18-500: Design Project Report - Team A4 10/11/2024

AutoAlert

Eunice Lee, Ankit Lenka, Emily Szabo
Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—With an attachable dashcam set up, AutoAlert
brings advanced safety features only found in luxury cars to
any car at a significantly cheaper price. With lane detection,
traffic light change detection, forward car departure alerts,
and forward collision warnings, our device bridges
socioeconomic gaps to create a more accessible and safe
driving space.

Index Terms—Lane Detection (LD), Traffic Light
Detection (TLD), Forward Car Departure (FCD), Forward
Collision Warning (FCW)

I. INTRODUCTION

The vast majority of Americans drive
frequently, and with the evolution of technology it
has become increasingly important to be able to
provide more effective driving safety features to
increase safe driving. Many luxury car brands are
very successful in this respect; features of interest
they’ve developed include lane detection (LD), traffic
light change detection alerts (TLD), forward car
departure alerts (FCD), and forward collision
warnings (FCW). These advances are amazing;
however, only luxury cars implement these features,
and this introduces a socioeconomic gap such that
lower income drivers do not have access to more
complex safety features.

AutoAlert’s main focus is to bridge this
socioeconomic gap by redesigning complex safety
features at a cheaper price so they are accessible to
lower income drivers. Specifically, we want to
implement traffic light change detection alerts (which
we also have to implement lane detection for in order
to ensure the user is receiving notifications for the
correctly-aligned traffic light respective to their lane),
forward car departure alerts, and forward collision
warnings. These features will be wrapped together
into a dash cam device that you attach to your front
windshield, so any car can use this as an add-on
safety feature. The device will connect with your
phone via Bluetooth and send audio alerts when a
traffic light has changed from red to green, the car in
front of you has started moving, and/or you are about
to crash into a car in front of you.

There are currently no other car safety
products that implement the extensive functionality
our project aims to achieve at the price we have set
(under $600). In this way, our product is filling a
market gap to provide advanced car safety features
for a low price.

II. USE-CASE REQUIREMENTS

The use-case requirements are split into 4
subsequent sections: LD, TLD, FCW, FCD.

LD, used solely for traffic light change
detection, needs to be able to detect lane position to
correctly determine the corresponding traffic light for
the user. The LD must be able to detect correct lane
position for up to 99% on good quality roads and
90% on poor quality roads, where lane position is
defined as an integer value based on if there are lanes
to the left or to the right of the driver’s position. The
success rate is further described in section VII, when
discussing specific testing metrics. Additionally, the
LD must be able to correctly identify lane position
after changing lanes within 2 seconds.

TLD must correctly identify traffic lights
and the alert must notify the driver in time when the
light turns from red to green. 90% of traffic lights
must be identified, due to approximately 90% of
traffic lights being the standard three light traffic light
in the United States. Drivers normally wait about 3
seconds before honking and the average human
reaction to sound is 150ms, so the alert has an upper
bound of 2.85 seconds. In order to give the user more
time to react, the TLD alert must notify the driver
within 2 seconds of the light changing.

FCD must alert the driver that the car in
front of them has departed, only when the user is ata
standstill. This notification must be given within 2
seconds of the car in front moving 10ft from its
original position.

FCW must notify the driver to brake if the
car in front of the driver suddenly stops for cars going
from 3 miles per hour to 40 miles per hour. The
system must be 99% accurate, precisely measuring
distances up to 50m.



18-500: Design Project Report - Team A4 10/11/2024

Rove R2-4K PRO Lane Detection (LD)

Dashcam [GPS, 150° UsB

Wide Angle] (Camera = Jetson Orin) OpenCV - Lane
classification

NVIDIA Jetson Orin Nano -
Object Detection and Computation

Traffic Light Detection

| traffic light algorithm

(TLD)
OpenCV - Nearest

Mobile Application

Forward Collision

0PS243-C FMCW | Warning (FCW)

UsB i
Doppler Radar Sensor | (pagar = Jetson Orin) Distance anq speed
calculation

Forward Car Departure

Car departure status

| User Interface

Data Processing {True, False}

(FCD) Notification

I

calculation

KEY:

