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Abstract— Forget-Me-Not is a system capable of tracking and 

locating commonly misplaced objects such as keys, wallets, and 

remote controls in indoor environments. Using a camera system 

coupled with a custom-trained YOLO object detection model, this 

system identifies and stores the last known location of these items 

in a database and allows the user to query them. Compared to 

existing Bluetooth trackers, this solution provides a more scalable, 

flexible, and hands-off alternative, particularly beneficial for 

people with dementia or cognitive impairments. 

 
Index Terms— Camera-based tracking, computer vision, object 

detection, object tracking, Raspberry Pi, real-time location, 

YOLO, machine learning, indoor environments. 

 

I. INTRODUCTION 

Existing solutions have several limitations. For example, 

Bluetooth trackers are often inconvenient because they require 

physical attachment to each item, and have a difficult time 

providing exact location data, all while being too expensive to 

use for all but a few items. Similar complaints can be said 

about GPS trackers or AirTags, which cost a starting $30 per 

tag. In contrast, Forget-Me-Not uses machine learning and 

computer vision to monitor entire rooms and detect as many 

objects as it can recognize without requiring tags or extra 

setup. The system also aims to provide two intuitive real-time 

interfaces (speech and web) to provide a pleasant and simple 

experience for the end user. Ultimately, the goal is to create a 

scalable, easy-to-use system that enhances everyday 

convenience for families and students. 

 

 

 

  

II. USE-CASE REQUIREMENTS 

We have determined that Forget-Me-Not must meet several 

of the following critical requirements to effectively meet the 

needs of our envisioned customers.  

Our first requirement concerns the capabilities that our 

system should have. Firstly, we would like our system to be able 

to take photographs of the user’s room. This would be necessary 

as we would believe giving the user the opportunity to see a 

photo of their room in a state where their object was last seen 

would be conducive to helping find an object.  

Secondly, our system should provide the user the capability 

to query the system, both through a “voice assistant” frontend 

and a visual frontend. We believe that both are necessary, as the 

voice assistant would provide the user a means to query the 

system if they have lost the device they are looking for, and the 

visual frontend would assist in the case that the model is not 

completely accurate, or the object to be found was the second-

to-last seen version of said object. We believe both frontends 

should themselves have their own set of constraints.  

For the audio frontend, we think it would be reasonable for it 

to take 30 seconds between speaking a query and receiving a 

result. This time was chosen because in most cases, finding an 

object on your own should take more than 30 seconds. This 

statement is corroborated with calculations based on data found 

on the “Lostings Lost and Found Statistics”[1] webpage. This 

page claims that the average person spends 2.5 days per year 

searching for lost objects, and that the average person can lose 

up to 9 items per day. With some calculations, we arrive at the 

very conservative estimate that  
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1.096 min/object spent searching on a given day. If we could 

cut this number in half, it could save the user lots of time in the 

long run.  

For the web frontend, we would like to ensure that the user 

receives the answer for a query in 10 seconds. This is because 

according to Uptrends, user attention suffers if a webpage is 

stuck loading for more than 10 seconds[2].  

For both frontends, we would like to ensure that our system 

returns queries based on data that is at most 30 seconds old. 

According to the National Library of Medicine, short-term 

memory lasts for 30 seconds[3].  
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The “Forget-Me-Not” system addresses the common 

problem of misplacing everyday household items such as keys, 

wallets, and remote controls in indoor environments. The 

primary use case is for families and students who often lose 

track of these items due to busy schedules or shared living 

spaces. Searching for lost objects can be frustrating and time-

consuming, particularly when people are in a rush or trying to 

manage multiple tasks. Forget-Me-Not offers a practical 

solution by using camera-based object tracking to help users 

quickly locate these frequently misplaced items. 
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Regarding our model, we have determined that the system 

needs to achieve at least 80% accuracy in detecting and 

identifying predefined objects within a 10x10 ft room under 

well-lit conditions (≥3000 lumens per square foot). We have 

chosen these numbers because we believe it is reasonable for 

our tool to miss 1/5 voice queries and still leave users satisfied, 

and because we believe the area and lighting constraints provide 

a reasonable environment for which it would be nontrivial for 

users to remember which objects were always present.  

