
18-500 Design Review Report Template - 15 December 2023 Page 1 of 13

SoundSync
Authors: Caleb Lille, Rohan Raavi, Sanjana Shriram

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract— In music performances, distractions of-
ten disrupt the flow of musical expression. One promi-
nent challenge is page flipping. Current solutions in-
clude Bluetooth foot pedal page turners and human
assistants. However, performances can be disrupted
by foot pedal devices, while human page turners can
obstruct the musician’s view and cause physical sheet
music to fall. SoundSync uses an eye tracking camera
and a microphone to capture user’s gaze and audio in-
put to autonomously turn a page. Through a decision
logic program, these inputs determine the best window
for turning pages with 95% accuracy. SoundSync uses
state of the art alignment algorithms in combination
with eye tracking to achieve hands-free operations and
enhance the user experience.

Index Terms— Audio Alignment, Score Following,
Eye Tracking, Head Tracking, Music, Digital Music,
Sheet Music.

1 INTRODUCTION

Musicians face a variety of distractions that deduct from
the beauty of the music they are making. The most com-
mon problem musicians face is turning a page in a manner
that doesn’t detract from the music. With the advent of
digital music displays such as tablets and iPads, page turn-
ing technology is evolving.

Page turning technologies have been on the rise in the
music industry. The most widely available options include a
foot pedal page turner and a physical human page turner.
A foot pedal page turner is a device where the musician
presses the foot sensor to turn a digital page of music. It
uses a Bluetooth connection to a digital tablet and can be a
convenient hands-free page turning solution for musicians.

However, current technologies have their limitations.
For example, operating a foot pedal results in a loud foot
tap to signal the page turn. This can be distracting dur-
ing a performance. In some cases, the foot pedal does not
work and can require a second tap. A human page turner
can obstruct the player’s view and introduces the risk of
dropping physical sheet music during a performance.

SoundSync is a digital page turning system that utilizes
visual and audio inputs to determine when to flip the page.
Both input streams are fed into different models that track
where the user is located in the music. These results are fed
into a decision logic program that decides when to flip the
page. Digital sheet music is displayed on a laptop. Lastly,
SoundSync uses a Windows laptop to handle all the data
processing. With a focus on accessibility and inclusivity,
SoundSync aims to provide an inclusive streamlined music
making experience for all musicians.

2 USE-CASE REQUIREMENTS

SoundSync was designed with accessibility as a top pri-
ority. The social implication of SoundSync is that more
people of varying backgrounds can enjoy playing hands-
free. The resources that most people have access to have
also been considered when designing SoundSync. As of
2019, 73% of adults in the United States owned laptops or
personal computers[4]. With accessibility in mind, laptops
come out ahead of alternatives like iPads and tablets.

SoundSync exclusively uses audio and visual inputs
making it accessible to those who cannot operate a foot
pedal page turner or similar technologies. Since it is fully
digital, SoundSync is less disruptive than traditional meth-
ods such as loud foot pedals and physical page turning
all while guaranteeing that the musical ambiance remains
undisturbed.

2.1 Sensor Input Use Case

The system must be able to take in audio and visual in-
puts. The visual input comprises of tracking the user’s eye
gaze on the screen. Our algorithms must identify patterns
where the user wants to turn the page by staring at the
end of the page and/or head gestures. The audio model
takes in the user’s audio input to track the user’s current
position in the music, while also being aligned with the
uploaded MIDI File. The system must be robust enough
to handle the occasional wrong notes and uneven rhythms.
Both sensors should fail to detect inputs less than 1% of
their active time.

2.2 Frontend Use Case

The system must indicate to the user where they are in
the score with a real time cursor that is constantly updat-
ing. The display should be easy and intuitive to use. After
that, there needs to be a consent page to alert users that
the system is tracking their eyes and recording their audio.
The system must display page turns and turn the page ac-
curately. Page flipping is the most important requirement;
we’re aiming for a page flip success rate of 95%.

This requirement is rooted in the principle of accessibil-
ity for social impact. The frontend is what a user directly
interacts with, so it should be as easy to use as possible to
encompass a wide range of people.

By prioritizing these features, SoundSync aims to cre-
ate a user friendly, adaptable, and seamless platform for
musicians while promoting accessibility.

18-500 Design Review Report Template - 15 December 2023 Page 2 of 13

Figure 1: Block diagram of frontend, backend, and peripheral components interacting. The setup stage shows what
happens before the user can begin playing music. The backend section notes the algorithms used in the backend and
how they translate into outputs. All the backend processing occurs with data collected from the microphone and camera
peripherals. Finally, the frontend demonstrates key features of the completed application and how they respond to real
time user inputs.