I Data input (hardware = software) . Lane detection for TLD
[ Bluetooth from Jetson Orin to mobile application

Figure 1. Block diagram figure shows the connections and overall data input/output of each subsystem

I11. ARCHITECTURE AND/OR PRINCIPLE OF
OPERATION

The architecture reveals the four main
functionalities of the system. The data from the
dashcam and the radar sensor are connected via USB
3.0, both powering the two devices and sending data
to the processing component. Using the radar’s API
and image processing on the NVIDIA Jetson Orin
Nano, four main components compute the data that it
needs to make a decision on whether or not to alert
the driver.

LD utilizes only the dashcam as an input,
capturing snapshots of the road in front of the driver.
After image processing and detecting lanes, further
specified in Section VI, it sends data into TLD to
help TLD determine the closest traffic light that is
associated with the user. TLD, in addition to this new
computed data, also takes in the dashcam’s video as
input. With both image and lane position, it calculates
if the nearest traffic light has turned from red to
green.

Both FCD and FCW utilize the dashcam and
the radar as the input, factoring in image data of the
road, the driver’s current speed from the GPS on the
camera, the forward object’s speed, and the distance
between the forward object and the current user’s car.

With these four components, these two subsystems
are able to compute whether or not to alert the user.

The mobile application is connected to the
hardware via bluetooth connection, where the
application receives a boolean value. This value is a
flag to notify the user, and comes from only three of
the four subsystems: TLD, FCD, and FCW.

With this flow of information, all of the
work that requires fast computation and decision
making occurs on the hardware, and the user only
interacts with the mobile application after the initial
setup of the entire device. The separation of
components between the mobile application and the
hardware allows for both to be developed
simultaneously. They can then be joined together at
the end, interacting with each others’ interfaces with
enough abstraction to allow for smooth connection.

IV. DESIGN REQUIREMENTS

The maximum time the mobile application
will need is 100ms, based on Swift metrics. For
general bluetooth applications, a maximum of 300ms
needs to be allocated. This allows for the data
processing and computation section to take 1600ms
max.

The dashcam has a 150° wide angle, 2160
UHD, and 30 FPS. With the assumption that color



18-500: Design Project Report - Team A4 10/11/2024

depth is 3 bytes/pixel, we can use this equation to
determine the size of each snapshot take from the
dashcam:

Data Size = Pixels X Color Depth
The data size is (3840 x 2160) x (3 bytes/pixel) ~ 25
MB for a standard RGB image. USB 3.0 supports
speeds of up to 5 Gbps, or 625 MB/s theoretically. To
account for overhead, we are using the value of 400
MB/s for our data transfer rate. This allows for
approximately 65ms to send 1 frame over USB 3.0.
To detect lanes, another maximum of 100ms will be
needed. Then, another 35ms are needed to compute
the lane position integer. This totals to 200ms, but to
allow for slack, the design requires this to occur in
400ms. As a result, a new lane position is fed into the
TLD at a maximum of 400ms.

TLD requires data from both LD and the
camera. Once the car comes to a stop, then TLD
begins to compute data and detect the nearest traffic
light every 400ms as well, similar to the lane position
detection. After a change in the traffic light is
detected, this new computation of alerting the
notification can take up to 800ms max in order to
meet the 2 second time constraint.

FCD is similar to TLD, but requires
additional data from the radar. The data can be sent
relatively quickly, within 100ms. With this additional
data, given that the data from the radar and the
camera are synchronized, there is up to 800ms max in
order to meet the 2 second time constraint as well.

FCW requires both data from the radar and
the camera, but instead of a 2 second time constraint,
the system should compute and alert the user as soon
as possible. If the radar is sampled every 100ms and
the camera data can be abstracted every 400ms, we
want to be able to do the other computation within
400ms.

V. DEsIGN TRADE STUDIES

A. Image Capturing Device

When researching our image capturing
device, many considerations came into play. We
quickly decided to invest more time into the dashcam
route than the traditional camera. Dashcams were
designed with long term recording and night vision in
mind, features that are often harder and more
expensive to find on cameras. Additionally, dashcams
often come with the hardware necessary to keep it

continually powered off the car’s battery whereas a
camera would require us to find an additional power
source for it.

