
18-500 Design Project Report: Forget-Me-Not (10/11/2024)

1

Abstract— Forget-Me-Not is a system capable of tracking and

locating commonly misplaced objects such as keys, wallets, and

remote controls in indoor environments. Using a camera system

coupled with a custom-trained YOLO object detection model, this

system identifies and stores the last known location of these items

in a database and allows the user to query them. Compared to

existing Bluetooth trackers, this solution provides a more scalable,

flexible, and hands-off alternative, particularly beneficial for

people with dementia or cognitive impairments.

Index Terms— Camera-based tracking, computer vision, object

detection, object tracking, Raspberry Pi, real-time location,

YOLO, machine learning, indoor environments.

I. INTRODUCTION

Existing solutions have several limitations. For example,

Bluetooth trackers are often inconvenient because they require

physical attachment to each item, and have a difficult time

providing exact location data, all while being too expensive to

use for all but a few items. Similar complaints can be said

about GPS trackers or AirTags, which cost a starting $30 per

tag. In contrast, Forget-Me-Not uses machine learning and

computer vision to monitor entire rooms and detect as many

objects as it can recognize without requiring tags or extra

setup. The system also aims to provide two intuitive real-time

interfaces (speech and web) to provide a pleasant and simple

experience for the end user. Ultimately, the goal is to create a

scalable, easy-to-use system that enhances everyday

convenience for families and students.

II. USE-CASE REQUIREMENTS

We have determined that Forget-Me-Not must meet several

of the following critical requirements to effectively meet the

needs of our envisioned customers.

Our first requirement concerns the capabilities that our

system should have. Firstly, we would like our system to be able

to take photographs of the user’s room. This would be necessary

as we would believe giving the user the opportunity to see a

photo of their room in a state where their object was last seen

would be conducive to helping find an object.

Secondly, our system should provide the user the capability

to query the system, both through a “voice assistant” frontend

and a visual frontend. We believe that both are necessary, as the

voice assistant would provide the user a means to query the

system if they have lost the device they are looking for, and the

visual frontend would assist in the case that the model is not

completely accurate, or the object to be found was the second-

to-last seen version of said object. We believe both frontends

should themselves have their own set of constraints.

For the audio frontend, we think it would be reasonable for it

to take 30 seconds between speaking a query and receiving a

result. This time was chosen because in most cases, finding an

object on your own should take more than 30 seconds. This

statement is corroborated with calculations based on data found

on the “Lostings Lost and Found Statistics”[1] webpage. This

page claims that the average person spends 2.5 days per year

searching for lost objects, and that the average person can lose

up to 9 items per day. With some calculations, we arrive at the

very conservative estimate that

2.5
𝑑𝑎𝑦𝑠 𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔

𝑦𝑒𝑎𝑟
∗

1

365 𝑑𝑎𝑦𝑠
∗

1

24 ℎ𝑜𝑢𝑟𝑠
∗

1

60𝑚𝑖𝑛
∗

1

9
𝑜𝑏𝑗𝑒𝑐𝑡𝑠

𝑙𝑜𝑠𝑡

𝑑𝑎𝑦

= 1.096 𝑚𝑖𝑛/𝑜𝑏𝑗𝑒𝑐𝑡

1.096 min/object spent searching on a given day. If we could

cut this number in half, it could save the user lots of time in the

long run.

For the web frontend, we would like to ensure that the user

receives the answer for a query in 10 seconds. This is because

according to Uptrends, user attention suffers if a webpage is

stuck loading for more than 10 seconds[2].

For both frontends, we would like to ensure that our system

returns queries based on data that is at most 30 seconds old.

According to the National Library of Medicine, short-term

memory lasts for 30 seconds[3].

Forget-Me-Not

Giancarlo Zaniolo, Ethan Muchkin, Swati Anshu

Department of Electrical and Computer Engineering, Carnegie Mellon University

The “Forget-Me-Not” system addresses the common

problem of misplacing everyday household items such as keys,

wallets, and remote controls in indoor environments. The

primary use case is for families and students who often lose

track of these items due to busy schedules or shared living

spaces. Searching for lost objects can be frustrating and time-

consuming, particularly when people are in a rush or trying to

manage multiple tasks. Forget-Me-Not offers a practical

solution by using camera-based object tracking to help users

quickly locate these frequently misplaced items.

