

So as one can see the larger and more accurate the model, the
slower it is to run. Through the above charts we were able to
see just how much slower. While larger YOLO models did
indeed slow down significantly there were always at least

18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024

7

running at a speed within the same order of magnitude both on
the GPU and Rasp Pi. GIven that there was not much to be
gained from yolov11x vs l, it was decided to use yolov11l.
Meanwhile the Grounding DINO model couldn’t run on the Pi
taking over 30 minutes which would make it impossible to
fulfill the design requirement of image processing in 25
seconds. However, it could run the GPU and while it was a lot
slower than all the YOLO models it was still fast enough that
using it could be justified with it seeing almost 0.1 improvement
over the next closest model in MAP50.

In addition to inference speed being important, training time was
too. With a larger number of epochs, the training time scaled
linearly with epoch growth while the performance of the model
started levelling off. Thus, it was chosen that the breadth of
exploration of various training parameters were more important
than the incremental gains from each additional epoch. Thus,
training for grounding DINO was stopped at 12 epochs. Similar
tradeoffs were done with each parameter for training and from that
a rough approximation of the optimal model for both YOLO and
Grounding DINO was obtained.

III. SYSTEM IMPLEMENTATION
A. Webserver

As every software component interacts with the webserver in
some way, it will be useful to first cover how it was
implemented.

The webserver was written in Python using Flask as its
framework. Flask’s primary capability is that it allows us to
specify python functions to behave as “HTTP endpoints”. In
other words, when Flask receives a HTTP request, it sets up a
global context with the contents of the request, and invokes the
Python function which corresponds to the URL for that request.

Using Flask’s built-in runtime by itself is not enough to
guarantee properties that our system desires. As discussed
previously, our webserver needs to have the ability to run both
low-latency (website login, querying) tasks, and much longer-
running tasks (ML Obj. Det. Inference). Given that Flask’s
default runtime is single threaded, short-running requests would
get blocked behind long-running ones, unnecessarily increasing
their latency. As such, we chose to run our Flask code with
gunicorn. Gunicorn is a high-performance webserver that
shares the Flask runtime’s ability to interact with Flask python

code, but has the added ability to start up multiple worker
processes. As such, so long as our webserver has at least 1 more
worker process than there are long-running tasks, short-length
tasks should be able to run without needless latency spikes.

Fig X: Here is a diagram of how our webserver is laid out. Currently, the
weberver is set up to run on the Raspberry Pi.

Lastly, NGINX is in charge of directing HTTP requests to

gunicorn. NGINX is a second webserver capable of load-
balancing requests between other servers. Our original idea was
that using NGINX would allow us to balance requests between
multiple gunicorn instances, allowing our previously proposed
cloud implementation to be scalable. We no longer use this
functionality, but as NGINX allows users to set up firewalls, we
kept it in case we had time to dedicate towards additional
security.

Throughout the development of the webserver, most things
went relatively straightforwardly (Though it certainly was time-
consuming). However, there were a few pivotal moments where
we decided “change directions”.

The first time was when we decided to pivot away from
supporting a cloud backend and focus on our Raspberry Pi
implementation. This decision arose from the fact that there
seemed to be many concerns regarding the privacy of user data
on the cloud. When considering the additional development
cost involved with having privacy, scalability, and a cloud
backend, all while still needing a hardware camera to record all
of the necessary data, we decided to abandon the idea.

The second time came when after our interim demo, when
the reviewers were thoroughly unimpressed with the
performance of our local object detection model in a few
specific scenarios. Because of this, we realized the importance
of having as good of an object detection model as possible. At
this point a group member had already been investigating the
feasibility of a model much more advanced than YOLOv11,
and had found that it was too large to be easily run on the
Raspberry pi. As such, we changed our system architecture such
that we could call a separate webserver running on a much more
powerful machine to do our high-compute tasks.