3 ARCHITECTURE AND PRIN-
CIPLE OF OPERATION

SoundSync’s physical structure consists of a Tobii Eye
Tracker 5 camera and microphone connected to a Windows
laptop acting as a display from which to read digital music.
A microphone sits on or close to the user’s instrument to
continuously record sound and plug into the laptop via the
headphone jack. The eye tracking camera connects to the
laptop through a USB-A port. The changes to our system
since the Design Review are as follows. We are no longer
hosting the backend on a Google Board, we are not train-
ing an ML model to implement eye tracking, the frontend
is hosted using Django and JavaScript instead of Python,
we’re not implementing frequency filtering, and the audio
alignment isn’t solely relying on Dynamic Time Warping.

On a high level, the Windows laptop is connected to
the Tobii Eye Tracker 5, microphone, and runs the pro-
gram that displays the frontend. The system incorporates
two models: a visual eye tracking model, and an audio
alignment model. The visual model takes in the filtered
eye tracking data and determines from a visual perspec-
tive, whether or not to turn the page. The audio align-
ment takes the processed audio signal and tries to align
the stream with an uploaded MIDI file. Eye tracking uses
a heuristic rules-based approach and linear extrapolation to
classify or predict where the user is gazing. These actions
are then sent to the frontend, where the page will either be
flipped or not.

Refer to Figure 1 for a block diagram of the system ar-
chitecture. Figures 2 and 3 expand upon the frontend and
backend subsystems.

4 DESIGN REQUIREMENTS

4.1 Eye Tracking Requirements

Our specifications revolve around keeping the eye track-
ing component accurate and precise. To address the visual
sensor input use case requirement, the system’s margin of
error is low and allows the system to outperform current
solutions.

The first requirement is that the eye tracking field of
view must register a human face. The Tobii Eye Tracker
5 meets this requirement with its 40 x 40 degrees field of
view.

The second eye tracking requirement is the accuracy of
the eye tracking data points. These points must be accu-
rate and precise to one bar. Therefore, a 13” laptop display
requires an accuracy of 1.65 cm to ensure we are within a
single bar. A precision of 1.0 cm, which corresponds to the
height of potential notes in a bar that could extend above
or beyond the staff lines, keeps the eye tracking within the
correct line on the sheet.

These two requirements warrant that the system ac-
curately and precisely follows the player’s gaze. Using a
rules-based approach allows us to hard-code override iden-
tifiers on the page. We also need off-the-page gaze handling
to identify when a user looks away from the page. In this
situation, the system should not crash, and the algorithm
should continue to predict the user’s position. The purpose
of implementing eye tracking in addition to audio alignment
is to make the model more robust in cases where audio alone
may not suffice such as nonlinear musical structures that
go back in time or jump to different pages.

18-500 Design Review Report Template - 15 December 2023 Page 3 of 13

Figure 2: Frontend subsystem diagram. The frontend is structured using the Django Model View Controller Architec-
ture. At the beginning, the user is directed to an ”Upload Music” screen where they will upload both their sheet music
and a MIDI file of the music. These files are stored in the database using Django models. After that, the user will begin
calibrating their eyes. By focusing on each corner of a page of sheet music, the camera will map the location of the eyes
to a location on the screen. In views, the processed backend data is updating the template using jQuery. Once these
setup steps are complete, sheet music will be displayed, and the user can begin playing music. There must be a moving
real time cursor and short page flip animations to simulate turning a real page while giving the user time to adjust to
the new sheet.

Figure 3: Backend subsystem diagram. A Windows laptop runs both audio and visual algorithms. On the audio end, an
uploaded MIDI file is segmented into finite time sequences and is examined to extract information on tempo throughout
the piece. The segmented parts of the MIDI file are aligned with the live audio using a two pointer matching algorithm.
On the Visual end, data from an eye tracking camera is filtered and run through a logistic regression model to determine
whether to flip the page.

18-500 Design Review Report Template - 15 December 2023 Page 4 of 13

4.2 Audio Requirements

In order to address use case requirements for sensor in-
puts and frontend, the backend must ensure accurate page
turning. Specifically, we’re looking at the time distance
between where the music is and where the model thinks
it is. The accuracy requirement is up to 1 beat in either
direction, forward or backward. This requirement ensures
that our audio accuracy is close enough to avoid large audio
alignment and syncing issues.

To address the frontend use case requirement, segmen-
tation is be deployed to reduce latency. Segmentation in-
volves dividing an audio sequence into smaller pieces in
order to process them individually. This technique is es-
sential to guarantee real time page flipping.