For our objects, we are choosing to initially support finding 

phones, wallets, and keys, as they are the most commonly lost 

objects according to the “Lostings Lost and Found Statistics” 

webpage[1]. More objects may be added in the future. 

Additionally, we have chosen cost constraints which dictate 

that the hardware setup should not exceed $300, while cloud 

services for continuous usage should be kept under $40 per user 

per month. We based these numbers off security.org’s 

SimpliSafe, an existing product which charges between $250 

and $730 for the hardware, and $32/month as a monthly 

subscription. As this is a successful product, we have reason to 

roughly believe people will buy our product for similar 

prices[4].  

Lastly, privacy is a priority, meaning that access to the 

system must be restricted to authorized users on authenticated 

local devices. These requirements are designed to create a 

system that is both accurate and cost-effective, while 

maintaining a focus on user privacy and efficiency. 

 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

 

To describe the architecture of the system, we begin with an 

overview of the system’s physical layout and operational flow. 

The system is comprised of three primary components: the 

Raspberry Pi (with a camera), the, user-facing interface, and our 

web server. 

  

A. Camera and Raspberry Pi Setup: 

The system is centered around one or more Raspberry Pi 

units, each equipped with a high-resolution camera. These 

cameras are strategically placed within a room to maximize 

floor visibility. The Raspberry Pi serves to capture images 

periodically of its environment and transmit them over HTTP 

to our server for further processing. Notably, the raspberry pi 

can be used to run more basic computations. In our overall 

workload, we expect there to be a large portion of the time 

where new pictures will never provide new information, such 

as when the room owner is not present, or at nighttime when 

not much is happening. During these instances, it would not be 

useful to be running object detection on, and saving every 

picture outputted by the camera. As such, we plan on adding 

certain optimizations to our camera setup to prune such images 

from those sent to our web server. 

  

B. Query Interfaces: 

For our overall system, we plan on supporting two interfaces 

through which users can query information, a visual website-

based interface, and an audio “voice assistant” interface.   

In the visual website-based user interface, users will be able 

to query the last known location of a specific object through a 

text field. This interface sends requests to the web server via a 

REST API. After the necessary processing has been done, the 

web server should return the last time the requested object was 

seen (updated within the last 30 seconds), within 20 seconds of 

querying, ensuring real-time usability for users. If the provided 

image is not to the user’s desires, they should have the option 

to retrieve the previous occurrence of the object in the database. 

This will be accomplished through another request to the web 

server’s REST API. Also, the HTML for our website will be 

hosted on the web server too. 

The “voice assistant” interface will be structured similarly to 

the visual website-based interface, only that instead of sending 

text queries to the server, it should send “spoken text”. The 

raspberry pi will have a microphone that is always recording, 

and using a ML model to turn any speech it hears into text. Once 

it deciphers the keyphrase, “Forget-Me-Not, where is my, 

‘__’”, it should send the spoken string to the web server, also 

through a REST API. It should eventually receive a response, 

which it can synthesize into spoken speech, and play through 

its speakers. 

However, if the users would like all their information to 

remain local, we are creating an alternative system that allows 

for all the processing to happen on the edge device and a web 

server. The system architecture for this version is as follows:  

 

C. Web Server: 

For our web server, we plan on supporting two backends, one 

cloud, and the other running on the user’s personal machine. 

Both of our backends will share some of the same functionality.  

Upon receiving an image through its REST API, our web 

server will run YOLOv11 on the image, and upon detecting one 

or multiple objects, ensure its last known position is updated 

and stored in its database, and the image is stored in a 

filesystem. Additionally, upon receiving text or voice query, the 

backend will parse the query, retrieve the requested information 

from its database, and send it back to the requester. In general, 

the compute also maintains object location histories and 

handles any necessary computations beyond the capability of 

the Raspberry Pi, ensuring that processing remains lightweight 

on the edge device. 