18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024

8

B. Image Processing Pipeline
The image processing pipeline’s primary task is to capture,
process, and store information about an individual’s room in a
way that can be easily queried. The simplest way to describe
how this subsystem works is to trace through what happens at
each step.
The first part of this pipeline involves the “image capture”
Python script. This script periodically captures an image using
a camera, and sends it to the webserver through an authenticated
HTTP message to an endpoint. In our presentation, this script
was running on the Pi alongside the webserver, but as the two
communicate over HTTP, this script could be running on any
device with a camera. If the used libraries are not supported on
the alternate device, it should be very easy to write a new
camera module which can be imported by the existing script.
Once the image is sent, to the webserver, it performs a simple
Mean-Squared-Error comparison against the previously sent
image. If the error is below a certain threshold, the image is
deleted, and a response is sent back to the script. This saves
computation power, by ensuring that we only run ML object
detection on relevant images. Presumably, we can say that if
there is no difference between two images, not many objects
have moved.

If it is sufficiently different, ML Object Detection is run on
the image. If the system is in “local mode”, YOLOv11 ran
locally on the Pi. If the system is not in “local mode”, the image
is sent to the “extra compute” server over a HTTP request,
where GroundingDino is run on the image, and its bounding
boxes are returned. Both YOLOv11 and GroundingDino are
only capable of detecting a closed set of objects.
After this, a heuristic, which quantifies how many new objects
were seen in an image (compared to the previous image), is
calculated. (In this heuristic, an object is considered the same
as another object if their label is the same, and their bounding
boxes are sufficiently close.) If a user has filled up their
allocated storage, this heuristic is used to delete the image with
the least new objects seen, with age serving as a tiebreaker. The
image adjacent to the deleted image then recalculates its
heuristic value.
Finally, the captured image, along with all of its bounding
boxes, and heuristic value, are stored in an SQLite database.

Getting all of the pieces for this subsystem assembled was
somewhat straightforward; It did not take much effort to just get
the system working. However, there was additional testing done
to optimize this subsystem, as the ML object detection is one
of, if not the most expensive part of our system. We ran tests to
find the largest model we could run on the Pi given our time
constraints, tried different inference backends to see if any were
faster, and explored various other options. What we ultimately
learned was just how expensive ML really is, and that one of
the best ways to save on CPU cycles is to reduce the amount of
ML you really need to do.

C. Audio Processing Pipeline
The main purpose of the audio processing pipeline is to
constantly listen for questions from the user, and to answer with
the predicted location of the object when asked. It can also be
effectively described by going through the steps it takes.

This pipeline begins with the “Audio processing” script. This
script sets up the microphone to always be recording data, and
performs a simple loop, where it sends captured microphone
bytes to a webserver HTTP endpoint, and sends more once the
HTTP request returns.

The webserver then sends the bytes to the “extra compute”
server so that a OpenAI Whisper, a speech-to-text model can be
run on it.

Once the webserver receives the translation of the speech
bytes, it checks to see if the keywords, “Hey John” are present
in the string. If they are, the webserver then uses LangChain, an
LLM prompting framework, with a series of prompts with the
goal of isolating the singular word referring to the object you
are looking to find from the full query. As an examply, if you
asked, “Where are my sunglasses?”, this step would return the
string, “sunglasses” This word may not necessarily be a word
that is present in our database, so our webserver then converts
this word into a Word2Vec embedding using the HuggingFace
transformers library. Next, this embedding is compared to the
embeddings of the closed set of objects previously detected, and
in our database. The existing object with the closest embedding
(calculated using cosine vector similarity) is chosen. As another
example, “sunglasses” may not be a part of our closed set of
detected objects, whereas “eyeglasses” are. Even though they
may not be the same word, our ML object detection model
would still detect sunglasses and categorize them as
“eyeglasses”, and this step would allow us to find the desired
object in our database.

After this step, the webserver would find the most recent
appearance of this object in our database, and submit the image
(containing the bounding box) along with a prompt requesting
relational information to GPT vision. GPT vision would return
a sentence about where the desired object is located in relation
to the objects around it. Finally, this sentence will be read out
loud through Forget-Me-Not's speakers using the macSpeaker
text-to-speech python library.