18-500 Design Project Report: Forget-Me-Not (10/11/2024)

2

Regarding our model, we have determined that the system

needs to achieve at least 80% accuracy in detecting and

identifying predefined objects within a 10x10 ft room under

well-lit conditions (≥3000 lumens per square foot). We have

chosen these numbers because we believe it is reasonable for

our tool to miss 1/5 voice queries and still leave users satisfied,

and because we believe the area and lighting constraints provide

a reasonable environment for which it would be nontrivial for

users to remember which objects were always present.

For our objects, we are choosing to initially support finding

phones, wallets, and keys, as they are the most commonly lost

objects according to the “Lostings Lost and Found Statistics”

webpage[1]. More objects may be added in the future.

Additionally, we have chosen cost constraints which dictate

that the hardware setup should not exceed $300, while cloud

services for continuous usage should be kept under $40 per user

per month. We based these numbers off security.org’s

SimpliSafe, an existing product which charges between $250

and $730 for the hardware, and $32/month as a monthly

subscription. As this is a successful product, we have reason to

roughly believe people will buy our product for similar

prices[4].

Lastly, privacy is a priority, meaning that access to the

system must be restricted to authorized users on authenticated

local devices. These requirements are designed to create a

system that is both accurate and cost-effective, while

maintaining a focus on user privacy and efficiency.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

To describe the architecture of the system, we begin with an

overview of the system’s physical layout and operational flow.

The system is comprised of three primary components: the

Raspberry Pi (with a camera), the, user-facing interface, and our

web server.

A. Camera and Raspberry Pi Setup:

The system is centered around one or more Raspberry Pi

units, each equipped with a high-resolution camera. These

cameras are strategically placed within a room to maximize

floor visibility. The Raspberry Pi serves to capture images

periodically of its environment and transmit them over HTTP

to our server for further processing. Notably, the raspberry pi

can be used to run more basic computations. In our overall

workload, we expect there to be a large portion of the time

where new pictures will never provide new information, such

as when the room owner is not present, or at nighttime when

not much is happening. During these instances, it would not be

useful to be running object detection on, and saving every

picture outputted by the camera. As such, we plan on adding

certain optimizations to our camera setup to prune such images

from those sent to our web server.

B. Query Interfaces:

For our overall system, we plan on supporting two interfaces

through which users can query information, a visual website-

based interface, and an audio “voice assistant” interface.

In the visual website-based user interface, users will be able

to query the last known location of a specific object through a

text field. This interface sends requests to the web server via a

REST API. After the necessary processing has been done, the

web server should return the last time the requested object was

seen (updated within the last 30 seconds), within 20 seconds of

querying, ensuring real-time usability for users. If the provided

image is not to the user’s desires, they should have the option

to retrieve the previous occurrence of the object in the database.

This will be accomplished through another request to the web

server’s REST API. Also, the HTML for our website will be

hosted on the web server too.

The “voice assistant” interface will be structured similarly to

the visual website-based interface, only that instead of sending

text queries to the server, it should send “spoken text”. The

raspberry pi will have a microphone that is always recording,

and using a ML model to turn any speech it hears into text. Once

it deciphers the keyphrase, “Forget-Me-Not, where is my,

‘__’”, it should send the spoken string to the web server, also

through a REST API. It should eventually receive a response,

which it can synthesize into spoken speech, and play through

its speakers.

However, if the users would like all their information to

remain local, we are creating an alternative system that allows

for all the processing to happen on the edge device and a web

server. The system architecture for this version is as follows:

C. Web Server:

For our web server, we plan on supporting two backends, one

cloud, and the other running on the user’s personal machine.

Both of our backends will share some of the same functionality.

Upon receiving an image through its REST API, our web

server will run YOLOv11 on the image, and upon detecting one

or multiple objects, ensure its last known position is updated

and stored in its database, and the image is stored in a

filesystem. Additionally, upon receiving text or voice query, the

backend will parse the query, retrieve the requested information

from its database, and send it back to the requester. In general,

the compute also maintains object location histories and

handles any necessary computations beyond the capability of

the Raspberry Pi, ensuring that processing remains lightweight

on the edge device.

The primary differences between our backends lie in their

choice of a computing platform and database. Our cloud

compute will be hosted on AWS EC2, and store data in Amazon

RDS and image storage in S3 buckets, which comes with the

challenge of authenticating multiple users, and storing all their

data securely. On the other hand, our local platform will simply

run the webserver locally, and store data in an SQLite database

on the 64GB SD card. To manage storage limitations, old

images and location data will periodically be cleared and

compressed.