The primary differences between our backends lie in their 

choice of a computing platform and database. Our cloud 

compute will be hosted on AWS EC2, and store data in Amazon 

RDS and image storage in S3 buckets, which comes with the 

challenge of authenticating multiple users, and storing all their 

data securely. On the other hand, our local platform will simply 

run the webserver locally, and store data in an SQLite database 

on the 64GB SD card. To manage storage limitations, old 

images and location data will periodically be cleared and 

compressed. 
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IV. DESIGN REQUIREMENTS 

 The system's design requirements are primarily driven by 

the use case of tracking and identifying misplaced objects in 

indoor environments, and they can be categorized into 

hardware, latency, price, and accuracy constraints. 

  

A. Hardware Constraints 

The system requires cameras with a resolution of 1080p to 

ensure that the objects are captured in sufficient detail for 

accurate detection. This resolution strikes a balance between 

providing clear images and managing data size for processing. 

The cameras need to capture images every 5 seconds to 

maintain up-to-date information on object locations without 

overburdening the system’s processing capabilities. Notably, it 

took one of our group members 5 seconds to slowly walk across 

their room, meaning our system should reasonably capture any 

instance where an object is briefly placed, before being picked 

up and transported again.  Additionally, each camera must have 

a field of view (FOV) of 40 degrees to ensure adequate 

coverage of the room. While this FOV might seem narrow, it 

helps the system focus on specific areas and reduces image 

distortion, optimizing object detection.  

  

B. Latency Constraints 

To ensure real-time operation, the system must meet specific 

latency targets. For the “Monitor” workflow, which involves 

capturing and processing images, preprocessing the image data 

must occur within 1 second, while object detection through 

machine learning models should take 5 seconds. The webserver 

“ping” latency should be within 1 second, and the entire 

process, including database writing and cross-component 

latencies, should be complete within 13 seconds, ensuring that 

the system remains responsive.  

We chose these values because they seemed like reasonable 

targets for each of our subsystems. Our YOLO latency was 

found through personal testing, our preprocessing latency 

makes sense because a 1080p image has 2 million pixels, and 

the Raspberry pi has a >200MHz clock, meaning we can run 

100 cycles on each pixel and have it done in 1 second. We do 

not have a great metric for our database latency, as it depends 

highly on our database choice workload, and database structure, 

so 5 seconds seemed like a safe settlement. Additionally, by 

pinging google.com, we can assume that a relatively “normal” 

ping is somewhere around 20-100ms, which should fit within 

our 1 second margin unless there are issues with the system. 

For the “Query” workflow, which is responsible for 

providing users with information about the location of objects, 

speech-to-text processing should take no more than 2 seconds, 

the, followed by the webserver ping latency, which should take 

less than 1 second. Next, we list that the database read latency 

should require less than 7 second, leaving 10 seconds for an 

additional processing we would like to do using LLMs. The 

total latency for a query response should not exceed 20 seconds, 

allowing users to quickly find misplaced items.  

 

  

C. Price Constraints 

Affordability is critical for the target audience, which 

includes families and students. Therefore, the hardware cost per 

room is capped at $300, ensuring that the system remains cost-

effective. Additionally, the cloud computing and storage costs 

are set at $40 per user per month. The rationale for these values 

was previously mentioned in our use-case requirements, with 

both being based off the price of an existing home security 

product. With this price point, we hope to balance between 

maintaining high performance and providing an affordable 

solution for continuous usage. 

  

D. Privacy 

The cloud version of the system will utilize AWS security 

protocols to safeguard both data at rest and in transit. AWS 

offers a highly secure infrastructure, which includes encryption 

services, access management, and monitoring to prevent 

unauthorized access or data breaches. In addition to the 

securities provided by AWS, we plan on encrypting all images 

stored in the S3 buckets filesystem, and storing its keys inside 

the database, which has encryption gurarantees. 

The local version should never make images available to 

anyone outside of the local network, meaning all data should be 

secure. 