Table I. Dashcam Tradeoffs

Model Price Capabilities
Azacvb DashCam for $69.99 Night Vision
Cars 170 Wide Angle
Pruveeo 360 Degree 4 | $189.99 | Night Vision
Channel DashCam 4 Cameras
Built-in GPS
Rove R2-4K Pro $129.99 | Night Vision
DashCam 150 Wide Angle
Built-in GPS
USB-C Data Output

Table I showcases some of the models we
were most interested in, as well as their price and
features. Our primary requirements involved price,
night vision, built-in GPS, wide angle view, and
wired connectivity. The night vision would allow for
the system to operate in night time as well as harsher
weather conditions such as rain and fog, while the
wide angle view would capture more available and
hopefully capture all necessary features for our object
detection processes. Finally, the GPS was essential in
tracking the vehicle's speed, otherwise, more research
and computational effort would be spent calculating a
method to obtain this information. Furthermore,
because our project had to run in cars, we did not
want to rely on wifi as a means of communication,
thus requiring wired connectivity capability for our
dashcam to be able to connect to our computer board.
With this in mind, we quickly eliminated the Azacvb,
which although was the cheapest, did not offer
built-in GPS. Additionally, although the Pruveeo
included multiple cameras, and had most of our
features in mind, we could not ascertain whether or
not it had wired capabilities, as it was listed nowhere
on the specifications sheets and nowhere we could
find in pictures. Rather than take the risk, we decided
to move forward with the Rove, which although did
not have as wide angle view as either the Azacvb or
include multiple cameras like the Pruveeo, still
offered all of our required features and at a
reasonable price.



18-500: Design Project Report - Team A4 10/11/2024

B. Distance and Speed Sensors

In addition to the dashcam, we also wanted a
second source of data, specifically for forward
obstacles. Initially a LIDAR was proposed for long
range distance detection, however we quickly
realized that it would require it to operate outside the
car, which raised concerns about connectivity with
the rest of our system as well as keeping the LIDAR
protected from the elements. As a result, we
refocused our efforts on radar sensors. Specifically,
we focused on systems with a frequency modulated
continuous wave (FMCW) sensor, operated at either
the 24 GHz or 77 GHz ranges, and could detect a
minimum of 50m. Normally, radar sensors use the
doppler effect to calculate the speed of detected
objects. FMCW is a specific technique that modulates
the frequency wave as it is being sent out, thus the
reflected wave gets received at a different frequency
than it was emitted. The equation below represents
this relationship, where delta f'is the change in
frequency, ¢ is the chirp time, c is the speed of light,
bw is the bandwidth, and d is the distance.

— Afxtxe

2 X bw

Research indicated that normal car sensors
were divided into two groups, short range and long
range. When the industry shifted from 24 GHz to 77
GHz, the transition mainly benefited short range
sensors, which helped with parking assist, lane assist,
and better distinction of different objects at close
range, while long range sensors mainly gained better
adaptive cruise control. Due to these factors, we
determined that for our use-case, either a 24 GHz or a
77 GHz was acceptable. Finally, in order to give

ample time for a driver to break, we used the braking
2

distance formula d = szg, where v is initial velocity,
g is acceleration due to gravity, u is coefficient of
friction between the tires and the road, and d is the
distance. In the worst conditions (i.e. slow driver
reaction time, wet roads, etc), driving at 40 mph,
requires at least 50 m of braking distance. Combining
these strict requirements along with price restrictions,
our team could only find 1 radar sensor that met all of
them, the OPS243-C FMCW and Doppler Radar
Sensor, which can detect the relative speed and
distance of objects up to 60 m away, and up to 50 m
detecting through glass.