18-500 Design Project Report: Forget-Me-Not (10/11/2024)

3

18-500 Design Project Report: Forget-Me-Not (10/11/2024)

4

IV. DESIGN REQUIREMENTS

 The system's design requirements are primarily driven by

the use case of tracking and identifying misplaced objects in

indoor environments, and they can be categorized into

hardware, latency, price, and accuracy constraints.

A. Hardware Constraints

The system requires cameras with a resolution of 1080p to

ensure that the objects are captured in sufficient detail for

accurate detection. This resolution strikes a balance between

providing clear images and managing data size for processing.

The cameras need to capture images every 5 seconds to

maintain up-to-date information on object locations without

overburdening the system’s processing capabilities. Notably, it

took one of our group members 5 seconds to slowly walk across

their room, meaning our system should reasonably capture any

instance where an object is briefly placed, before being picked

up and transported again. Additionally, each camera must have

a field of view (FOV) of 40 degrees to ensure adequate

coverage of the room. While this FOV might seem narrow, it

helps the system focus on specific areas and reduces image

distortion, optimizing object detection.

B. Latency Constraints

To ensure real-time operation, the system must meet specific

latency targets. For the “Monitor” workflow, which involves

capturing and processing images, preprocessing the image data

must occur within 1 second, while object detection through

machine learning models should take 5 seconds. The webserver

“ping” latency should be within 1 second, and the entire

process, including database writing and cross-component

latencies, should be complete within 13 seconds, ensuring that

the system remains responsive.

We chose these values because they seemed like reasonable

targets for each of our subsystems. Our YOLO latency was

found through personal testing, our preprocessing latency

makes sense because a 1080p image has 2 million pixels, and

the Raspberry pi has a >200MHz clock, meaning we can run

100 cycles on each pixel and have it done in 1 second. We do

not have a great metric for our database latency, as it depends

highly on our database choice workload, and database structure,

so 5 seconds seemed like a safe settlement. Additionally, by

pinging google.com, we can assume that a relatively “normal”

ping is somewhere around 20-100ms, which should fit within

our 1 second margin unless there are issues with the system.

For the “Query” workflow, which is responsible for

providing users with information about the location of objects,

speech-to-text processing should take no more than 2 seconds,

the, followed by the webserver ping latency, which should take

less than 1 second. Next, we list that the database read latency

should require less than 7 second, leaving 10 seconds for an

additional processing we would like to do using LLMs. The

total latency for a query response should not exceed 20 seconds,

allowing users to quickly find misplaced items.

C. Price Constraints

Affordability is critical for the target audience, which

includes families and students. Therefore, the hardware cost per

room is capped at $300, ensuring that the system remains cost-

effective. Additionally, the cloud computing and storage costs

are set at $40 per user per month. The rationale for these values

was previously mentioned in our use-case requirements, with

both being based off the price of an existing home security

product. With this price point, we hope to balance between

maintaining high performance and providing an affordable

solution for continuous usage.

D. Privacy

The cloud version of the system will utilize AWS security

protocols to safeguard both data at rest and in transit. AWS

offers a highly secure infrastructure, which includes encryption

services, access management, and monitoring to prevent

unauthorized access or data breaches. In addition to the

securities provided by AWS, we plan on encrypting all images

stored in the S3 buckets filesystem, and storing its keys inside

the database, which has encryption gurarantees.

The local version should never make images available to

anyone outside of the local network, meaning all data should be

secure.

These design requirements ensure that the system operates

efficiently, remains affordable, and meets user expectations for

responsiveness and reliability in an indoor environment.

V. DESIGN TRADE STUDIES

Design trade-offs play a crucial role in optimizing the

performance of the “Forget-Me-Not” system while balancing

key factors such as cost, accuracy, latency, and scalability. Each

subsystem has been carefully evaluated to identify how

different design choices impact the overall system’s ability to

meet the use-case requirements.

A. Machine Learning Model

Design Specification: Object detection accuracy must meet

or exceed 80% in a well-lit 10x10 ft room.