 

These design requirements ensure that the system operates 

efficiently, remains affordable, and meets user expectations for 

responsiveness and reliability in an indoor environment. 

V. DESIGN TRADE STUDIES 

Design trade-offs play a crucial role in optimizing the 

performance of the “Forget-Me-Not” system while balancing 

key factors such as cost, accuracy, latency, and scalability. Each 

subsystem has been carefully evaluated to identify how 

different design choices impact the overall system’s ability to 

meet the use-case requirements. 

A. Machine Learning Model  

Design Specification: Object detection accuracy must meet 

or exceed 80% in a well-lit 10x10 ft room. 

  

Trade-Off Between Accuracy and Latency: The key trade-off 

for the YOLOv11 model is between detection accuracy and the 

latency associated with running the model on edge devices like 

the Raspberry Pi. YOLO provides high detection accuracy, but 

as the model complexity increases (e.g., deeper layers for better 

object recognition), the latency increases due to higher 

processing time. Conversely, simplifying the model to meet 

latency requirements may reduce detection accuracy, which is 

unacceptable for meeting user expectations. 

 

Equation: Latency (L) is proportional to model complexity 

(C) and inversely proportional to processing power (P): 

𝐿 ∝  
𝐶

𝑃
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To balance this trade-off, we will be optimizing the model’s 

size while keeping it within the computational capabilities of 

the Raspberry Pi, reducing unnecessary complexity to meet 

both accuracy and speed requirements. 

 

Trade-Off Impacts: Reducing model complexity may result 

in missed detections, impacting the 80% accuracy target. 

However, maintaining high complexity could increase 

detection latency beyond the acceptable threshold of 5 seconds 

per detection cycle. Therefore, tuning the model architecture 

(number of layers, input resolution) is key to balancing 

accuracy and latency for real-time performance. 

B. Amazon RDS Database 

Design Specification: The database must write new object 

locations in under 5 seconds and read them in under 7 seconds. 

  

Trade-Off Between Performance and Cost: Amazon RDS 

offers various instance types that impact both database 

performance and operational cost. Larger, more powerful 

instances can process read/write operations quickly, ensuring 

low latency, but they come at a significantly higher cost. On the 

other hand, using smaller instances reduces operational costs 

but may introduce delays in data processing, violating the 

latency constraints required for real-time object tracking. 

Equation: The cost (C) of the database is proportional to the 

instance size (S), while latency (L) is inversely proportional to 

the instance size: 

  

𝐿 ∝  
1

𝑆
,   𝐶 ∝  𝑆 

 

 This equation highlights the trade-off: to minimize latency, 

a larger database instance is required, but this increases 

operational costs. 

 

Trade-Off Impacts: For a low-cost, scalable system, a 

balance between performance and cost is critical. Choosing an 

RDS instance size that keeps latency within 5-7 seconds while 

staying within budget constraints will directly impact user 

satisfaction and system scalability. 

 

C. Web Server Configurations 

Design Specification: The web server must handle user 

queries and return item locations in under 20 seconds. 

  

Trade-Off Between Scalability and Response Time: The 

choice of web server components (Nginx, Gunicorn, Flask) 

involves trade-offs between the server’s ability to handle 

multiple requests simultaneously (scalability) and the time it 

takes to process each request (response time). Nginx serves as 

a load balancer to optimize request handling, while Gunicorn 

acts as the server interface for Flask, which processes API 

requests. Increasing the number of Gunicorn worker threads 

improves the server’s ability to handle concurrent requests but 

increases memory usage and potentially adds overhead, 

increasing response time. 

Equation: Response time (T) is inversely related to the 

number of workers (W) but directly related to memory usage 

(M): 

  

𝑇 ∝  
1

𝑊
 ,   𝑀 ∝  𝑊 

  

This trade-off requires optimizing the number of workers to 

balance memory usage with fast request handling. 

 

Trade-Off Impacts: Overloading the web server with too 

many worker threads may lead to slower responses due to 

memory constraints, while too few workers might delay query 

responses. The system must be tuned to handle multiple users 

without exceeding the 20-second response time requirement. 