C. Computer Board

Our plan was to spend the majority of our budget
on our sensor and data capturing equipment, and rely
on the current ECE inventory to supply us with our
computer boards to run our detection processes. In
particular, we were looking at the Kria KV260 Vision
Al, the Nvidia Jetson Orin Nano Developer Kit. Our
team did not believe that the raspberry pi computer
boards would be suitable for the heavy ML object
detection tasks our project requires and due to the
additional cuda cores, improved architecture, and
larger GB memory, the Jetson Orin Nano should
outperform any of the Jetson Nanos. We ultimately
decided to move forward with the Jetson Orin Nano
for a few reasons. Due to the fact that we are relying
on the ECE inventory to supply us, it meant that we
had to compete with other groups for our
components, as there was only 1 Kria KV260 Board,
but multiple Jetson Orin Nanos. Additionally, the
Jetson Orin Nano also came with bluetooth
capability, which we realized we could use to connect
with our mobile app, while the KV260 does not.
Additionally, for further clarification as to why we
did not run the software on our mobile app, we would
still require a board to do some of the image
processing work, as well as maintain a connection
between the data and the phone, since otherwise, it
would have been a trickier problem to connect the
sensors to any mobile device directly. As such, the
team decided to research specifically for computer
boards with the capabilities of running our CV
processes.

D. Power Supply

One of the benefits of using the dashcam was it
greatly simplified our power requirements. There are
3 components that need to be supplied constant
power, the computer board, the radar, and the
dashcam. Our plan as of right now is to power the
radar and dashcam from the Jetson Orin, and then to
power the Jetson Orin from a car’s cigarette port.
However, due to components not yet arriving as of
writing this report, whether or not this will fully
satisfy our power requirements or if we will need to
find a different source is still left untested. What we
can confirm is that the dashcam can, and in fact must,
be powered through the Jetson, however, we are still
uncertain if the radar can power itself off the Jetson
and if the cigarette port can provide enough voltage



18-500: Design Project Report - Team A4 10/11/2024

and wattage for the Jetson’s 12V at ~10W efficiency.
We still have enough budget to buy a suitable power
brick.

E. System Connections

Our system relies on two data connection
pathways, the captured sensor data to the Jetson, and
the computed data from the Jetson to the mobile app.
We will use USB and USB-C cables to transmit the
data from the dashcam and radar to the Jetson.
Having wired connections is a must. Dashcams only
tend to support wireless wifi connections, which will
not work for our project and our radar only supports
USB connections, further necessitating wired
connections. For the mobile app, we wanted users not
to be distracted with their phones or worried about if
it gets disconnected or gets shuffled around. As such,
we are planning on using a wireless connection,
specifically bluetooth, as it is a common capability
between phones and the Jetson and does not require
any internet connection for either.

F Mobile Application

Our mobile application uses Swift for
development. While using Swift means that our
development will only be focused on i0S and we will
not be developing for Android phones, we decided
that Swift allows us to focus on performance on one
subset of mobile phones. Running an i0S app built
with Swift on an iPhone doesn’t require a separate
interpreter to run, while React Native could require
one. In addition, having XCode for our Swift
development allows us to have access to the powerful
tool that includes debuggers. Swift also allows for an
accurate native user interface (UI) and has many
updated libraries to use.

G. Software Libraries

In terms of software libraries choices, there were
two front runners, yoloV8 and openCV. YoloV8 uses
a deep learning ML model and was specifically
designed with object detection and tracking in mind,
which will make up a large part of our software
processes. OpenCV, on the other hand, is a more
well-rounded library, offering support for
image-processing and other CV applications.
Additionally, openCV is less computationally
intensive than yoloV8. As such, we plan to use both
softwares throughout our project, balancing the more
powerful but computationally expensive yoloV8

object detection with the image processing and
counting of openCV.

VI. SYSTEM IMPLEMENTATION

A. Overall System Details

The primary details of the system implementation
revolve around each individual subprocess, their
inputs, outputs, and the techniques and algorithms
used throughout as part of that process. Each process
should be assumed to be coded using openCV,
yoloV8, or both. Furthermore, as seen in the overall
system implementation shown in the Architecture
section, the product will receive inputs from the
dashcam and radar sensor and pass them along
individually to each process they contribute towards.
All major processes on the Jetson Orin Nano will be
run in parallel and an important step in this is making
sure that the data is synchronized both as it travels
from the sensors to the major processes but also from
the Jetson to the mobile application through
bluetooth.

