
Use Case

Device:
Localized object location tracker

Application:
Developing a POC for a camera-based object
tracking system for indoor environments to
locate personal items such as keys, wallets and
remotes.

Problem:
Issue of frequent loss and misplacement of
personal items

Audience:
Students, Parents
Alzheimer’s and Dementia patients

Improvement Over Existing Solutions:
Manual searches
Bluetooth trackers
GPS trackers

Software Systems,
Signal Processing, Embedded Systems

Pic Cred: Google Images

Use Case Requirements

Object Detection
- 80% accuracy (>iPhone, well-lit 10x10ft room)
- Detection and tracking process completed

within 5 minutes.

Query Response
- Users receive item location within 20 seconds

of querying, based on data at most 30 seconds
before time of query

Camera Setup
- 80% floor visibility

to minimize blind
spots

Cost Constraints
- Hardware cost

<$300.
- Cloud costs

<$1000 per
user/month for
continuous usage.

Privacy
- Authorized access

on authenticated
local devices only

Any more and false
positives will waste too
much of the user's time Latency for processing,

querying and llm response

User satisfaction and POC

Low scale production

Personal information
kept safe with
encryption

Nooks and corners

Pic Cred: Google Images

Use Case Unknowns

1. Power: Power consumption for edge devices (Rpi/ Jetson)
2. Network: Bandwidth for data synchronization between cameras is unknown
3. Storage: Data storage locally versus on the cloud
4. Compute: Cloud machine requirements depend on usage, impacting service pricing
5. API Queries: Costs vary based on API call frequency, affecting pricing and viability

Technical Challenges

1. Object detection/Audio translation accuracy
- Dependent on the accuracy and reliability of ML

object detection models. Further training on new
datasets maybe required.

- There will likely have to be pre-processing on
audio in noisy environments.

2. Power delivery
- Sufficient power must be delivered to the edge

compute in a way that must be convenient for the
end user.

3. System latency
- Time between when a user request is made and

fulfilled must be reasonable
- Database query,
- Serve an image,
- Generate any LLM results.

- Latency between taking an image, and its
processed results being present in the database.

4. Privacy
- System must ensure user images remain private,

secure from others

Pic Cred: Google Images

Technical Challenges: Risk Mitigation

1. Object detection accuracy/precision
- If a “latest ___ recorded” is not always

accurate, we can store a history, and make it
easy for a user to see it.

- Alternative of user-text input

2. Power delivery
- Many possible choices

- One of them will hopefully work
- Battery powered/ wall outlet

3. System latency
- Query time:

- Bottlenecks are clear in our case, and can
be made optional/turned off

- Analysis Time
- Likely throughput issue, add more

machines

4. Privacy
- Incorporate authentication before access database
- Local data processing (Jetson)

Pic Cred: Google Images

Risk Mitigation

Early testing

Fail fast and change
course

Continuous
component-level
regression testing

Model accuracy, system
throughput, maintain

quality of system

Backup options

If no solution within
current system’s

constraints, have options
that are faster/ more

accurate

Fine-tuning

Regularly evaluate
alternative options on
modular and system

level

Solution Approach

Client

LLM + Vision

AWS Tools

Query Processing

Observation Computer

Vision Model

Real time database
processing

Output (Speaker,
GUI, etc..)

Cloud Compute

 Camera, Microphone

Preprocessing

Text/Audio
Query

Image Processing

Output Generation
Logic

Audio Preprocessing

Query Preprocessing

Data Retrieval

Final Data
Formatting

Solution Approach

Client

OpenAI

AWS Tools

Query Processing

Raspberry Pi

YOLO/Detectron2

DynamoDB

Output (Speaker,
GUI, etc..)

EC2/Lambda

 Camera (1FPS)

Preprocessing

Text/Audio
Query

Format for DB,
Word2Vec

Amazon Transcribe

Word2Vec

Data Retrieval

Final Data
Formatting

Image Processing

Testing Verification and Metrics

1. Accuracy Testing
- Testing data with different rooms/lighting
- 80% accuracy for objects larger than an iPhone.
- Track up to 10 objects within the predefined space.

2. Latency Testing
- Measure time to process object detection on the edge

(<5 minutes per image).
- Validate that users receive location queries within 30

seconds of request and that the photo being analyzed is
at most 30 seconds old.

- Monitor edge processing efficiency to ensure it can
handle at least 4 data points/sec.

https://www.testingxperts.com/blog/ml-testing

Testing Verification and Metrics

3. User Satisfaction Testing
- Conduct usability tests with target users to

assess ease of use, response time, and overall
satisfaction.

- Measure user feedback to evaluate whether the
product meets customer needs.

4. Multiple Camera Synchronization
- Test time-based synchronization between

multiple cameras to verify continuous tracking
with minimal blind spots

Views Object Detection 2-view sync Multi-view sync

Each node is a
camera view

https://medium.com/analytics-vidhya/beginners-guide-to-object-detection-algorithms-6620fb31c375
https://www.mdpi.com/1424-8220/21/7/2464

https://medium.com/analytics-vidhya/beginners-guide-to-object-detection-algorithms-6620fb31c375

https://medium.com/analytics-vidhya/beginners-guide-to-object-detection-algorithms-6620fb31c375
https://www.mdpi.com/1424-8220/21/7/2464
https://medium.com/analytics-vidhya/beginners-guide-to-object-detection-algorithms-6620fb31c375

Giancarlo Ethan Swati All

Set up cloud
infrastructure (AWS
EC2, S3)

Develop and train object
detection models
(YOLO, Detectron)

Set up Raspberry Pi and
integrate with cameras

Testing & verification
(latency, accuracy,
power, synchronization)

Develop and implement
REST API for
communication between
cameras, cloud, and user
interface

Optimize model
performance for
accuracy and speed

Synchronize multiple
camera feeds and handle
data transmission

Usability testing and
gathering feedback

Design and develop
web-based user
interface for querying
object locations

Evaluate model
performance in different
lighting and room setups

Test and optimize power
consumption for
portable use

Final system integration
and debugging

Task Division

Gantt Chart