VI. SYSTEM IMPLEMENTATION 

A. Machine Learning Model  

The first critical subsystem in our system is YOLOv11, 

which handles object detection. It will be trained using a 

specialized dataset tailored to help it detect objects in indoor 

environments, focusing on frequently misplaced items such as 

keys, wallets, and remotes. Once trained, the model operates by 

processing incoming image frames captured by the camera and 

producing bounding boxes around detected objects with labels. 

The output from YOLOv11 is crucial for object location 

tracking and is passed to the next subsystem for database 

storage or user queries.  

 

The primary limitation for this is our ability to create a good 

dataset with which to train the model on. Dataset engineering 

requires a significant time investment, particularly if you plan 

on creating your own training data. Much of our time will be 

spent trying to find an effective way to train our model within 

the time bounds allotted by 18-500. However, if we manage to 

find a successful method, it should be relatively easy for us to 

add detection classes to the model, and improve its 

functionality. 

Additionally, lighting conditions and object size could also 

impact detection accuracy, requiring further fine-tuning during 

training. 

 

B. Amazon RDS/SQLite Database 

The database (Amazon RDS for cloud, and SQLite for local) 

handles data storage for the detected object locations and their 

associated metadata. This subsystem must meet strict latency 

constraints, with database writes and reads occurring within 5 

and 7 seconds respectively.  

Amazon RDS offers a managed relational database, 

providing scalability, availability, and security, which are 

critical for a system like ours that handles multiple data 

transactions per room. Each time YOLOv11 detects an object, 

the location data, and a link to its corresponding (encrypted) 

image file is written to the RDS database for subsequent 
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retrieval during query workflows. Additionally, it integrates 

seamlessly with AWS security features, ensuring that sensitive 

data remains protected through encryption and authenticated 

access. 

SQLite is a more lightweight option, but should still provide 

us all of the necessary guarantees to ensure our system has the 

necessary functionality while safely executing concurrent 

transactions. 

Our database choices will allow us to maintain an accurate 

and up-to-date record of item locations, enabling the system to 

meet the user requirement of delivering the item location within 

20 seconds of querying.  

 

C. Web Server 

The web server subsystem is responsible for handling the 

front-end and back-end interactions of the system, connecting 

the user interface to the machine learning models and 

database. This subsystem uses a combination of Nginx, 

Gunicorn, and Flask. Nginx serves as the reverse proxy and 

static file server, ensuring efficient handling of HTTP 

requests. Gunicorn is the WSGI (Web Server Gateway 

Interface) server that bridges Flask (the web framework) with 

Nginx, facilitating the execution of Python code in response to 

user queries. Flask determines the REST API calls that trigger 

the object detection and query workflows. The web server also 

manages latency between subsystems, ensuring that all 

interactions meet the required 20-second total query time. By 

choosing this robust combination, the system can efficiently 

scale and manage multiple requests in parallel, contributing to 

its overall performance and user experience. 

Depending on whether it is executing the image processing 

or query processing pipelines, the web server will be running 

different code paths. 

In the case of image processing pipeline, the server was 

invoked with an image from the Raspberry Pi, and must run 

YOLOv11 on the image, and store its detected objects in the 

database, and new image in the file system, after encryption. 

In the case of the query processing pipeline, the web server 

receives text input from the Raspberry pi, uses LangChain to 

extract the keyword from the query, uses Word2Vec to find out 

the most similar detected object category to the word, acquires 

the relevant information from the database (the most recent 

entry for a requested object), and does some final formatting 

before returning the result to the user.  Please refer to Diagram 

3 in the Appendix.  

 

D. Camera Subsystem 

The camera subsystem is a fundamental component in the 

system, responsible for providing the visual data required for 

object detection. The system uses a 1080p resolution camera, 

which is connected to the Raspberry Pi through the Camera 

Serial Interface (CSI) port, ensuring high-speed, low-latency 

data transmission. The camera is strategically placed to 

capture approximately 80% of the room’s floor area, 

minimizing blind spots and ensuring that objects like keys, 

wallets, and remotes are within its field of view. The camera 

operates by taking an image every 5 seconds, aligning with the 

system’s requirement for real-time monitoring.  