B. Lane Detection Implementation

The main focus of this particular subprocess is to
detect straight line edges of the lane markers from
images. From Image I, we can see that the only inputs
are the images from the dashcam. Initially, the
incoming frames will be grayscaled and a gaussian
blur will be applied to smooth the image and remove
the majority of noise. Afterwards, we will use the
Canny Edge Detector and Hough Line Transform.
The Canny Edge Detector applies an intensity
gradient on the image based on the surrounding
pixels and will specifically highlight the straight lines
present, in this case, the lane markers. The Hough
Line Transform will then detect the specific lane
marker lines based on their slope, which help us
determine left and right lanes. Afterwards, the
process returns an integer that corresponds to the
current lane the car is in.

Image I. Lane Detection Diagram

Lane Detection
Grayscale and
Image Data Gaussian CaD'Ient;:E‘;?e T:mm Lane Position
Filter
-
C. Traffic Light Detection



18-500: Design Project Report - Team A4 10/11/2024

Once we have determined the lane in which the
car exists, we feed this information into the traffic
light detection algorithm. The process operates in two
sections. The first is a state machine that keeps track
what the vehicle has seen so far. As we can see in
Image III, the states include no light detected, red
light detected, and green light detected. Additionally,
the process outputs a boolean value indicating to turn
on the notification, specifically whenever there is a
state transition from red light detected to green light
detected.

The second is the actual object detection for the
traffic lights. As shown in Image 11, we will again
apply a gaussian filter but instead feed it into a CNN
model that will accurately detect the traffic lights
through shape, particularly the circles of the lights.
Afterwards, we use the previously calculated lane
position to identify the corresponding traffic light to
the lane that the vehicle is in. Finally, we will apply
multiple color filters in order to determine the color

of the light.
Image II. Traffic Light Detection Diagram

Image Data

Green Light
Notification

Lane Position

D. Forward Vehicle Detection

An important subsection of our system is detecting
forward vehicles, which will be used in both our
forward car departure and our forward collision
warning. Similar to the traffic light detection, this
will be done through a CNN model except this time,
the object in mind are cars, specifically car rears.
Certain features that will be usually in detecting
accurate car rears are license plates, brake lights, and
trunks. Furthermore, we can use the continuous
stream of images to generate an estimate of the
distance between cars and the relative speed. The
process will output if a forward vehicle is detected,
and the estimated speed and distance it is relative to
our car. Image III depicts this subsection.

Image III. Forward Vehicle Detection Diagram

Vehicle
Information

Image Data

E. Forward Car Departure

One of the two processes the forward vehicle
detection feeds into is the forward car departure
notification. It also takes additional inputs from the
dashcam GPS, and relative distance and speed from
the data. The purpose of this double data source act is
sensor fusion, which is combining data from multiple
sensors in order to reduce uncertainty and variability.
The radar data will better clarify the initial estimates
provided by the forward vehicle detection system,
and the forward vehicle detection will decrease the
number of unnecessary notifications that might get
triggered by other objects such as pedestrians, pets, or
cars in other lanes. The GPS is important for
providing absolute speed information, as this alert
should only go off when the vehicle is stationary.
When a forward car moves 20-35 ft away, the process
will output a true boolean notification and will output
false under all other conditions.

Image IV. Forward Car Departure Diagram

Vehicle Information

GPS Data
Detection
Notification

Object Distance

&)bject Speed

F Forward Collision Warning

The final of the major four processes is the
forward collision warning, and as shown in the Image
V below, is also perhaps our most complex process. It
takes inputs from the dashcam, GPS, vehicle
detection output, and radar. The primary function of
the forward collision warning runs similar to the
forward car departure, except rather than give an alert
when cars are moving away from our position, we
use the same data to instead calculate
Time-To-Collision (TTC) metrics which will then
generate an alert to notify the user to slow down. In