To address the sensor input use case, the audio model
must be robust enough to operate accurately despite 1
wrong beat per sequence of 10 beats. The user must per-
form 90% of the notes accurately within a segment of music.

Another requirement designed to address the frontend
use case requirement is the SNR. The audio component
ensures the SNR is greater than 25dB.

4.3 Hardware Requirements

All hardware used for the design must be simple, user-
friendly, and intuitive to operate. First, the display device
should last for the entirety of a long practice session; four
hours should account for most cases. Therefore, a Windows
laptop satisfies this requirement. Furthermore, the whole
system must be portable and consist of small components:
a lapel microphone, eye tracker, and a laptop. This is to
ensure that the system can be setup and used anywhere
with ease.

4.4 Latency Requirements

Processing delay for both these models must be short
and accelerated to avoid unnecessary lags within the sys-
tem. SoundSync’s processing latency should be no longer
than 500ms. 500ms refers to a quarter note at 120 BPM,
which was the proposed fastest tempo that our system must
work with. These design requirements address the frontend
use case requirement of having a high speed processing sys-
tem.

5 DESIGN TRADE STUDIES

5.1 Backend Compute

The Google Board was our board of choice at first be-
cause it had the best processor for machine learning. The
edge TPU processor can run ML inferences quickly and
efficiently. However, using a Google Board would also ne-
cessitate an additional battery pack to supply power.

During development, the Google Board OS ran Debian
Linux which was incompatible with the Python packages
PvRecorder, SyncToolbox, and Librosa which are integral

for audio recording and aligning. Without supporting these
packages, we could not reasonably use the Google Board for
the audio backend. Furthermore, the eye tracking calibra-
tion steps need a display for setup - and the Google Board
didn’t support displaying calibration. With the fatal flaws
detailed above, we pivoted to using a Windows laptop for
the backend.

With the Windows laptop, we were able to integrate all
the Python packages we needed for audio alignment. The
eye tracker is not compatible with MacOS, which is why
we opted for Windows. Directly connecting the frontend
and backend was simplified when using a laptop for both
systems.

Moreover, Django is compatible with Python subpro-
cess calls, which means accessing the eye tracking data
stream was more seamless when using a Windows laptop,
since all of the programs were hosted on one machine. Ad-
ditionally, we found that the Tobii SDK and API were not
compatible with the Google Board’s OS, Debian Linux,
which meant that we could not run our eye-tracking pro-
gram off the Google Board.

The Google Board also had difficulties displaying mat-
plot graphs. Therefore, testing audio alignment off the
Google Board proved to be inefficient. Lastly, having all of
the code files on one machine decreased our system latency
significantly because we lose the costly device to device la-
tency if we used the Google Board and a laptop working
together.

Ultimately, the decision to use the laptop for backend
compute was a careful balance of performance, integration
efforts, and compatibility with the frontend, ensuring opti-
mal system functionality.

5.2 Camera

The Tobii Eye Tracker 5 camera is the foundation of
retrieving high quality eye tracking data. This camera,
designed for eye tracking, can retrieve pupil data within
0.5 degrees compared to 2-5 degrees for a conventional
webcam[2]. The camera also has built-in head tracking
which when used with the existing model can help account
for non-linearity in the music by giving the user a manual
override method. Furthermore, because pro models of To-
bii Eye Trackers are outside of our budget, we developed
using the more accessible Tobii Eye Tracker 5. This cam-
era required development through the Steam Engine API
on Windows OS. The Tobii Eye Tracker 5 SDK had head
tracking capabilities, but we found that this feature was
too sensitive and could not be used for a musician as they
tend to move while playing an instrument.

Although conventional webcams can be programmed to
have high quality eye tracking, adding a peripheral would
result in a less compact design. Furthermore, Microsoft
tested the accuracy and precision of the predecessor to the
Tobii Eye Tracker 5 under different lighting environments.
Because these cameras are similar, the baseline data ex-
tracted from Microsoft is likely comparable to the Tobii
Eye Tracker 5 camera under artificial and natural lighting

18-500 Design Review Report Template - 15 December 2023 Page 5 of 13

conditions. We tested the camera’s accuracy and precision
by tracking the user’s eyes as they played through a sheet
of music.