 Clear, detailed images allow the YOLOv11 model to 

reliably identify smaller objects and differentiate them from 

background clutter, even under variable lighting conditions. 

The images captured are preprocessed on the Raspberry Pi,  

However, there are trade-offs to consider. The higher 

resolution increases the computational load on the Raspberry 

Pi, potentially leading to processing delays, particularly when 

handling larger or more complex scenes. The camera’s 1080p 

output, while beneficial for detailed object detection, requires 

balancing against the Pi’s limited processing power.  

Additionally, suboptimal lighting conditions, such as low 

light or harsh shadows, could impact the quality of the 

captured images, necessitating further adjustments in camera 

settings or the use of external lighting to maintain accuracy. 

Despite these challenges, the camera subsystem is designed to 

deliver consistent, high-quality visual data that is integral to 

the overall performance of the system. 

 

E. Raspberry Pi processing Subsystem 

The Raspberry Pi Processing Subsystem serves as the eyes 

and ears of the system. The Raspberry Pi 4, with its quad-core 

processor and 4GB of RAM, acts as the hub for image 

preprocessing, microphone requests/audio responses, and 
communication with the web server.  

When its camera captures an image, the Pi first performs a 

basic prepressing step where it takes the pixel difference from 

the last frame, to determine whether the captured image has 

changed sufficiently for it to be worthwhile to run the object 

detection model and store its results in the database.  

Similarly, when the microphone captures audio input, it is 

converted to text using a speech recognition model, and 

eventually sent to the web server as well. 

 

F. Amazon S3 Cloud Storage/RPi Filesystem 

The primary purpose of the filesystem is to store files which 

would be cumbersomely large to place in a database. We plan 

on encrypting all image files before storing them, on both our 

cloud and local backends, to ensure no malicious actor can 

access house photos without authentication.  

The local implementation of the filesystem should suffice 

for the uses of a single person, but for the cloud server, which 

will be handling the queries of multiple users, it will be 

advantageous to have some of the advantages provided by 

Amazon’s ecosystem. 

 

VII. TEST, VERIFICATION AND VALIDATION 

A. Object Detection Accuracy 

To verify that YOLOv11 meets the design specification of 

achieving at least 80% accuracy in object detection, we plan on 

creating our own small suite of images, which we can use to test 

our system. We plan on conducting 50 detection trials per object 

we would like to detect in a simulated environment resembling 

typical household conditions (a well-lit 10x10 ft room). 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑠
 

 

We will repeat this test under different lighting conditions 

and for different object types to ensure that the model 

generalizes well to various environments.  

 

B. Webserver System Latency 

We can easily measure the latency of each of the components 

in our webserver by instrumenting our code with timers around 

each of our components. Measuring latency will likely not 

directly depend on our workload, so we can make mocked-out 

components which spit out random data to execute test traces.   

Testing will involve a comparison between the actual capture 

interval and the design requirement to ensure the web server 

components operate within the specified bounds. This testing 

will also indirectly test the correctness of our implementation. 

 

C. Query Response Time 

To validate the query response time of under 20 seconds, 

we will test the entire system’s performance from the point of 

speech input by the user to the system output of item location. 

Similarly to our webserver, we will instrument our code and 

measure the total time taken for the system to process the 

user’s voice query, search the database for the object’s 

location, and return the result to the user. 

This test will be repeated multiple times under different 

network conditions to identify any potential delays caused by 

database latency, object detection processing time, or speech-

to-text conversion. Achieving a consistent response time of 

under 20 seconds ensures that the system meets both the 

design and use-case requirements of providing timely 

feedback to users. 

 

D. Privacy and Security 

To ensure that only authorized users can access the system, 

we will perform security tests focusing on the authentication 

protocols integrated with AWS’s security system. A series of 
mock attacks, including unauthorized device attempts to 

access the data, will be conducted to assess the robustness of 

the security measures. 