18-500: Design Project Report - Team A4 10/11/2024

addition to the vehicle detection, the forward warning
collision will also run its own object detection for
bikes, pedestrians, and other immediate obstacles. A
major difference from the forward car departure is
where the two sensors worked to corroborate one
another, creating a process where both sensors have
to agree on the data in order to proceed, this is not
necessarily the case for the forward warning
collision. If only one of the sensors captures data that
indicates an imminent collision, the process will still
output a true boolean. That is not to say that it will
run the data processing for the two sensors separately,
it will still work together similarly to the forward car
departure for calculating the TTC of forward
vehicles, but that it is not necessary for it to agree.
Furthermore, if we will reevaluate this decision if
during testing, it generates an unacceptable level of

false positives.
Image V. Forward Collision Warning Diagram

Forward Collision Warning

\ Image Data Non-Vehicle

————— Obstacle CNN
| Model
Vehicle Information Collision Alert
Sensor
GPS Data Time To Corroboration
Object Distance Collision (TTC)
Calculation
\Objecl Speed

G. Mobile Application

The subsection of our system that the user
solely interacts with is the mobile application. There
are three main screens that the user will come across.
The first is a setup/connection display, where the user
will connect the hardware with their phone. The
second page is a checkbox list of the three main
features to be notified of: TLD, FCD, and FCW.
Here, the user can determine which feature(s) they
want, selecting up to 3 and a minimum of 1. There
will also be a reminder to turn the volume up on the
phone. After this, the user will then select a button to
start the application and be directed to another screen.
On this last screen, there will be a simple button that
will stop the alert system and bring the user back to
the second screen, but will be simple to keep the user
free from distractions. From the hardware via
bluetooth connection, the mobile application will
decide if the boolean value should be processed based
on what the user previously selected. If the boolean
value is False, no further action will be taken. If it’s
true, then the phone will ring.

VIIL. TEST, VERIFICATION, AND VALIDATION

While we develop each of our four features, LD,
TLD, FCD, and FCW, we will do unit testing during
the beginning stages of development. This unit
testing starts with making sure we are able to
smoothly receive data from our hardware (dashcam,
radar) and utilize the interface with our NVIDIA
Jetson Orin. Then, we will slowly build and test our
software using data drawn from our dashcam and
radar. After we have done sufficient unit testing, we
will move on to integration testing.

We will do integration testing both by driving
around in Pittsburgh and with RC cars. Our driving
tests will help us test with high external validity;
whereas, our RC car testing will help us ensure we
are able to smoothly demonstrate our product.

A. Tests for Camera Field of Vision

In order to ensure that our camera is able to
properly detect traffic lights, we will record videos
while driving and then process the content with
OpenCV to make sure that we have (1) a wide
enough range of visual input to detect lane position
and (2) have clear enough definition to be able to
sense traffic lights.

B. Tests for Lane Detection (LD)

We will have four different testing situations
for both driving and RC car testing: the car is
surrounded by (1) no adjacent lanes, (2) only a left
adjacent lane, (3) only a right adjacent lane, and (4)
left and right adjacent lanes. Two edge cases we have
identified are (1) switching lanes and (2) bad roads.
We will be testing LD on Fifth Avenue, Washington
Boulevard, and RIDC Park. Per each of the identified
testing situations, we will sample our product output
every 15 seconds for 10 minutes at a time. A test pass
occurs when the lane detection output can correctly
identify any adjacent lanes to the car within 2
seconds of the test start. A failure occurs when the
adjacent lanes are incorrectly perceived. We will be
taking # test passes / # total tests and producing
accuracy percentages per testing situation. For our
two edge cases, we will conduct the same testing and
gather product output either after switching lanes or
while driving on a bad road. Test passes and failures
are defined the same.

C. Tests for Traffic Light Detection (TLD)



18-500: Design Project Report - Team A4 10/11/2024

We will have three different testing
situations for both driving and RC car testing: the car
is waiting at a left turn light, the car is waiting at a
typical go-straight light, and the car is waiting at a
right turn light. We want to conduct at least 20
drive-throughs in each of these three situations. We
will be testing on Forbes and Fifth Avenue. Per each
testing situation, we will sample product output
starting after the red light turns green. A test pass
occurs when the traffic light notification chimes
within 2 seconds of the traffic light changing from
red to green. We will be taking # test passes / # total
tests and producing accuracy percentages per testing
situation.