D. Web Interface
The web interface allows users to interact with the object

tracking system. It is designed to be intuitive and efficient,
enabling both manual and voice-based interactions. The
interface seamlessly connects to the backend infrastructure for
querying, displaying object locations, and managing user
accounts.

The pipeline begins with the user’s interaction on the
frontend. If the user submits a text-based query through the
search bar, the input is sent via an API call to the querying
endpoint. For voice-based queries, the pipeline involves
capturing audio input, transcribing it into text, and extracting
the object of interest. Once the query reaches backend, the
webserver processes the query by parsing the text or the audio
inputs. The object name is matched against existing database
entries using vector cosine similarity to find the closest match.
The most recent image containing the matched object is
retrieved. The system also fetches a history of images to provide
a visual timeline. For the audio query, it displays the transcribed
text.

18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024

9

The backend supports multiple RESTful endpoints, each
catering to specific functionality:
Authentication Endpoint: Handle user login, logout, and
account creation. These endpoints validate input data,
communicate with the database, and return success or failure
responses.
Image Query Endpoints: Allow users to search for specific
objects. When a query is made, the backend processes the
request and retrieves relevant image data from the database.
Audio Query Endpoint: Captures and processes voice
commands, leveraging machine learning models for speech-to-
text conversion and object detection queries.
Image Acquisition Endpoint: Manages incoming images from
the Raspberry Pi, validates them, and stores processed metadata
in the database.

Authentication in the system is handled using JSON Web
Tokens (JWT) for secure, stateless communication. During
login, users submit their credentials, which are verified against
hashed values in the SQLite database. Upon successful
authentication, the server generates a signed JWT containing
the user’s identifier and session metadata. This token is sent to
the client and included in subsequent requests via the
Authorization header. The	server validates the token’s	signature
and expiry before processing requests, ensuring only
authenticated users can access protected endpoints.

E. Hardware
The physical design of the Raspberry Pi and camera holder

required a detailed and iterative approach to meet the functional
requirements of the project. The holder needed to be wall-
mounted with an adjustable angle to maximize the field of view
for object detection while maintaining stability. The design also
had to account for the compact size of the Raspberry Pi and
camera module, ensuring it could house and protect the
hardware components without obstructing functionality or
airflow. To achieve adjustability, I initially designed a ball-and-
socket joint mechanism. This mechanism allowed for a full
range of motion and precise camera positioning, which seemed
ideal for flexible installations. Using CAD software, I created
multiple models, each with different socket tolerances and ball
dimensions to ensure smooth movement while preventing
slippage. However, after testing, this design failed due to strain-
induced deformations in the joint material under the weight of
the camera and Pi. Specifically, the plastic used in 3D printing
deformed at the socket under prolonged stress, reducing
adjustability over time. Simulations run on the CAD models
highlighted the stress concentrations at the socket due to the
uneven distribution of the camera’s weight. Additionally,
during real-world testing, the joint loosened over time, failing
to hold the camera steady. This was particularly problematic
because even slight vibrations or shifts in the camera angle
could significantly affect the object detection system’s
performance. To address these issues, during the design phase,
I used CAD simulations to analyze the performance of the
hinge-based setup. Finite Element Analysis (FEA) was
employed to simulate the stress distribution on the hinge and
mounting bracket under the combined weight of the Raspberry

Pi and camera. This revealed that the critical stress points
occurred near the screw joints and along the hinge pivots. To
address this, I increased the hinge thickness and selected screws
with a larger thread diameter to distribute the load more evenly.
I also simulated repeated angle adjustments to ensure the
system could withstand regular use without material wear.
These simulations demonstrated that the hinge design was far
more robust than the ball-and-socket joint, with minimal
deformation under load.
 The modularity of the design also made it easy to mount and
dismount, providing flexibility for customization with different
arm lengths and camera placements. This hinge-based solution
was a significant improvement over the initial ball-and-socket
design, addressing stability issues while maintaining the
adaptability needed for the project.