We will also test the system’s encryption during data 

storage and retrieval, ensuring that sensitive information, such 

as object locations, is protected during communication 

between the Raspberry Pi, AWS servers, and the end user. A 

successful test will demonstrate that privacy and security 

measures meet the use-case requirements for authorized 

access. 

 

E. System Throughput 

This test how much workload our system is able to cope with, 

which will be particularly important for our cloud 

implementation, as it will determine how many clients we are 

able to service with one machine. For this test, we will make 

mock traces with randomized data, and bombard our EC2 

instance with an increasing number of requests, to see how the 

system copes with them. In particular, we will be measuring 

statistics like CPU usage, memory usage, and if we manage to 

reach a bottleneck, latency increases for the requests. 

 

F. Database Latency Tests  

As the database is a separate component, we would also like to 

independently test its performance and throughput at various 

levels of capacity. Testing will similarly be done by 

instrumenting code with timers, and running random traces. 

VIII. PROJECT MANAGEMENT 

A. Schedule 

The schedule is split up according to individual 

responsibilities with slack time of an average of 2 days included 

in the timeline. The largest time allocation is for system 

integration, with slack time of a week built-in. It is color coded 

based on the type of work (blue for documentation, red for 

design, green for individual progress and orange for 

integration). Refer to table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table I: Schedule and task breakdown 
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B. Team Member Responsibilities 

Ethan’s primary responsibility in the project is the machine 

learning component, where his focus is on optimizing the model 

for accuracy, performance, and generalization. He works on 

improving the detection algorithms to ensure that the system 

can identify objects in various indoor environments with high 

precision. He also plays a secondary role in optimizing 

performance across the overall system, ensuring that both the 

web server and database integrate efficiently with the machine 

learning model. 

  

Swati is working on setting up the database and hardware 

configurations, which are critical for the system’s backend 

infrastructure. She ensures that data related to detected objects 

is stored correctly and accessed efficiently. In addition to 

database management, She will also work on preprocessing 

optimization, refining how raw data is prepared for object 

detection. Her secondary responsibility involves collaborating 

with Ethan and Giancarlo to troubleshoot any performance 

issues that arise in the database or hardware setup, ensuring 

smooth communication across all system subsystems. 

  

Giancarlo is primarily responsible for the web server 

structure, setup, and instrumentation. His role ensures that the 

server can handle incoming data and process requests 

efficiently, providing users with quick access to object 

detection results. He also works closely with Ethan to integrate 

the machine learning model into the web server and with Swati 

to ensure smooth data flow from the database to the user 

interface. This coordination allows the system to operate 

seamlessly, balancing the needs of each subsystem. 

 

C. Bill of Materials and Budget 

Table 2  shows the detailed breakdown of parts that we 

require for our system and the estimated total cost for its 

development.  

D. Risk Mitigation Plans 

Critical risks for this project include the fact that none of us 

have worked with databases before so figuring out the correct 

configuration and the integration, post-setup will be a 

challenge. Secondly, the amount of data needed to train the 

ML model is substantially large and there are limited online 

datasets for the indoor images we need – hence we will need 

to create our own bounding boxes for hundreds of images to 

train the model further. Lastly, another critical risk is the final 

integration of the entire system, as none of us have worked on 

creating interfaces for multiple different systems and different 

datatypes.  

Hence, our primary risk is training the ML model for our 

system to meet the design specification. These risks will be 

mitigated by allotting time for just for the creation of the 

training dataset manually and using annotation tools to speed 

up the process . Other than that, approaching the integration 

risks modularly and debugging each subsystem and subsystem 

interface will help us minimize complications. Lastly, figuring 

out how to use services that we have not used before is a 

matter of learning on the spot, understanding the demands of 

our system and implementing the necessary steps efficiently. 

To mitigate the database risk, we plan to use extensive 

documentation and tutorials provided by Amazon Web 

Services (AWS) for setting up and configuring the RDS 

database. Furthermore, dividing the team responsibilities, with 

each member focusing on mastering a particular service or 

technology, will ensure a smoother integration process. 