Trade-Off Between Accuracy and Latency: The key trade-off

for the YOLOv11 model is between detection accuracy and the

latency associated with running the model on edge devices like

the Raspberry Pi. YOLO provides high detection accuracy, but

as the model complexity increases (e.g., deeper layers for better

object recognition), the latency increases due to higher

processing time. Conversely, simplifying the model to meet

latency requirements may reduce detection accuracy, which is

unacceptable for meeting user expectations.

Equation: Latency (L) is proportional to model complexity

(C) and inversely proportional to processing power (P):

𝐿 ∝
𝐶

𝑃

18-500 Design Project Report: Forget-Me-Not (10/11/2024)

5

To balance this trade-off, we will be optimizing the model’s

size while keeping it within the computational capabilities of

the Raspberry Pi, reducing unnecessary complexity to meet

both accuracy and speed requirements.

Trade-Off Impacts: Reducing model complexity may result

in missed detections, impacting the 80% accuracy target.

However, maintaining high complexity could increase

detection latency beyond the acceptable threshold of 5 seconds

per detection cycle. Therefore, tuning the model architecture

(number of layers, input resolution) is key to balancing

accuracy and latency for real-time performance.

B. Amazon RDS Database

Design Specification: The database must write new object

locations in under 5 seconds and read them in under 7 seconds.

Trade-Off Between Performance and Cost: Amazon RDS

offers various instance types that impact both database

performance and operational cost. Larger, more powerful

instances can process read/write operations quickly, ensuring

low latency, but they come at a significantly higher cost. On the

other hand, using smaller instances reduces operational costs

but may introduce delays in data processing, violating the

latency constraints required for real-time object tracking.

Equation: The cost (C) of the database is proportional to the

instance size (S), while latency (L) is inversely proportional to

the instance size:

𝐿 ∝
1

𝑆
, 𝐶 ∝ 𝑆

 This equation highlights the trade-off: to minimize latency,

a larger database instance is required, but this increases

operational costs.

Trade-Off Impacts: For a low-cost, scalable system, a

balance between performance and cost is critical. Choosing an

RDS instance size that keeps latency within 5-7 seconds while

staying within budget constraints will directly impact user

satisfaction and system scalability.

C. Web Server Configurations

Design Specification: The web server must handle user

queries and return item locations in under 20 seconds.

Trade-Off Between Scalability and Response Time: The

choice of web server components (Nginx, Gunicorn, Flask)

involves trade-offs between the server’s ability to handle

multiple requests simultaneously (scalability) and the time it

takes to process each request (response time). Nginx serves as

a load balancer to optimize request handling, while Gunicorn

acts as the server interface for Flask, which processes API

requests. Increasing the number of Gunicorn worker threads

improves the server’s ability to handle concurrent requests but

increases memory usage and potentially adds overhead,

increasing response time.

Equation: Response time (T) is inversely related to the

number of workers (W) but directly related to memory usage

(M):

𝑇 ∝
1

𝑊
 , 𝑀 ∝ 𝑊

This trade-off requires optimizing the number of workers to

balance memory usage with fast request handling.

Trade-Off Impacts: Overloading the web server with too

many worker threads may lead to slower responses due to

memory constraints, while too few workers might delay query

responses. The system must be tuned to handle multiple users

without exceeding the 20-second response time requirement.

VI. SYSTEM IMPLEMENTATION

A. Machine Learning Model

The first critical subsystem in our system is YOLOv11,

which handles object detection. It will be trained using a

specialized dataset tailored to help it detect objects in indoor

environments, focusing on frequently misplaced items such as

keys, wallets, and remotes. Once trained, the model operates by

processing incoming image frames captured by the camera and

producing bounding boxes around detected objects with labels.

The output from YOLOv11 is crucial for object location

tracking and is passed to the next subsystem for database

storage or user queries.

The primary limitation for this is our ability to create a good

dataset with which to train the model on. Dataset engineering

requires a significant time investment, particularly if you plan

on creating your own training data. Much of our time will be

spent trying to find an effective way to train our model within

the time bounds allotted by 18-500. However, if we manage to

find a successful method, it should be relatively easy for us to

add detection classes to the model, and improve its

functionality.

Additionally, lighting conditions and object size could also

impact detection accuracy, requiring further fine-tuning during

training.

B. Amazon RDS/SQLite Database

The database (Amazon RDS for cloud, and SQLite for local)

handles data storage for the detected object locations and their

associated metadata. This subsystem must meet strict latency

constraints, with database writes and reads occurring within 5

and 7 seconds respectively.