D. Tests for Radar Range of Detection

To ensure that our radar can detect the 20ft -
50m distance range required by our quantitative
design requirements, we will record data through a
car windshield with our radar trying to detect objects
as close as 20ft away and as far as 50m away to
ensure that our range of detection is met.

E. Tests for Forward Car Departure

We will have two different testing situations
for both driving and RC car testing: (1) stand still
with the device and have the front car drive away and
(2) move slowly with the device and have the front
car drive away. We plan on testing this in parking lots
and on Fifth Avenue. Per car departure, we will
sample product output when the front car drives
away. A test pass occurs when our device notifies us
within 2 seconds of the forward car driving away. We
will be taking # test passes / # total tests and
producing accuracy percentages for each testing
situation.

F Tests for Forward Collision Warning

This feature is concerning to test (1) for
driver safety and (2) for product safety because
testing this on an actual road puts the driver at risk
due to the risk of car collisions, and testing this with
RC cars puts our device at risk to break. Because of
this, we are only going to rigorously unit test this
feature.

VIII. PROJIECT MANAGEMENT

A. Schedule

In Appendix A, you can see our GANTT
chart schedule for the entirety of the semester. The
most important parts lie in the development section.

During development, we will implement our
product in the following order: (1) lane detection, (2)
traffic light detection, (3) forward car departure, and
(4) forward collision warning. Each member of our
team will have individual ownership over one aspect
of implementation as well as team membership with
the other two members over two more aspects of
implementation. In this way, we can grow as
collaborators with our two other team members and
grow independently during our individual
contributions. Throughout development, we will all
be testing our product together so we can still
maintain synchronization on a weekly basis.

B. Team Member Responsibilities

Eunice is the leader in ordering and ensuring
the delivery of all of our hardware required for
implementation.

After our hardware has all been delivered,
all three of us will work on ensuring that we
understand how to interface with our devices. This
entails understanding how to gather video data from
our dashcam, gather radar data from our radar sensor,
and spawn processes with our NVIDIA Jetson Orin.

Once we are familiar with how to work with
our hardware, Eunice and Ankit will work together
on implementing lane detection. During this time,
Emily will work on forward car departure detection.
Then, Eunice will tackle traffic light detection while
Emily and Ankit implement forward collision
detection. Lastly, Emily and Eunice will finalize the
front end of the web application while Ankit connects
the NVIDIA Jetson Orin to our mobile app via
Bluetooth connection.

We will conduct testing as a team at each
stage of development.

C. Bill of Materials and Budget

To show that we are under our $600 budget
for our project, we have a chart of our materials and
cost for each in Appendix B. Our current total cost is
$521.

D. Risk Mitigation Plans

No one on our team has worked with an
NVIDIA Jetson Orin before, but Ankit has been



18-500: Design Project Report - Team A4 10/11/2024

working with our TA Tjun Jet to get unblocked with a
working interface with this hardware up and running.

No one on our team is familiar with using
OpenCV to parse video input programmatically. To
mitigate this, we have identified several OpenCV
tutorials to help familiarize ourselves with usage.
These include the OpenCV Bootcamp, OpenCV
Real-Time Road Lane Detection, and Simple Lane
Detection with OpenCV to help us get started with
our development.

No one on our team has developed a mobile
app using Swift before, but we are working on
following documentation to install XCode to
smoothly ramp up to mobile app development.

Our team has hardware experience, but we
haven’t specifically worked with Bluetooth before.
To overcome this, we’ve identified an NVIDIA
Jetson Orin Bluetooth Guide to help us implement
this connection part of our project smoothly.

If any four of our features (LD, TLD, FCD,
FCW) are not performing properly, we are planning
on triaging the problem to see the severity. If the
problem cannot be fixed by modifying the software,
we will consider modifying our design’s hardware.