F. ML Training subsystem
While in previous sections it was taken for granted that the

models work as expected and categorize relevant objects there
was a lot of work that went into the training infrastructure. The
reason we could not just use the default models is because said
models were not optimized for the types of objects we wanted
to detect. For example, most of the data the models were trained
on was on outdoor pictures which our model would not have to
really deal with as an at home solution. And with every
extraneous class that the model had to detect the overall
accuracy went down forcing us to investigate training.

Because there were two models – Grounding DINO and
YOLO – there were two separate frameworks created for
training said models and evaluating them.

For YOLO there was an extensive custom-built framework
which allowed one to train any model with various amounts of
epochs, batch size, parameters. In addition, functionality was
added in one could add custom data that was augmented to the
training/validation/test datasets. On top of the training script in
the framework there was also a validation script which could
use the exact same datasets specified for the training data with
the typical train/validation/test breakdown to validate the
model. That ensured training data was not being used to test the
model. So, when both the training/validation scripts were run
relevant metrics were outputted into a specific folder which
contained each of the dozens of values for the parameters in its
title so one could know which training runs were conducive to
the best results.

For grounding DINO there was less work to do implementing
a training framework as there was already an opensource
training/testing framework called mmdetection. Through trial
and error with various prompts for the object class sets and
epochs we were able to satisfactorily train Grounding DINO to
primarily focus on the objects were most interested in.

IV. TEST, VERIFICATION AND VALIDATION
Note: ML testing results are probably more important and
should go first

18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024

10

A. Object Detection Model Performance

Table I: Model Accuracy

 Req MAP-50 MAP-50-95 Pass

YOLOv11m-
e20

0.8 0.669 0.530 No

YOLOv11l-
e50

0.8 0.745 0.598 No

Grounding
DINO-e12

0.8 0.833 0.642 Yes

The following measurements were meant to assess just how
accurate the underlying models are. The number next to the
metric means the amount of overlap with the ground truth
needed to classify the labelling as a success. Thus MAP-50
counts something as a success when the overlap is 50% of total
are of both boxes while MAP50-95 takes metrics at intervals of
5 from 50-95 and averages the scores. We opted to go with
MAP-50 because we don’t actually care about the bounding box
being perfect, just that it identifies the object correct and can
roughly point our query answerer in the right direction of where
that object may be.

Given the requirement was 0.8 Accuracy, only the Grounding
DINO model truly passed. And from the tradeoff chart it was
determined that the speed drawbacks of the Grounding DINO
model were not too extreme if inference was run on the GPU.

B. System Latency Measurements
This section directly relates to our timing requirements in our

use-case and design requirements sections. Getting results for
these sections was relatively straightforward; All we had to do
is run the necessary workflows and time how long they took.

Here are our results:

Table II: Image Processing Pipeline

Event Requirement Measured Pass?

Camera
Preprocessing

1s 0.0253s Pass

Webserver
Overhead

1s 8.00*10^-
7s

Pass

Object
Detection

5s 3.35s Pass

(YOLO – on
RPI)
Object
Detection
(DINO – On
Desktop)

5s 0.66 Pass

Database
Write

5s 0.12s

Pass

Total 13s 3.54s Pass

Table III: Website Query Pipeline
Event Requirement Measured Pass?
Serve
Webpage

1s 0.00297s Pass

Text query
roundtrip

1s 0.0007954s Pass

Serve photo 1s 0.0079801s Pass
Total 3s 0.0110s Pass

Note: These times were recorded from the perspective of the
server. It is difficult to time how long your browser takes to load
images, etc.