5.3 Microphone

A lapel microphone works very well at picking up
sounds at a short distance but doesn’t pickup sounds from
farther away. Although boom microphones and podcast
microphones can lead to slightly more clear signals, the
size and/or price of these microphones make them incom-
patible with our project. The lapel microphone also has
the ability to be clipped onto either the user’s collar or the
instrument itself to get a clear harmonic sound from the
instrument. On top of this, this high quality microphone
had a signal-to-noise ratio far exceeding our use-case re-
quirements. This was measured by inputting a pure sine
wave and measuring the noise in the output using Audac-
ity. The lapel microphone worked well for a violin, but
other instruments may require slightly different types of
microphones for audio recording. For instance, Dr. Roger
Dannenberg placed a transducer on the mouthpiece of a
brass instrument, since that is the region of the instrument
where the most pure frequencies can be recorded from.

5.4 Frontend Choice

We contemplated using several options for the display:
a React webpage, a locally run Python program, an iPad
app, and a webpage with a Django backend.

Developing an iPad app proved to be difficult as no-
body on the team had experience with Swift development.
Integration with an iOS app also requires adhering to iOS
SDK guidelines and managing resources to prevent the app
from slowing down and failing to be real time.

While our frontend developer had experience with Re-
act web applications, several challenges prevented us from
ultimately choosing React as our frontend framework. Be-
cause React is a client-side framework, it may be difficult to
handle the continuous stream of data from the peripherals.
Furthermore, integrating specialized hardware like the To-
bii Eye Tracker 5 and Google Board would have required
careful handling of low level interactions and device spe-
cific protocols. We additionally looked into implementing
our frontend using Tkinter, but that proved to have less
intuitive UI than a standard webpage with limited func-
tionality. However, we definitively wanted to use Python
for our frontend implementation, since Python allows for
easier integration with peripherals. Python also has an ex-
tended set of libraries that are compatible with MIDI files,
the Tobii Eye Tracker 5, and audio in general.

Ultimately, we used a webpage with Django in the back-
end to run our app. The Model-View-Controller architec-
ture helped manage interactions across the frontend and
backend. The pages were handled by templates and the
urls and views helped manage and connect backend func-
tionality and stream it to the frontend. We tried multi-
ple approaches to send data to the frontend in real-time

with the lowest latency possible. First, the web sockets
approach failed to provide the kind of interaction we were
hoping for. Eventually, we used jQuery and AJAX to send
data from the backend to the frontend continuously ev-
ery 50ms. We found that the Python views and controls
in JavaScript helped us maximize functionality and focus
more on connecting and integrating rather than building a
usable framework for a frontend application.

5.5 Displays

The current design for the system has a 13” laptop
screen to act as the display placed on top of a musical
stand. Although laptops are more bulky than a tablet, 73%
of Americans own a laptop which increases accessibility[4].
Furthermore, using a laptop as a display is much simpler
as an iPad would require a developed app, while the laptop
can simply display information from the backend.

5.6 Override Conditions

Override conditions were necessary to satisfy accurate
page turning. With override conditions, users can commu-
nicate directly with the system and manually turn a page.
If a user uses override conditions they can mitigate any
risk associated with using the system’s autonomous com-
ponents. For example, if audio alignment turns the page
too early or too late, users can use the eye tracking over-
ride to quickly turn the page where they need. In case of
failure, there is still a way to mitigate the risk of not hav-
ing the page turn at all. This approach provides the same
functionality of existing apps today.

5.7 Rehearsal vs Performance vs Practice

The scope of whether the user is performing or practic-
ing drastically changes the design of the system. Designing
for performance requires the system to have extremely ro-
bust page turning with the ability to distinguish and sepa-
rate polyphonic music. This is because a wrong or inappro-
priately timed page turn may cause the user to lose focus
and can lead to mistakes that jeopardize the quality of the
performance. Musicians are also playing in environments
with several other musicians, so the scope of our project is
a private rehearsal. This allows for a lower successful page
turning rate as the stakes are not as high.

6 SYSTEM IMPLEMENTATION

6.1 Audio Alignment

Our first iteration of audio alignment used Dynamic
Time Warping to align a current snippet of audio to the
reference MIDI. DTW is an algorithm aimed at minimizing
the Euclidean distance between two finite time sequences.
Although DTW is robust, it imposes a set of conditions
that are assumed to be met. The first is that DTW as-
sumes finite time sequences are passed in with a start and

18-500 Design Review Report Template - 15 December 2023 Page 6 of 13

end point. This means DTW must be fed in a complete
segment of recording and cannot be fed more data while
computing. The second condition for DTW is that the
audio is assumed to always be progressing forward, called
the monotonicity requirement. This requirement of always
moving forward in the music means DTW does not work
for an audio segment where the user replays a section. This
limits it’s capabilities for a system that aims to align in a
practice setting where the user may jump to anywhere in
the music at any time. To run DTW, the segment of audio
recorded was aligned to the next four bars from where the
cursor position was. Looking at the next couple bars was
added to reduce the latency of DTW. DTW was ultimately
not enough to align audio on it’s own and hence we worked
on a seperate MIDI Align algorithm.

