
🌊SPLASH💦
Team A2

Josiah Miggiani, Gordon Xu, Jimmy Zhou



Have you ever tried for a cup pong shot, only for the ball to bounce off the 
rim and skitter into the darkest, most inaccessible recesses of your living 
room? No longer! 

Splash is a computer vision-assisted robot that will aid individuals 
practicing their cup pong shots
● Tracks thrown ping pong balls and moves the target cup to the ball’s 

projected landing location
○ Reduces time spent chasing stray shots

● Provides helpful performance metrics!

ECE Areas:
● Embedded Systems, Hardware, Software and Sensors, Robotics, CV

Use Case



Use Case Requirements
We aim to catch the pong ball ~90% of the time
● Standard throw to be from range of ~2.4 

meters (ping pong table length) 
● Use red solo cup of size 5 cm radius
● Move system accurately within ~10 cm radius
● To fulfill requirement of making cup pong 

training effortless

Other requirements to benefit cup pong training
● Retrieval system
● Visual Feedback system

Pictured: A living room that might benefit from Splash :)



Technical Challenges
What are the key technical challenges to meeting the requirements?

1. Quickly detecting and tracking a thrown ball using CV, determining its world coordinates

2. Computing the ball’s trajectory and landing location (kinematics projectile motion!)

3. Moving the cup to the landing location within the ball’s flight time

What risk mitigation plans do we have?

To help alleviate the strict timing constraints of this project, we may:

● Require an underhand lob rather than the typical overhand throw for a longer flight time

● Reduce the valid radius around the cup so that the robot doesn’t need to move as far

● Require the user to hold the ball still before throwing to give the CV algorithm extra time 

to lock onto the ball



Preliminary Testing
- Concerns about the shot being too fast for system

- Backup plan of making user switch to lob shots if necessary

- Testing from distance of ~2.4m (8ft) Lob shot vs regular shot airtime 

- Regular shots: 1.2s, 1.24s, 0.9s, 1.1s, 1.12s, Average of 1.112s, or 1112ms
- Lob shots: 1.4s, 1.35s, 1.29s, 1.38s, 1.33s, Average of 1.35s, or 1350ms

Table Table

Lob Shot (Underhand)

“Regular” Shot 
(Overhand)



Solution Approach (Sensor + HW Integration)
- Intel RealSense D415 or Luxonis OAK-D S2 Depth Camera

- Low end 30FPS, each frame takes ~33.33ms
- Enough details for trajectory with 2-5 frames
- Worst case 5 frames ~= 166.66ms
- Leaves ~950ms or ~1200ms (lob) to calculate and move receiving system

- AMD KRIA KR260 Board (Onboard CV + FPGA)
- Onboard CV talks to Camera via USB
- FPGA calculates trajectory via kinematics

- Needed for fast calculations during short airtime
- Relays information to receiving system via USB 

Robot / Rail 
Motor Movement

Onboard FPGA 
for Trajectory 
Calculation

Object 
Detection and 
Tracking (CV)

RealSense 
Depth Camera

KRIA 
KR260

Depth Pixel Coordinates

Movement 
Commands



Solution Approach Sensors SW / CV
● CV detects ping pong ball from incoming RGB 

camera feed
● Determine camera-relative coords from depth 

camera pixels
● Translate ping pong ball coordinates to 

real-world coordinates
● Becomes a simple projectile motion problem 

(physics 1!) to determine expected landing 
location



Solution Approach (Robotics)
- Receives landing spot coordinates from KRIA

- Needs to quickly and accurately move to the coordinate

- Deciding between using a gantry system or a robot

Cartesian Gantry Omnidirectional Robot

Pros More precise coordinate movement
Easier implementation for receiving xy coordinate
Easier acceleration control

More mobile, is not constrained to an area
Easier construction, cheaper

Cons Physically restrained to an area
Harder to physically create
Team doesn’t have mechanical experience 
More expensive

Harder to precisely move wheels
Slower reaction time for wheel movements



Testing, Verification, and Metrics
1. CV and Coordinate Calculation: detect and isolate a ping pong ball with ~98% 

accuracy and within ~100ms
a. From known world coordinates, verify that we can compute the ball’s landing 

location using data from the depth camera within 5 cm
2. Testing Device: device that shoots a ball with consistent precision to a known world 

position, verify our projected trajectory and landing location is within reasonable 
bounds.
a. Alternatively, mark the location the ball lands on the table and compare with the 

computed landing location
3. Robotics/Gantry System: Verify that our robot can move any location within its radius 

accurately within 5 cm margin of error, and within 1 second
4. Overall Integration: test that the robot can catch the ball shot from the shooting 

device consistently (90%), and lastly balls that land within the radius of the cup.



Tasks and Division of Labor
Gordon Josiah Jimmy

KRIA/Hardware 
Integration

Robotics CV/Cameras

● High-Level Synthesis 
of code for specific 
KRIA board

● Integrating KRIA with 
robotics and camera 
systems

● Design and 
construction of 
receiving system

● Coding movement 
controls, prioritizing 
speed and precision

● Model for ball 
detection and tracking

● Translation from 
camera coords to real 
world coords

● Physics projectile 
motion equation



Schedule
Use a Gantt Chart to show when the tasks will be accomplished and any relationships between 

them. Any task taking longer than a week needs to be decomposed -- it's too big and 

unmanageable. You probably should have a task named "Slack."



Minimum Viable Product
- The cameras + CV identify the exact location of the ball in 3D
- Capable of tracking the trajectory of the ball for at least a few frames
- KRIA system receives coordinate locations, quickly calculates the trajectory, 

and determines how the robot should move to intercept the ball.
- Receiving system is able to receive instructions and quickly move to the right 

position

🌊SPLASH💦
After using our product, the only noise you’ll hear is