Table IV: Voice Query Pipeline
Event Requirement Measured Pass?
Speech-To-
Text model

10s 1.53sec Pass

Web Server
Overhead

1s 8.00*10^-
7s

Pass

Database
Read

5s 0.00254s

Pass

Additional
ML

10s 6.53s Pass

Total 30s 8.06254 Pass
From what can be seen in this section, all our components

pass the outlined latency requirements. If any values appear to
be different from what was observed at the demo, it is likely
because they were taken in more ideal conditions – the
Raspberry Pi may have been less hot, the server may have been
running for less time, and there may have been more
background noise. In particular, we believe there may have
been a bottleneck could be fixed with a little bit of extra
debugging, but we couldn’t get around to it by the time of the
presentation.

C. Cost Calculation
This section relates to our cost requirements.

Hardware Costs:
The hardware costs for our project can be estimated using our
bill of materials.

For a system with 1 Raspberry Pi and its affiliated hardware,
the costs are as follows:

18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024

11

Raspberry Pi 5: $80.00
Raspberry Pi Camera Module: $35.00
Camera Module Connector Wire: $8.00
3d Printer Filament: ~$5.00
USB Microphone: $20.00
USB Speaker: $16.00
Velcro Strips: $9.00
= $173.00

These costs fall below our initially required hardware cost quota
of $300.

Additionally, if the user would like to add an extra camera to an
already existing system, the cost will be substantially cheaper
than our calculated $173. Given that our entire system is build
using materials which facilitate development, we believe we
can drastically cut the total cost of our product in the future.

Ongoing Costs (Cloud):

This section will show some rudimentary calculations which
estimate the cost per-user of using the “extra compute” server.

In our current design, we have 2 workloads running on the
“extra compute”; The ML object detection model from the
image processing pipeline, and the speech recognition from the
audio query pipeline.

We are choosing not to include the speech recognition

workload in this pipeline. This is because once we optimize our
design, we do not believe it will use much GPU time. While
running our webserver, we have noticed that CPU utilization
seems to be generally low. As a result, we believe that it should
not be difficult to create a small, simple model that always runs
on the Pi, whose only job is to recognize the model’s keywords.
With such a model, we would only have to run the large,
expensive speech-to-text model when we run a query, and since
users are probably not submitting queries all the time, the GPU
cost of this workload will be negligible compared to the time
spent doing ML object detection.

To calculate the cost of ML object detection per user with
GroundingDino, we rented an ‘NV6ads A10 v5’ instance on
Azure, and measured the runtime of GroundingDino while
running on the VM.

Cost of VM/Month (pay as you go): $331.42

First, we calculate how many inferences we can do in a month.

GroundingDino Inference Latency: 0.656s

(1 / 0.656 s/inf) * 60s/m * 60m/hr * 24hr/day * 30day/mo
=3985800 inferences/month

Next, we calculate how many inferences a client is expected
to make in a month. Based on our own tests, in an empty room,
(where nothing can move, as there is no one in the room to move
anything) MSE thresholding was able to prevent ML from
running on 207/209 images, or 99.04% of images. Additionally,
as an estimate, we imagine the average person might spend 8
hours moving around in their room, the rest being spent
outdoors or sleeping. For this test, we will be making the
conservative assumption that we must do ML object detection
on every image where a person is in their room, even though
MSE should be able to filter some out. Remember that the
cameras take an image every 5 seconds by default.

0.2 imgs/sec * 1/3 of day spent in room + .0096 * (2/3 of day
spent in room) = 0.0730 imgs/sec on average

0.0730 imgs/sec * 60s/m * 60m/hr * 24hr/day * 30day/mo =
= 189388 inferences/mo

189388 inferences/mo / 3985800 inferences/mo =
4.75% of GPU time taken by the average user per month

$331.42 * 0.0475 = $14.26 per user per month

This value falls far below our goal of $40 per user per month.