In this algorithm, we extracted the note sequence from
the time sequence by taking a Short Time Fourier Trans-
form and the chroma vector. Chroma vectors reveal what
note bins a given frequency is sorted into and helps us
extract notes from frequencies with confidence. This bin
method means even if the user is slightly out of tune, be-
cause the bins encapsulate the note as well as the frequen-
cies above and below it. After filtering the chroma vector
data, we get a sequence of notes and their relative posi-
tions. After converting both the reference MIDI and the
current audio into these arrays of notes and ”positions”,
we began building a matching algorithm to rapidly place
sequences of notes into the larger reference. We used a two
pointer approach in order to traverse the list while adding
the least amount of additional processing time.

As we built upon our design, we encountered several un-
foreseen challenges. A point of difficulty in audio alignment
was dealing with latency at various steps in the system. For
example, librosa is a Python library that processes the au-
dio into audio frames and also computes chroma vectors.
However, this function runs caching in the background on
the first call that causes the delay to rise from 20ms to
900ms. Therefore, our first call to audio alignment lagged
the system and lead to undefined behavior. We fixed this
by calling librosa during setup.

Another latency bottleneck ended up being the constant
AJAX calls to update the webpage every 20ms. Eventu-
ally, the system would lag, so we decreased the frequency
of these calls to once every 50ms. This ensured that there
was time for the backend to process while still keeping the
frontend cursor moving smoothly. One of the biggest accu-
racy hurdles was overcome when we realized that running
chroma vectors on raw recorded audio gave an output with
several wrong notes. Upon inspection, these additional har-
monic frequencies were being detected due to the resonance
of the violin. We fixed this issue by using a mute to dampen
the sound of the violin, which mitigates the effects of violin
resonance for now.

6.2 Eye Tracking & Head Tracking

The Tobii Eye Tracker 5 came with the ability to track
eye movement and head position. The major benefit of the

Tobii camera was the high precision and high data rate.
However, because the Tobii Eye Tracker 5 is not catego-
rized as a pro model, it is incompatible with Tobii’s Python
SDK. This meant in order to use the camera, the code had
to be run in C++ - the only language with SDK support.
Therefore, we worked hard to correctly transfer retrieved
data points from C++ to Python. We used a Python sub-
process call to the C++ executable created by Visual Stu-
dio. This approach wrote the C++ subprocess to the std-
out pipe and had Python read out the buffer to gather eye
data. However, the readline call to read the buffer from the
stdout pipe had a latency whenever the buffer was empty.
Essentially, if the system attempted to retrieve eye data
while the buffer was empty, the whole system had to wait
until data was written to the buffer. The recurring cost
of this operation was 30s. Fortunately, the delay did not
significantly reduce the performance of the system.

Head tracking was another feature intended to be added
to the system as a fail safe for musicians to turn the page
in the case of a system failure. However, because musicians
are rarely still when playing and could even turn their head
to look at different parts of the room, we found this method
extremely error prone. The head tracking tests we per-
formed proved that it was too sensitive to movement. We
instead discovered that having the user look at the turn
page forward or turn page backward buttons proved much
more reliable as it was unaffected by the user’s movements.

6.3 Frontend

We used a locally hosted interactive webpage with a
Django backend to display the sheet music. Django is a
Python based web framework that follows the Model View
Controller Architecture. The web application has 4 pages:
start, calibration, music upload, and display. The start
page contains a description of the system alongside the
Terms and Conditions. Here we described how we will not
be storing or selling recorded eye and audio data. The next
page is the calibration page which details how to install
and use Tobii Experience which is the application needed
to calibrate the camera to a user’s eyes.

The consecutive page is the Upload page. Here, the
user uploads their standardized sheet music, as a PDF, and
its corresponding MIDI file. Lastly, the user picks which
instrument they are playing and must click submit. On
submit, the last page is rendered with the uploaded sheet
music and a cursor at the beginning of the piece. We in-
cluded two override buttons above the sheet music to allow
users to manually turn the page forwards or backwards us-
ing a mouse click or eye tracking. At the bottom of this
page, there are buttons to toggle eye tracking and audio
alignment, so the user can use one subsystem or both at
the same time. This feature was implemented for testing
purposes.

