

Idea: A multifunctional wearable device for visually impaired people

ECE Areas : Embedded systems, web app, signal processing

WalkGuard Design Review

Team A5 - Zhixi Huang, Eleanor Li, Connie Zhou

Use Case

• A wearable vest that aims at helping visually impaired individuals to navigate streets alone by reducing risks of accidents/injuries through obstacle detection and emergency situation alerts

Status Quo

- Approximately 3.5% of global population has forms of visual impairment.
- 30%-40% of visually impaired individuals, especially in urban areas, have to walk independently.

Target Users

- Visually impaired people
- Caregivers who are responsible for ensuring safe travel but cannot *always* be present

Possible Benefits

- Make navigation easier for visually impaired people
- Encourage independence and social integration
- Relieve burden from caregivers
- Real-time obstacle detections with audio feedback
- Emergency alerts for caregivers to check in when needed
- Cost-effective design and universal accessibilities
- Reduce caregiver labor cost due to less care needed

Quantitative Design Requirements (1)

Use Case Requirement	Use Case Metric	Technical Requirement	Technical Metric
	close to users but enable reaction time	$1 \sim 5$ meters obstacle	<= 15% false negatives;
Receive audio alerts		detection	<= 20% Faise Positives
	high accuracy	Audio response in 1 second once obstacle detected	>= 40dB; <= 1 second; 99% uptime;
Battery Life	long enough for a single trip	Power consumption	>= 3 hours
Wearability	light and convenient	Weight	< 3kg

In visually impaired user's perspective

Quantitative Design Requirements (2)

Use Case Requirement	Use Case Metric	Technical Requirement	Technical Metric
	quick alert	Send alert along with	alert <= 5 sec;
Emergency Alerts with	within 10 meters	GPS location	98% uptime;
	high accuracy	Fall detection with accelerometer	<= 5% false negatives; <= 20% false positives;

From caregivers' perspective

- Radar detects obstacle
- Interprete radar data into position info with respect to user
- Audio reports obstacle position

System 2: Emergency detection

- Accelerometer detects falls and distinguish from regular bent over
- Get user GPS location
- Trigger alerts to caregiver through

web interface

Choices of Components

Radar: K-LD7

- All-weather conditions
- Direct serial output
- No direct line of sight required
- Low power consumption, typically around 25-60 mA, which makes it very efficient for continuous operation
- Measures speed, distance, direction and angle
- Multi-target detection

Specification System

Testing, Verification and Validation (1)

	Requirement	Metric	Testing Plan	Mitigation Plan
ľ	Wearability	< 3kg	Weight the vest on a scaleOne-size vest	 Search for less heavy alternatives
·	Power consumption	>= 3 hours	 Measure average current using ammeter and calculate total time Record the time under normal use 	 Identify excessive usage Increase battery capacity Use lower power alternatives
	Fall detection with accelerometer	 <= 5% False Negatives <= 20% False Positives 	 Wear accelerometer and perform bent over vs. fall actions 100 times Distinguish actual fall from other safe actions by manual counts 	•Tune accelerometer sensitivity by trying with different threshold parameters
	Send alert along with GPS location	NegativesrometerNegatives•<= 20% False Positives• Alert <= 5 sec •<= 10 m GPS • 98% uptime• Measure the time betw detected to alert receiv measurement		 Ensure fast and stable web server and bluetooth Alternatively access and use mobile phone GPS
	((((((1		·

Testing, Verification and Validation (2)

Requirement	Metric	Testing Plan	Mitigation Plan
1∼5 meters obstacle detection	 <= 15% False Negatives <= 20% False Positives 	 Move the radar at 1 m/s to mimic human walking speed and record radar performance with and without obstacles in front in a controlled environment Real world testing and manually count both types >= 50 cases with >= 10 common scenarios 	 Tune radar parameters (max distance, max speed, frequency) Better software algorithms for radar data analysis Switch to other sensors (LIDAR)
Audio response in 1 second once obstacle detected	 >= 40dB <= 1 second 99% uptime 	 Interpret radar signal, translate to human understandable message, and record audio response time and decibel Repeat for 100 times 	 Improve the radar signal processing speed through parallel computing Check audio wire connection

								P	PHAS	ETW	vo						_			PH	ASE	THR	REE		_							P	HAS	E FO	UR									•
No.	TASK TITLE	TASK OWNER	START DATE	DUE DATE	WEE	K 1 (9	9/30)	W	IEEK :	2 (10)/7)	WE	EK 3	(10)/14)	WE	EK -	(10/	/21)	WE	EK 5	(10/	/28)	WE	EK	5 (11	1/4)	WE	EK 7	(11/	/11)	WE	EK	3 (11	/18)	WE	EEK	9 (1	1/25) W	EEK	10 (1	2/2)	
1	Order Placeme	nt			MI	w	K F	M		WR	F	M	1 1		(F	м	1	WR	F	м	1 1	V R	F	м	1 1	W H	(F	м	1	W R		M	•	WR	F	M	•	w	RF	. M		WV P		
	Place order	Zhixi, Eleanor,	9/23/24	9/27/24																																								
		Connie	5/25/24	5727724										1	1	1.1			1						1				1		1						1			1			1	
2	Indivisual Com	ponent Setup																1																										
2.1	Setup	Connie	10/7/24	10/14/24																																								
2.2	Radar Setup	Zhixi	10/7/24	10/14/24																																								
2.3	Audio HAT Setup	Eleanor	10/7/24	10/14/24																																								
2.4	GPS Setup	Connie	10/7/24	10/18/24																																								
2.5	Website Development	Connie	9/23/24	10/25/24																																								
3	System integrt	aion																																										
3.1	RPi4radar	Zhixi	10/15/24	10/24/24																																								
3.2	RPi4 accelerometer	Eleanor	10/15/24	10/24/24																					·····							-						-	0		0		-	
3.2	RPi4audio	Eleanor	10/15/24	10/24/24																											-													
3.4	RPi4GPS	Eleanor	10/15/24	10/24/24																																								
3.5	HW-webapp	Zhixi, Connie	10/25/24	10/31/24																																								
4	Testing																																											
4.1	Unit testing	Zhixi, Eleanor, Connie	11/1/24	11/15/24																																								
4.2	Interim demo	Connie	11/18/24	11/20/24																																								
4.3	System refinement	Eleanor	11/11/24	11/15/24																																								
4.4	Integration testing	Eleanor	11/11/24	11/15/24																																								
4.5	Final debugging	Zhixi, Eleanor, Connie	11/18/24	11/29/24											1												******																	
4.6	Final Presentation slides	Zhixi, Eleanor, Connie	11/18/24	11/29/24													ð																								-00			
4.7	Final presentation	Connie	12/1/24	12/7/24																																								
4.8	Public Demo and Video	Zhixi, Eleanor, Connie	12/7/24	12/13/24																																								