Amazon RDS offers a managed relational database,

providing scalability, availability, and security, which are

critical for a system like ours that handles multiple data

transactions per room. Each time YOLOv11 detects an object,

the location data, and a link to its corresponding (encrypted)

image file is written to the RDS database for subsequent

18-500 Design Project Report: Forget-Me-Not (10/11/2024)

6

retrieval during query workflows. Additionally, it integrates

seamlessly with AWS security features, ensuring that sensitive

data remains protected through encryption and authenticated

access.

SQLite is a more lightweight option, but should still provide

us all of the necessary guarantees to ensure our system has the

necessary functionality while safely executing concurrent

transactions.

Our database choices will allow us to maintain an accurate

and up-to-date record of item locations, enabling the system to

meet the user requirement of delivering the item location within

20 seconds of querying.

C. Web Server

The web server subsystem is responsible for handling the

front-end and back-end interactions of the system, connecting

the user interface to the machine learning models and

database. This subsystem uses a combination of Nginx,

Gunicorn, and Flask. Nginx serves as the reverse proxy and

static file server, ensuring efficient handling of HTTP

requests. Gunicorn is the WSGI (Web Server Gateway

Interface) server that bridges Flask (the web framework) with

Nginx, facilitating the execution of Python code in response to

user queries. Flask determines the REST API calls that trigger

the object detection and query workflows. The web server also

manages latency between subsystems, ensuring that all

interactions meet the required 20-second total query time. By

choosing this robust combination, the system can efficiently

scale and manage multiple requests in parallel, contributing to

its overall performance and user experience.

Depending on whether it is executing the image processing

or query processing pipelines, the web server will be running

different code paths.

In the case of image processing pipeline, the server was

invoked with an image from the Raspberry Pi, and must run

YOLOv11 on the image, and store its detected objects in the

database, and new image in the file system, after encryption.

In the case of the query processing pipeline, the web server

receives text input from the Raspberry pi, uses LangChain to

extract the keyword from the query, uses Word2Vec to find out

the most similar detected object category to the word, acquires

the relevant information from the database (the most recent

entry for a requested object), and does some final formatting

before returning the result to the user. Please refer to Diagram

3 in the Appendix.

D. Camera Subsystem

The camera subsystem is a fundamental component in the

system, responsible for providing the visual data required for

object detection. The system uses a 1080p resolution camera,

which is connected to the Raspberry Pi through the Camera

Serial Interface (CSI) port, ensuring high-speed, low-latency

data transmission. The camera is strategically placed to

capture approximately 80% of the room’s floor area,

minimizing blind spots and ensuring that objects like keys,

wallets, and remotes are within its field of view. The camera

operates by taking an image every 5 seconds, aligning with the

system’s requirement for real-time monitoring.

 Clear, detailed images allow the YOLOv11 model to

reliably identify smaller objects and differentiate them from

background clutter, even under variable lighting conditions.

The images captured are preprocessed on the Raspberry Pi,

However, there are trade-offs to consider. The higher

resolution increases the computational load on the Raspberry

Pi, potentially leading to processing delays, particularly when

handling larger or more complex scenes. The camera’s 1080p

output, while beneficial for detailed object detection, requires

balancing against the Pi’s limited processing power.

Additionally, suboptimal lighting conditions, such as low

light or harsh shadows, could impact the quality of the

captured images, necessitating further adjustments in camera

settings or the use of external lighting to maintain accuracy.

Despite these challenges, the camera subsystem is designed to

deliver consistent, high-quality visual data that is integral to

the overall performance of the system.

E. Raspberry Pi processing Subsystem

The Raspberry Pi Processing Subsystem serves as the eyes

and ears of the system. The Raspberry Pi 4, with its quad-core

processor and 4GB of RAM, acts as the hub for image

preprocessing, microphone requests/audio responses, and
communication with the web server.

When its camera captures an image, the Pi first performs a

basic prepressing step where it takes the pixel difference from

the last frame, to determine whether the captured image has

changed sufficiently for it to be worthwhile to run the object

detection model and store its results in the database.

Similarly, when the microphone captures audio input, it is

converted to text using a speech recognition model, and

eventually sent to the web server as well.

F. Amazon S3 Cloud Storage/RPi Filesystem

The primary purpose of the filesystem is to store files which

would be cumbersomely large to place in a database. We plan

on encrypting all image files before storing them, on both our

cloud and local backends, to ensure no malicious actor can

access house photos without authentication.