During development of the webpage, we struggled with
getting data to display in real time without lagging the
entire system. Initially, we attempted to use web sock-
ets and Django channels to implement the cursor moving

18-500 Design Review Report Template - 15 December 2023 Page 7 of 13

as a function of the backend data, however the implemen-
tation of web sockets was not what we were looking for.
After a lot of trial and error, we achieved full functionality
in the frontend using Asynchronous JavaScript and XML
(AJAX) to seamlessly interface with the backend and re-
ceive updates for the cursor. Using AJAX marked a pivotal
breakthrough, because alternatives like web sockets proved
to be incompatible with our code base.

7 TEST & VALIDATION

We conducted a series of tests to verify and validate our
system. Please refer to Figure 7 for a table of the results.

7.1 Audio Tests

The first audio test was a signal integrity test that was
performed using a pure 440 Hz audio input. Instruments
such as violins have resonances at harmonics associated
with a western tuning system. Therefore we fed a non-
resonant pure tone into the microphone for this test. Once
filtered and processed, the SNR of the signal picked up by
the microphone was greater than 25 dB.

The second test was page flipping at multiple tem-
pos with varying musical structures. Custom composed
pieces encompassed a range of musical beats, structures,
and notes. The beats covered note lengths ranging from an
eighth note to a whole note and notes ranging from G3 to
E6. The following tempos were tested: 60 BPM, 90 BPM,
and 120 BPM. This range accommodated most beginner
repertoire. For each of these variations, we tested whether
the page flipped within the last 2 measures of each page.

Another test that was run was the system’s robust-
ness as the environment changed. Due to the scope of
our project, we wanted to make sure our system worked in
noisy rooms with background noise as well as quiet practice
rooms. The system should meet all use case requirements
under conditions where noise is voluntarily added by the
user, such as via a metronome. Therefore, testing of the
system was completed in a quiet environment as well as a
loud environment with a metronome running.

For unexpected user edge cases such as stopping prema-
turely or repeating sections randomly, the system operated
normally without any unexpected behaviors. Specifically,
the user stopping prematurely caused the cursor to stop
until the playing resumed.

7.2 Eye Tracking Tests

Eye tracking tests focused on verifying that the distri-
bution of data points obtained by the Tobii Eye Tracker 5
stayed within one bar. The predicted size of this bar is 1.65
cm x 1.0 cm for a 13” display. If the data point distribution
did not meet this requirement, then the size of the bar had
to be adjusted.

To test this, Sanjana read music across one line at three
different tempos, while recording her eye positions. The

three tempos we used were 60, 90, and 120 BPM. We then
plotted this distribution in Figure 6.

When standardizing the sheet music, we organized the
lines such that there would be sufficient space where eyes
wouldn’t overlap. To test this, we recorded the range of
the y-coordinates of Rohan’s eye position as he read differ-
ent lines. We looked at the variation in points and checked
for no overlapping sections. The results of this test were
plotted in Figure 5.

7.3 Integration Tests

Integration testing aimed to measure and verify the
improvement that eye tracking adds to the existing sys-
tem. We tested our system with multiple violinists, and
had them test the system twice: once with only audio and
once with both audio and eye tracking. The violinists gave
us feedback of our system and told us what they preferred.
All the users said that the audio alignment alone performed
well, but in cases of wrong or missed page turns, the user
had to manually click the next page or back page button.
When both systems were used, all users said the experi-
ence was smoother. In rare cases of wrong/missed page
turns here, the visual eye-override quickly helped solve the
problem.

7.4 User and Frontend Tests

We tested the system on violin sheet music across 20
page flips. Our design goal was to have a page turning
accuracy of 95%. What we measured was a page flipping
accuracy of 90%, as we observed 2 wrong and/or missed
page flips out of 20 during our tests. However, the override
controls worked 100% of the time, when a wrong occurrence
of a page flip did occur. Therefore, the eye tracking sys-
tem helped bring our total system page flipping accuracy
to 100%.

Lastly, we asked our users to give feedback about our
front-end, specifically if it was intuitive and user-friendly.
They all reported that the web-page was very easy to use
and understand. They also said that the overall experience
was smooth and very user-friendly.

7.5 Results for Design Specification: Eye
Tracking

Eye Tracking Latency: When the eye tracking enable
button first gets toggled, the system starts running the eye
tracking heuristic model. The eye tracking heuristic model
takes 250 ms to create the API and initialize the camera.
The Tobii Eye Tracker 5 Camera operates at a sampling
rate of 60 Hz, which means that each data sample of the
user’s eye position takes 16.67 ms to record. However, send-
ing the data to the backend of the web application and then
reading each sample from the backend takes 30 ms. There-
fore, when the system is running, the latency is 30 ms.