V. PROJECT MANAGEMENT

A. Schedule
The schedule is split up according to individual

responsibilities with slack time of an average of 2 days included
in the timeline. The largest time allocation is for system
integration, with slack time of a week built-in. As seen in Table
X attached in the appendix. The green bars show the actual time
allotted for the work described in the first column whereas the
red bars display the buffer time of having tit completely done.
There were no significant changes in the schedule from the one
in the design report. The 3 of us were able to stick to our
schedules and used the buffer time if it was necessary. We
worked with each other and played off each other’s strengths
and knowledge to help speed up the work.

B. Team Member Responsibilities
Ethan’s primary responsibility in the project is the machine

learning component, where his focus was on optimizing the
model for accuracy, performance, and generalization. He
worked on improving the detection algorithms, and to train and
integrate Grounding DINO with the system, to ensure that the
system can identify objects in various indoor environments with
high precision. Ethan also put in significant amount of work to
integrate LangChain, vector embeddings and GPT Vision API
calls to finalize and implement the audio pipeline. He also
played a secondary role in optimizing performance across the
overall system, ensuring that both the web server and database
integrate efficiently with the machine learning model. Lastl

18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024

12

Swati worked on setting up the database and hardware
configurations along with the CAD models, which are critical
for the system’s backend infrastructure. She ensured that data
related to detected objects is stored correctly and accessed
efficiently. In addition to database management, she also
worked on the audio processing pipeline instead of the
preprocessing optimization, by establishing a rudimentary
pipeline to transcribe, call to GPT Vision and output the
relational information. She also created the frontend UI and
endpoints to integrate the backend and frontend. Her secondary
responsibility involved collaborating with Ethan and Giancarlo
to troubleshoot any performance issues that arise in the database
or hardware setup, ensuring smooth communication across all
system subsystems.

Giancarlo was primarily responsible for the web server

structure, setup, and instrumentation. His role ensures that the
server can handle incoming data and process requests
efficiently, providing users with quick access to object
detection results. He also worked closely with Ethan to
integrate the machine learning model into the web server and
with Swati to ensure smooth data flow from the database to the
user interface. This coordination allowed the system to operate
seamlessly, balancing the needs of each subsystem. He also
worked on creating a second inference server for Grounding
DINO integration and execution. His secondary responsibility
involved performance testing and latency testing in order to
determine the necessary optimizations.

C. Bill of Materials and Budget
Table X shows the detailed breakdown of parts that we

require for our system and the estimated total cost for its
development. We did not use the Jetson Nano due to resource
constraints. Only addition is the Raspberry Pi 5 camera cable
since the existing samples weren’t compatible.

D. Risk Management
 Critical risks for this project included the fact that none of us
have worked with databases before so figuring out the correct
configuration and the integration, post-setup will be a
challenge. This just required time and communication to figure
out. Swati and Giancarlo coordinated to ensure the database
specifications matched the webserver and ML model interfaces.
Secondly, the amount of data needed to train the
ML model is substantially large and there are limited online
datasets for the indoor images we need – hence we created our
own bounding boxes for around 1000 images to train the model
further. Ethan and Swati worked on this easy, but time-
consuming task. There was no significant risk other than time
commitment which was managed by spreading this task over 2
weeks. Lastly, another critical risk was the final integration of
the entire system, as none of us have worked on creating
interfaces for multiple different systems and different
datatypes. This involved extra research and debugging.
Giancarlo spent a lot of time ensuring that the interfaces match
and also created dummy inputs and outputs to test his systems
before the actual ones were created to ensure faster and
smoother integration.

 Hence, our primary risk was training the ML model for our
system to meet the design specification. These risks were
mitigated by allotting time for just for the creation of the
training dataset manually and using annotation tools to speed
up the process. Moreover, Ethan spent a lot of time researching
on other alternatives and found Grounding DINO as a solution
that would ensure that it meet our design specifications. Other
than that, we approached the integration risks modularly and
debugged each subsystem and interface which helped minimize
complications. Lastly, we figured out how to use services we
hadn’t used before by learning on the spot, understanding the
demands of our system and implementing the necessary steps
efficiently. Furthermore, dividing the team responsibilities,
with each member focusing on mastering a particular service or
software ensured a smoother integration process.