The local implementation of the filesystem should suffice

for the uses of a single person, but for the cloud server, which

will be handling the queries of multiple users, it will be

advantageous to have some of the advantages provided by

Amazon’s ecosystem.

VII. TEST, VERIFICATION AND VALIDATION

A. Object Detection Accuracy

To verify that YOLOv11 meets the design specification of

achieving at least 80% accuracy in object detection, we plan on

creating our own small suite of images, which we can use to test

our system. We plan on conducting 50 detection trials per object

we would like to detect in a simulated environment resembling

typical household conditions (a well-lit 10x10 ft room).

18-500 Design Project Report: Forget-Me-Not (10/11/2024)

7

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑠

We will repeat this test under different lighting conditions

and for different object types to ensure that the model

generalizes well to various environments.

B. Webserver System Latency

We can easily measure the latency of each of the components

in our webserver by instrumenting our code with timers around

each of our components. Measuring latency will likely not

directly depend on our workload, so we can make mocked-out

components which spit out random data to execute test traces.

Testing will involve a comparison between the actual capture

interval and the design requirement to ensure the web server

components operate within the specified bounds. This testing

will also indirectly test the correctness of our implementation.

C. Query Response Time

To validate the query response time of under 20 seconds,

we will test the entire system’s performance from the point of

speech input by the user to the system output of item location.

Similarly to our webserver, we will instrument our code and

measure the total time taken for the system to process the

user’s voice query, search the database for the object’s

location, and return the result to the user.

This test will be repeated multiple times under different

network conditions to identify any potential delays caused by

database latency, object detection processing time, or speech-

to-text conversion. Achieving a consistent response time of

under 20 seconds ensures that the system meets both the

design and use-case requirements of providing timely

feedback to users.

D. Privacy and Security

To ensure that only authorized users can access the system,

we will perform security tests focusing on the authentication

protocols integrated with AWS’s security system. A series of
mock attacks, including unauthorized device attempts to

access the data, will be conducted to assess the robustness of

the security measures.

We will also test the system’s encryption during data

storage and retrieval, ensuring that sensitive information, such

as object locations, is protected during communication

between the Raspberry Pi, AWS servers, and the end user. A

successful test will demonstrate that privacy and security

measures meet the use-case requirements for authorized

access.

E. System Throughput

This test how much workload our system is able to cope with,

which will be particularly important for our cloud

implementation, as it will determine how many clients we are

able to service with one machine. For this test, we will make

mock traces with randomized data, and bombard our EC2

instance with an increasing number of requests, to see how the

system copes with them. In particular, we will be measuring

statistics like CPU usage, memory usage, and if we manage to

reach a bottleneck, latency increases for the requests.

F. Database Latency Tests

As the database is a separate component, we would also like to

independently test its performance and throughput at various

levels of capacity. Testing will similarly be done by

instrumenting code with timers, and running random traces.

VIII. PROJECT MANAGEMENT

A. Schedule

The schedule is split up according to individual

responsibilities with slack time of an average of 2 days included

in the timeline. The largest time allocation is for system

integration, with slack time of a week built-in. It is color coded

based on the type of work (blue for documentation, red for

design, green for individual progress and orange for

integration). Refer to table 1.

Table I: Schedule and task breakdown

18-500 Design Project Report: Forget-Me-Not (10/11/2024)

8

B. Team Member Responsibilities

Ethan’s primary responsibility in the project is the machine

learning component, where his focus is on optimizing the model

for accuracy, performance, and generalization. He works on

improving the detection algorithms to ensure that the system

can identify objects in various indoor environments with high

precision. He also plays a secondary role in optimizing

performance across the overall system, ensuring that both the

web server and database integrate efficiently with the machine

learning model.

Swati is working on setting up the database and hardware

configurations, which are critical for the system’s backend

infrastructure. She ensures that data related to detected objects

is stored correctly and accessed efficiently. In addition to

database management, She will also work on preprocessing

optimization, refining how raw data is prepared for object

detection. Her secondary responsibility involves collaborating

with Ethan and Giancarlo to troubleshoot any performance

issues that arise in the database or hardware setup, ensuring

smooth communication across all system subsystems.