The reason why the eye tracking program is not used
as a helper function is because the initial startup phase

18-500 Design Review Report Template - 15 December 2023 Page 8 of 13

of the program costs 250 ms each time the function is be-
ing called. This is due to the function needing to create a
object that finds and links itself to the eye tracker. As a
result, a subprocess of the program was initialized to run
the function once and continue running. This causes the
250 ms cost to occur once at the beginning of our system
and continue with an average latency of 30 ms while the
user is playing.

Figure 5 shows the plot of the range of y-values for each
row in our standardized sheet music. Notice how the data
points do not over lap for each row, as each row is spaced
evenly from each other. This shows that our eye track-
ing is very reliable when identifying which specific row and
bar the user is currently looking at. In Figure 5, how-
ever, we did observe some overlap between row 2 and row
3. Nonetheless, this is negligible because our eye tracking
heuristic pays close attention when the user is looking at the
last row, right before the page turn. Lastly, we found that
the distribution of points was accurate and precise within
1 cm, which satisfies our dimensional design requirement.

Figure 6 shows Sanjana’s eye distribution as she read
one line of music at various tempos. We observed that the
distribution of the user’s eyes does not vary as a function
of the tempo. This reinforced that our eye tracking data is
very consistent across multiple tempos when working with
a bar height of 1.0cm and a width of 1.65cm.

7.6 Results for Design Specification: Au-
dio Alignment

We conducted a series of tests for Audio Alignment. For
page flipping using audio alignment only, we tested 20 page
flip boundaries at 120 BPM and found that the page turned
within 2 bars of the end of the page 90% of the time.

For the latency of the audio alignment subsystem, we
conducted a series of tests in the backend at several dif-
ferent tempos. We found that the latency across tempos
ranging from 60 BPM - 240 BPM didn’t exceed 100 ms.
We also found that the introduction of a metronome didn’t
impact the computation time in the backend. This rein-
forced that the audio alignment algorithm we wrote didn’t
introduce a large slow down. We changed our audio align-
ment approach from using DTW to our algorithm in order
to achieve this latency.

Our segmentation tests revealed that an average length
of 50 frames at a frame length of 1024 with a sampling rate
of 16000 Hz was ideal for the duration of a segment. We
found this by testing a variety of lengths of frames accord-
ing to the average length of a beat in a given piece. We
found a good balance between the accuracy of the align-
ment and the duration of recording, when using 50 frames
of audio recording.

7.7 Results for Design Specification:
Hardware

To test if the hardware used was intuitive to operate,
we had multiple violinists test our webpage. We provided

the sheet music and corresponding MIDI files, however, the
test users walked through the webpage themselves. Because
the system is hosted on a laptop, the system can run for 4
hours, which satisfies another hardware requirement. The
overall system was also fairly portable and consisted of a
laptop, microphone, and small microphone.

8 PROJECT MANAGEMENT

8.1 Schedule

Refer to Figure 4 in the Appendix.

8.2 Team Member Responsibilities

The components for this project fall under 3 categories:
frontend, visual, and audio. The audio tasks include testing
the best placement for the microphone, ensuring the micro-
phone signal is clear, processing the audio in real-time con-
tinuously, and writing an algorithm to align it. The visual
tasks consist of writing the code that interfaces with the
Tobii Eye Tracker 5, filtering the data points, and imple-
menting a heuristic to determine how to evaluate eye data.
The frontend tasks comprise of building a user interface
that shows the eye tracking calibration, allows the user to
upload their sheet music and a MIDI file, and displays the
sheet music with a following cursor as well as page turns.

The tasks were divided with Sanjana tackling the fron-
tend development and audio alignment, Rohan working on
the hardware and integration with decision logic algorithms
for eye tracking and audio as well as frontend debugging,
and Caleb solving audio alignment problems and helping
with eye tracking. We all worked on at least 2 subsystems
and integration was done together.

8.3 Bill of Materials and Budget

Refer to Table 1 in the Appendix.

8.4 Risk Management

The major risks in this project ended up being integra-
tion, latency, and audio alignment.

Integrating multiple subsystems that all run in different
environments meant that we needed to begin integration
efforts much earlier than we did. Despite audio alignment
being done in Python, once integrated, several days were
spent debugging the algorithms and connecting to the fron-
tend. Once we added the eye tracking C++ subprocess
call into the mix, it became even more difficult to ensure
the algorithms were collaborating with each other. Tens of
packages and libraries as well as SDKs all needed to run
in parallel in a Django backend. There were a plethora of
issues with the Django backend and parallelization.