VI. ETHICAL ISSUES
Our product raises several ethical concerns, primarily

regarding privacy, security, and equitable access. Our system
relies on capturing and analyzing images within personal
spaces, which may lead to the surveillance of users and visitors.
Users might be unaware of the system’s operation, or stored
data could be vulnerable to unauthorized access. These risks
could adversely affect individuals’ privacy, leading to potential
misuse of sensitive information or even exploitation in
malicious scenarios.

To mitigate these concerns, we have implemented multiple
safeguards. All captured images are stored locally on the
device, minimizing exposure to third-party access or
centralized data breaches. Additionally, user authentication is
managed through JWT (JSON Web Tokens) to ensure only
authorized individuals can access the system. Consent is
emphasized throughout setup, and users are offered tools to
configure retention policies and control data collection. Users
are given the option of using local compute or the remote
compute and are made aware of all the risks associated with
remote data transfer.

The users would be made aware of all the potential and
foreseeable risks associated with using our system in order to
warn them against potential risks. We have made an effort to
keep it as secure as possible but will continue working on
encryption algorithms and secure data transfers to make the
system even more robust.
	

VII. RELATED WORK
Several existing projects and products are similar to the

system we are proposing. A notable example is Tile [5], a small
Bluetooth-based tracking device that helps users find misplaced
objects like keys, wallets, and phones. Tile’s strength lies in its
simplicity and user-friendly mobile app interface, which allows
users to track items using a connected smartphone. However,
Tile requires physical attachment of the tracking device to each
item, which our project aims to avoid by using computer vision
to detect items in an environment without the need for
individual trackers.

Another similar product is the Apple AirTag [6], which uses
Ultra-Wideband (UWB) technology along with the “Find My”
app to locate lost items. Like Tile, it also requires physical

18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024

13

attachment to objects. Though it leverages precise location
detection, it does not provide a solution for automatically
tracking objects across a room in the way that our system does.

On the more technical side, systems such as Amazon Go
“Just Walk Out” technology [7] stores utilize computer vision
and machine learning for object detection and tracking. The
Amazon Go system is much more advanced and tracks multiple
users and objects in real time, relying heavily on cloud
infrastructure. While impressive, the scale and complexity of
Amazon Go surpasses what our project is targeting, which is
smaller indoor environments.

Cortexica Vision Systems [8] also offers vision-based object
recognition for retail and inventory management, similar in
principle to our approach but with a focus on industrial use
cases.

Our system differs from these existing solutions by focusing
on a low-cost, camera-based, non-invasive solution for
individual users, such as families or students, to locate
commonly misplaced items without attaching tracking devices.
Furthermore, the use of machine learning models for indoor
object detection ensures that the solution remains scalable and
adaptable to various environments.

VIII. SUMMARY
Our system successfully met the majority of the design

specifications, including real-time object detection, voice and
text querying capabilities, and seamless integration between the
Raspberry Pi, web server, and database. However, some
performance limits remain, particularly in object detection
accuracy during poor lighting conditions and when handling
highly similar objects. The system’s latency for certain
operations, such as processing voice queries or running
computationally intensive models like Grounding DINO, also
revealed opportunities for optimization. Given more time, we
could explore further fine-tuning of the object detection models,
optimizing database queries, and leveraging hardware
acceleration to improve overall efficiency.

A. Future work
While the project was developed within the scope of the

semester, we are considering continuing this work to enhance
its usability and performance. Future efforts could focus on
building a more robust dataset for training models to recognize
diverse objects and deploying a hybrid cloud-local processing
architecture for faster response times. Additionally, we aim to
improve the user interface to make it more intuitive and
accessible, especially for users with disabilities, and explore the
incorporation of advanced edge AI chips for better real-time
processing on the Raspberry Pi.