Giancarlo is primarily responsible for the web server

structure, setup, and instrumentation. His role ensures that the

server can handle incoming data and process requests

efficiently, providing users with quick access to object

detection results. He also works closely with Ethan to integrate

the machine learning model into the web server and with Swati

to ensure smooth data flow from the database to the user

interface. This coordination allows the system to operate

seamlessly, balancing the needs of each subsystem.

C. Bill of Materials and Budget

Table 2 shows the detailed breakdown of parts that we

require for our system and the estimated total cost for its

development.

D. Risk Mitigation Plans

Critical risks for this project include the fact that none of us

have worked with databases before so figuring out the correct

configuration and the integration, post-setup will be a

challenge. Secondly, the amount of data needed to train the

ML model is substantially large and there are limited online

datasets for the indoor images we need – hence we will need

to create our own bounding boxes for hundreds of images to

train the model further. Lastly, another critical risk is the final

integration of the entire system, as none of us have worked on

creating interfaces for multiple different systems and different

datatypes.

Hence, our primary risk is training the ML model for our

system to meet the design specification. These risks will be

mitigated by allotting time for just for the creation of the

training dataset manually and using annotation tools to speed

up the process . Other than that, approaching the integration

risks modularly and debugging each subsystem and subsystem

interface will help us minimize complications. Lastly, figuring

out how to use services that we have not used before is a

matter of learning on the spot, understanding the demands of

our system and implementing the necessary steps efficiently.

To mitigate the database risk, we plan to use extensive

documentation and tutorials provided by Amazon Web

Services (AWS) for setting up and configuring the RDS

database. Furthermore, dividing the team responsibilities, with

each member focusing on mastering a particular service or

technology, will ensure a smoother integration process.

IX. RELATED WORK

Several existing projects and products are similar to the

system we are proposing. A notable example is Tile[5], a small

Bluetooth-based tracking device that helps users find misplaced

objects like keys, wallets, and phones. Tile’s strength lies in its

simplicity and user-friendly mobile app interface, which allows

users to track items using a connected smartphone. However,

Tile requires physical attachment of the tracking device to each

item, which our project aims to avoid by using computer vision

to detect items in an environment without the need for

individual trackers.

Another similar product is the Apple AirTag[6], which uses

Ultra-Wideband (UWB) technology along with the “Find My”

app to locate lost items. Like Tile, it also requires physical

attachment to objects. Though it leverages precise location

detection, it does not provide a solution for automatically

tracking objects across a room in the way that our system does.

On the more technical side, systems such as Amazon Go

“Just Walk Out” technology[7] stores utilize computer vision

and machine learning for object detection and tracking. The

Amazon Go system is much more advanced and tracks multiple

users and objects in real time, relying heavily on cloud

infrastructure. While impressive, the scale and complexity of

Amazon Go surpasses what our project is targeting, which is

smaller indoor environments.

Cortexica Vision Systems[8] also offers vision-based object

recognition for retail and inventory management, similar in

principle to our approach but with a focus on industrial use

cases.

Our system differs from these existing solutions by focusing

on a low-cost, camera-based, non-invasive solution for

individual users, such as families or students, to locate

commonly misplaced items without attaching tracking devices.

Furthermore, the use of machine learning models for indoor

object detection ensures that the solution remains scalable and

adaptable to various environments.

X. SUMMARY

Our design focuses on an intelligent object tracking system

that uses computer vision and machine learning to help users

locate misplaced items like keys and wallets in indoor

environments. The system is built on a Raspberry Pi, running a

trained YOLOv11 object detection model, and integrates with

an Amazon RDS database and a web server. It is designed for

low latency, ease of use, and affordability, targeting busy

families and students.

Key challenges include improving object detection accuracy

in various lighting conditions, optimizing the model for the

18-500 Design Project Report: Forget-Me-Not (10/11/2024)

9

Raspberry Pi’s limited hardware, and building a custom dataset

for training. Additionally, ensuring smooth integration between

the machine learning model, database, and web server will be

essential to meet performance requirements.

GLOSSARY OF ACRONYMS

RPi – Raspberry Pi

AWS – Amazon Web Services

FOV – Field of View

GPU – Graphics Processing Unit

ML – Machine Learning

RDS – Relational Database Service

YOLO – You Only Look Once

VM – Virtual Machine

REFERENCES

[1] “Lost and Found Statistics, Trends & Facts 2023.” Lostings, 2023,

www.lostings.com/lost-and-found-statistics/.

newauthors.ieeeauthorcenter.ieee.org/author-tools/

[2] “The Psychology of Web Performance | the Uptrends Blog.”
Blog.uptrends.com, 13 June 2018, blog.uptrends.com/web-

performance/the-psychology-of-web-performance/.