IX. RELATED WORK

Our project is originally inspired by Tesla’s
safety features, specifically their traffic light
detection feature and their forward collision detection
warning. These features are really great safety
features; however, the vast majority of people are not
able to afford Teslas, which is why our goal is to
implement these features at a significantly lower
price point.

X. SUMMARY

In conclusion, our proposed project seeks to
improve driver safety by creating an affordable
device that provides crucial information to drivers in
real time. The device has three primary goals: to
detect the red to green light transition, detect when
cars depart in front of the user vehicle when at a
standstill, and to alert the user of any potential
collision. Furthermore, the device will connect to the
user’s mobile device in order to give users better
control over the notifications, while also not requiring
them to use their phone during a drive.

Some of the upcoming challenges in
implementation will be synchronizing the data to
ensure that all processes are operating on the same
data inputs at the same time, and to manage the
multiple object detection in order to ensure that we
can meet the timing metrics specified in the use-case
and design requirements. Additionally, there are still
important component requirements that will need to
be tested in the beginning specifically around the
power requirements, and the use of the smoker to
power the entire system.

REFERENCES

[1] Mananchaya Thawonsawat, Chanchai Thongsopa,
Samran Santalunai, and Thanaset Thosdeekoraphat,
“Detecting Targets by 24GHz FMCW Radar Technique”,
School of Electronics Engineering, Institute of Engineering,
Suranaree University of Technology,
https://omnipresense.com/wp-content/uploads/2023/04/SEAT
UC2023-Paper-6295.pdf

[2] Karthik Ramasubramanian, Kishore Ramaiah, Artem
Aginskiy, “Moving from legacy 24 GHz to state-of-the-art 77
GHz radar”, Texas Instruments, Dallas, Texas, 2017,
https://www.ti.com/lit/wp/spry312/spry312.pdf

[31 FMCW radar sensor: How it works. FMCW, CW &
Pulse radar. OndoSense. (2024, September 30).
https://ondosense.com/en/radar-know-how-optimal-use-of-ra
dar-sensors/fmcw-radar-sensor-basics/#:~:text=CW%20radar
%3 A%20n0%20frequency%20modulation&text=In%20contr
ast%20t0%20FMCW %?20radars,mainly%20used%20for%20
speed%20measurement

[4] OpenCV Documentation,

https://docs.opencv.org/4.x/index.html


https://opencv.org/university/free-opencv-course/?utm_source=opcvu&utm_medium=menu&utm_campaign=obc
https://www.geeksforgeeks.org/opencv-real-time-road-lane-detection/
https://www.geeksforgeeks.org/opencv-real-time-road-lane-detection/
https://medium.com/@mrhwick/simple-lane-detection-with-opencv-bfeb6ae54ec0
https://medium.com/@mrhwick/simple-lane-detection-with-opencv-bfeb6ae54ec0
https://jetsonhacks.com/2019/04/08/jetson-nano-intel-wifi-and-bluetooth/
https://jetsonhacks.com/2019/04/08/jetson-nano-intel-wifi-and-bluetooth/
https://docs.opencv.org/4.x/index.html

18-500: Design Project Report - Team A4 10/11/2024

APPENDICES B. Appendix B: Bill of Materials and Budget
A. Appendix A: GANTT Chart Tr Item name v 1@ Price v
I
TR R R E LB Rove R2-4K PRO Dashcam $160.00
HERE=]
HEEEER HH R e R =
ST L HEL L -
S R TR 2 NVIDIA Jetson Orin $0.00
i ﬁ § :|| 0PS243-C FMCW Doppler Radar
LN (2] $239.00
i: = Sensor
O CE g HHE PR
i b o5 OPS243 Enclosure $37.00
i
i USB Cable $0.00
5
H
[T PPYPRAPTY VR N N W W S s UART Cables $0.00
2[= 2{=|3|7 | 2|3 |3| 2| || 2|2 |3[3 |8 Power source for jetson orin $20.00
28 g
"3 Building box for our hardware + $0.00
i power
Rove R2-4K PRO Dashcam
Hardware Kit $30.00
& Suction cup for radar $5.00
RC Car $30.00
Power source for radar $0.00