B. Lessons Learned
For future student groups addressing similar applications, we

would recommend prioritizing modularity in the system design
to simplify debugging and scaling. Prototyping early and testing
in real-world conditions helped us identify and address
limitations quickly, which we found extremely helpful.
Additionally, balancing computational demands between edge
devices and external servers is necessary for creating a
responsive yet cost-effective system. Lastly, keeping user needs

and ethical considerations in mind while designing your system
helps define the purpose of the project.

GLOSSARY OF ACRONYMS
RPi – Raspberry Pi
AWS – Amazon Web Services
FOV – Field of View
GPU – Graphics Processing Unit
ML – Machine Learning
RDS – Relational Database Service
YOLO – You Only Look Once
VM – Virtual Machine

REFERENCES
[1] “Lost and Found Statistics, Trends & Facts 2023.”

Lostings, 2023, www.lostings.com/lost-and-found-
statistics/. newauthors.ieeeauthorcenter.ieee.org/author-
tools/

[2] “The Psychology of Web Performance | the Uptrends
Blog.” Blog.uptrends.com, 13 June 2018,
blog.uptrends.com/web-performance/the-psychology-
of-web-performance/.

[3] Cascella, Marco, and Yasir Al Khalili. “Short Term
Memory Impairment.” PubMed, StatPearls Publishing,
2020, www.ncbi.nlm.nih.gov/books/NBK545136/.

[4] Vigderman, Aliza, and Gabe Turner. “2024 SimpliSafe
Home Security Package Costs & Monitoring Plans.”
Security.org, 16 Sept. 2024, www.security.org/home-
security-systems/simplisafe/. Accessed 12 Oct. 2024.

[5] “Tile Tracker | Bluetooth Trackers for Keys, Wallets,
Phones, and More.” Tile ECommerce, 2024,
www.tile.com/en-
us?srsltid=AfmBOoqiPlO2RfW68YqSzWMciQHgUL
CpPVqbTAXsK1V-UDVidQUBQluf. Accessed 12
Oct. 2024.

[6] Basappa, Prashanth. “The Technology behind Apple’s
AirTag.” Nerd for Tech, 20 July 2021,
medium.com/nerd-for-tech/the-technology-behind-
apples-airtag-c7983f9322b5.

[7] Gross, Ryan. “How the Amazon Go Store’s AI
Works.” Towards Data Science, Towards Data Science,
7 June 2019, towardsdatascience.com/how-the-
amazon-go-store-works-a-deep-dive-3fde9d9939e9.

[8] “Cortexica Vision Systems.” Pitchbook.com, 2024,
pitchbook.com/profiles/company/60147-64#overview.
Accessed 12 Oct. 2024.

http://www.ncbi.nlm.nih.gov/books/NBK545136/

18-500 Final Project Report: A7: Forget-Me-Not 12/12/2024

14

Table V: Schedule and task breakdown

Description Manufacturer Quantity Cost / item Price Paid (in
class)

Total Total Paid (in
class)

Raspberry Pi V4
8GB

Raspberry Pi 2 $75.00 $0.00 $150.00 $0.00

Raspberry Pi V5
8GB

Raspberry Pi 1 $80.00 $0.00 $80.00 $0.00

NVIDIA Jetson
Nano 4GB
Developer Kit

NVIDIA 1 $300.00 $0.00 $300.00 $0.00

Raspberry Pi
Camera Module 3
Wide

Raspberry Pi 3 $35.00 $0.00 $105.00 $0.00

3D Printer
Filament

PLA Printer
Filament 1kg

1 $20.00 $0.00 (previously
owned)

$20.00 $0.00

TKGOU
Conference USB
Microphone

TKGOU 1 $20.00 $20.00 $20.00 $20.00

USB Laptop
Speaker

LIELONGREN1 1 $16.00 $16.00 $16.00 $16.00

Velcro strips VELCRO 1 $9.00 $9.00 $9.00 $9.00

Rpi 5 Camera
Ribbon

Wonrabai 1 $8.00 $8.00 $8.00 $8.00

Total: $95.00

 Table VI: Cost Breakdown