IX. RELATED WORK 

Several existing projects and products are similar to the 

system we are proposing. A notable example is Tile[5], a small 

Bluetooth-based tracking device that helps users find misplaced 

objects like keys, wallets, and phones. Tile’s strength lies in its 

simplicity and user-friendly mobile app interface, which allows 

users to track items using a connected smartphone. However, 

Tile requires physical attachment of the tracking device to each 

item, which our project aims to avoid by using computer vision 

to detect items in an environment without the need for 

individual trackers. 

Another similar product is the Apple AirTag[6], which uses 

Ultra-Wideband (UWB) technology along with the “Find My” 

app to locate lost items. Like Tile, it also requires physical 

attachment to objects. Though it leverages precise location 

detection, it does not provide a solution for automatically 

tracking objects across a room in the way that our system does. 

On the more technical side, systems such as Amazon Go 

“Just Walk Out” technology[7] stores utilize computer vision 

and machine learning for object detection and tracking. The 

Amazon Go system is much more advanced and tracks multiple 

users and objects in real time, relying heavily on cloud 

infrastructure. While impressive, the scale and complexity of 

Amazon Go surpasses what our project is targeting, which is 

smaller indoor environments. 

Cortexica Vision Systems[8] also offers vision-based object 

recognition for retail and inventory management, similar in 

principle to our approach but with a focus on industrial use 

cases. 

Our system differs from these existing solutions by focusing 

on a low-cost, camera-based, non-invasive solution for 

individual users, such as families or students, to locate 

commonly misplaced items without attaching tracking devices. 

Furthermore, the use of machine learning models for indoor 

object detection ensures that the solution remains scalable and 

adaptable to various environments. 

X. SUMMARY 

Our design focuses on an intelligent object tracking system 

that uses computer vision and machine learning to help users 

locate misplaced items like keys and wallets in indoor 

environments. The system is built on a Raspberry Pi, running a 

trained YOLOv11 object detection model, and integrates with 

an Amazon RDS database and a web server. It is designed for 

low latency, ease of use, and affordability, targeting busy 

families and students. 

Key challenges include improving object detection accuracy 

in various lighting conditions, optimizing the model for the 
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Raspberry Pi’s limited hardware, and building a custom dataset 

for training. Additionally, ensuring smooth integration between 

the machine learning model, database, and web server will be 

essential to meet performance requirements.  

GLOSSARY OF ACRONYMS 

RPi – Raspberry Pi  

AWS – Amazon Web Services 

FOV – Field of View 

GPU – Graphics Processing Unit 

ML – Machine Learning 

RDS – Relational Database Service 

YOLO – You Only Look Once 

VM – Virtual Machine 
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Table 2: Bill of Materials 

 

Description  Manufacturer Quantity  Cost / item  Price Paid (in 

class) 

Total Total Paid (in 

class) 

Raspberry Pi V4 
8GB 

Raspberry Pi 2 $75.00 $0.00 $150.00 $0.00 

Raspberry Pi V5 
8GB 

Raspberry Pi 1 $80.00 $0.00 $80.00 $0.00 

NVIDIA Jetson 

Nano 4GB 

Developer Kit 

NVIDIA 1 $300.00 $0.00 $300.00 $0.00 

Raspberry Pi 
Camera Module 3 

Wide 

Raspberry Pi 3 $35.00 $0.00 $105.00 $0.00 

3D Printer 

Filament 

PLA Printer 

Filament 1kg 

1 $20.00 $0.00 (previously 

owned) 

$20.00 $0.00 

TKGOU 
Conference USB 

Microphone 

TKGOU 1 $20.00 $20.00 $20.00 $20.00 

USB Laptop 

Speaker  

LIELONGREN1 1 $16.00 $16.00 $16.00 $16.00 

Lomg USBC 
Power Cable 

TONIWA 3 $14.00 $42.00 $42.00 $42.00 

       

 

Grand Total: $78.00 

 

Diagram III: Web server architecture  
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