[3] Cascella, Marco, and Yasir Al Khalili. “Short Term Memory

Impairment.” PubMed, StatPearls Publishing, 2020,

www.ncbi.nlm.nih.gov/books/NBK545136/.
[4] Vigderman, Aliza, and Gabe Turner. “2024 SimpliSafe Home

Security Package Costs & Monitoring Plans.” Security.org, 16

Sept. 2024, www.security.org/home-security-systems/simplisafe/.

Accessed 12 Oct. 2024.

[5] “Tile Tracker | Bluetooth Trackers for Keys, Wallets, Phones, and
More.” Tile ECommerce, 2024, www.tile.com/en-

us?srsltid=AfmBOoqiPlO2RfW68YqSzWMciQHgULCpPVqbTA

XsK1V-UDVidQUBQluf. Accessed 12 Oct. 2024.

[6] Basappa, Prashanth. “The Technology behind Apple’s AirTag.”

Nerd for Tech, 20 July 2021, medium.com/nerd-for-tech/the-
technology-behind-apples-airtag-c7983f9322b5.

[7] Gross, Ryan. “How the Amazon Go Store’s AI Works.” Towards

Data Science, Towards Data Science, 7 June 2019,

towardsdatascience.com/how-the-amazon-go-store-works-a-deep-

dive-3fde9d9939e9.
[8] “Cortexica Vision Systems.” Pitchbook.com, 2024,

pitchbook.com/profiles/company/60147-64#overview. Accessed

12 Oct. 2024.

http://www.ncbi.nlm.nih.gov/books/NBK545136/

18-500 Design Project Report: Forget-Me-Not (10/11/2024)

10

Table 2: Bill of Materials

Description Manufacturer Quantity Cost / item Price Paid (in

class)

Total Total Paid (in

class)

Raspberry Pi V4
8GB

Raspberry Pi 2 $75.00 $0.00 $150.00 $0.00

Raspberry Pi V5
8GB

Raspberry Pi 1 $80.00 $0.00 $80.00 $0.00

NVIDIA Jetson

Nano 4GB

Developer Kit

NVIDIA 1 $300.00 $0.00 $300.00 $0.00

Raspberry Pi
Camera Module 3

Wide

Raspberry Pi 3 $35.00 $0.00 $105.00 $0.00

3D Printer

Filament

PLA Printer

Filament 1kg

1 $20.00 $0.00 (previously

owned)

$20.00 $0.00

TKGOU
Conference USB

Microphone

TKGOU 1 $20.00 $20.00 $20.00 $20.00

USB Laptop

Speaker

LIELONGREN1 1 $16.00 $16.00 $16.00 $16.00

Lomg USBC
Power Cable

TONIWA 3 $14.00 $42.00 $42.00 $42.00

Grand Total: $78.00

Diagram III: Web server architecture

18-500 Design Project Report: Forget-Me-Not (10/11/2024)

11

	I. Introduction
	II. Use-Case Requirements
	III. Architecture and/or Principle of Operation
	A. Camera and Raspberry Pi Setup:
	B. Query Interfaces:
	C. Web Server:

	IV. Design Requirements
	A. Hardware Constraints
	B. Latency Constraints
	C. Price Constraints
	D. Privacy

	V. Design Trade Studies
	A. Machine Learning Model
	B. Amazon RDS Database
	C. Web Server Configurations

	VI. System Implementation
	A. Machine Learning Model
	B. Amazon RDS/SQLite Database
	C. Web Server
	D. Camera Subsystem
	E. Raspberry Pi processing Subsystem
	F. Amazon S3 Cloud Storage/RPi Filesystem

	VII. Test, Verification and Validation
	A. Object Detection Accuracy
	B. Webserver System Latency
	C. Query Response Time
	D. Privacy and Security
	E. System Throughput
	F. Database Latency Tests

	VIII. Project Management
	A. Schedule
	B. Team Member Responsibilities
	C. Bill of Materials and Budget
	D. Risk Mitigation Plans

	IX. Related Work
	X. Summary
	Glossary of Acronyms
	References

