
Forget-Me-Not
A7: Giancarlo Zaniolo, Ethan Muchnik, Swati Anshu

18-500 Capstone Design, Spring 2024
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
Forget-Me-Not seeks to help users track and find commonly
misplaced items indoors. It accomplishes this using a
Raspberry Pi with an attached camera to periodically record
pictures of a room, run an ML object detection model on the
image, and store the results such that they can be searched
using a Web App, or a microphone voice assistant. We sought
to achieve 80% object detection accuracy within a 10x10 ft
room under well-lit conditions. Our testing showed that we
achieved 75% accuracy onboard the Raspberry Pi (YOLO) and
an 83% accuracy when running a larger model on the
cloud (Grounding DINO) for predefined objects. We were
successfully able to add new objects to the model as well.

Hardware: A Raspberry Pi 5, a Picam 3W Camera, and a
microphone for voice queries.
Software: Our main webserver runs using Flask and Gunicorn,
and exists in a Docker container for portability. The image
processing pipeline uses YOLOv11 or Grounding DINO for
object detection. Users have the option to run YOLOv11
locally, or GPU-accelerated GroundingDino on a secondary
webserver, built using the same tech stack as our first
webserver, but running on a more powerful machine. We use
numpy to accelerate MSE-based image filtering and heuristic
calculation for our Smart Storage heuristic. We use SQLite as
our database. The web interface is built using HTML5, CSS3,
and JavaScript.

System Description

System Evaluation

Conclusions & Additional Information

Please visit our blog site
for further information

Our high level system architecture utilizes a Raspberry Pi 5 and
a camera for real-time image capture. A python script running
on the Pi sends images to a Docker container containing
processing endpoints. Images are processed with an ML object
detection model (YOLOv11 or GroundingDino). and an MSE-
based threshold filter to filter duplicate images. To prevent the
Pi from running out of storage, by using a heuristic to remove
the “least useful image” from the SQLite database once it hits a
memory threshold. Our webserver requires authentication for
secure access. Users can interact through a web interface or
audio commands. Our audio processing uses several
processing steps (LangChain, GPT Vision etc.) to return a
response with relevant relational information.

Web Interface Home Page

Our system successfully implements core
functionalities like real-time image processing,
voice-based querying, and efficient storage, which
aligns closely closely with our aspirations.
The project has potential for broader applications in
security, elder care, and home automation. Future
development could focus on enhancing model
training with bigger and diverse datasets, scaling
the system using cloud infrastructure, and refining
user interfaces. As a team, we learned the
importance of clear task delegation, iterative
testing, playing to individual strengths and adapting
to technical challenges along the way.

Use-Case Requirements:

List of images
tracked in
database

Most recently
seen image

Thumbnails of
the object
seen
previously for
ease of
tracking

 MAP-50 MAP-50-95 Beats Target

YOLOModelCfg1 0.6682695/1 0.5301794 No

YOLOModelCfg2 0.7478448/1 0.5984732 No

Grounding DINO 0.8330/1 0.6422313 Yes

Workflow Elements Metrics Meets Target?

Camera Preprocessing
Latency

0.0253s Yes

Speech-To-Text Latency 0.193s Yes

Web Server “Ping”
Latency

8.00*10^-7 s Yes

Object Detection (ML)
Latency

3.35s Yes

Database Write Latency 0.12s Yes

Database Read Latency: 0.00254s Yes

Other ML (Langchain)
Latency:

5.1945s Yes

Total Cross-Component
Latency (Q)

5.34s Yes

Total Cross-Component
Latency (M)

3.54s Yes

Model Accuracy

Query and Monitor Workflow Metrics

Approach to Testing:
Unit testing: Image
Processing pipeline,
storage logic, database
reads/ writes etc.
Integration Testing:
Frontend, backend and
database data flow and
query handling
Performance Evaluation:
Metrics like inference time,
query response time,
model accuracy
Validation against set
targets: Cross checked
against design goals (seen
in the table)

	Slide 1