Throughout development, we struggled with the latency
vs accuracy trade-off. Latency is extremely important to

18-500 Design Review Report Template - 15 December 2023 Page 9 of 13

us as the system needs to be real time and the cursor po-
sition should be updating and aligning with the most re-
cent data as frequently as possible. With recording au-
dio, while we could process about 50 frames in a matter of
20ms, the backend had to spend roughly 3 seconds to only
record audio. This meant while collecting the 3 seconds
of audio, the system has to assume the user is playing in
time. This delay in audio alignment can hinder the user’s
practice experience. However, if we reduced the amount of
frames recorded, and hence the recording time, the number
of notes heard would be reduced and it would be harder to
align. Our current audio alignment algorithm can accu-
rately align audio in sub 500ms by assuming the user is al-
ways playing a note within the next couple bars and record-
ing for only about 50ms. This means that within that time
frame only one frequency is heard and is aligned to a nearby
note. Our system allows for multi-page jumps which means
one detected frequency is not enough to correctly identify
where on the page the user is playing. Hence, we found
3 seconds to be roughly the amount of time needed for a
recording to align well. It is also important to note that
this time was a function of the average length of a note and
would differ piece by piece. For faster pieces, where more
notes are played in a shorter duration of time, the record-
ing time could be as low as 1.5 seconds. For slower pieces,
where more time is need to read multiple notes, the record-
ing time could be as high as 4.5 seconds. This ultimately
gave the system the ability to adapt to different pieces and
prevent undefined behaviors across pieces.

Another major risk in our project was if we could write
an audio alignment algorithm that aligned audio in real
time. While this may sound feasible, audio alignment in
real-time is an ongoing research area without quantitative
results, especially when accounting for nonlinear musical
structures that go backwards or jump forwards in time.
Furthermore, we initially relied on Dynamic Time Warp-
ing to do the heavy lifting for us - locating similar sequences
and aligning them in time. Due to the algorithms being run
under the hood, DTW took too long to return a location.
Due to this, we began working on inventing our audio align-
ment algorithm. We settled on a two pointer approach post
chroma vector analysis to determine recorded sequences
and align them with the corresponding reference audio. As
we tested this algorithm, more and more edge cases were
discovered, and we wanted to ensure that our algorithm
would allow users to play music non-linearly. Therefore,
we were not able to use the ”arrow of time”, which is the
belief that time only moves forward.

9 ETHICAL ISSUES

The worst-case scenario for SoundSync is that it gets
breached and user privacy is compromised in some man-
ner. An attacker could exploit a vulnerability in the system,
breaching SoundSync’s security protocols. They would be
able to gain unauthorized access to the user’s data, cap-
turing sensitive information such as sheet music, practice

patterns, and possibly personal details. Our intended use
case is that a user has the technology sync to their perfor-
mance in real time and flip the page automatically. Walk-
ing through a less-than-ideal scenario, we begin with a
user practicing, however their connection gets intercepted.
While they were trying to practice, someone else captures
their data and essentially hacks them. In this situation, the
user’s privacy is compromised. A musician’s privacy and
potentially a musician’s intellectual property in the case
where a musician is the composer.

In particular, people with visual disabilities or other
impediments that impact their music performance may be
more negatively impacted by a security breach. Individ-
uals with visual disabilities may also create and modify
sheet music or audio recordings for practice, which is their
own intellectual property. Their sheet music or audio data
could get stolen, which is more detrimental. In this sce-
nario, the user’s privacy is violated. Although this data
may not seem like it gives away much personal informa-
tion, companies could, in theory, use the eye tracking data
to infer health data about the user. This could then be
used for advertising and help companies create a profile
of the user. Keeping this medical information confidential
and safe is vital to prevent companies from collecting and
generating complete profiles of people.

Systems that follow a player and flip the page automati-
cally were first built by Dr. Roger Dannenberg at Carnegie
Mellon University. These systems then went on to become
a system known today as SmartMusic. Other people have
built similar systems such as Andreas Arzt who showed that
DTW could be run on segmented sequences of the MIDI
file and live audio for real time audio processing and score
following[2].

SoundSync differentiates itself from existing technolo-
gies by studying how eye tracking can be combined with
audio alignment to provide extended functionality for users.
Our system will also perform audio processing in real time,
whereas many existing technologies perform post process-
ing on completed audio streams to determine where a user
is located in the music.

10 SUMMARY

Soundsync takes in visual and audio inputs to deter-
mine when to digitally flip a sheet of music. The system
used the Tobii Eye Tracker 5 camera, a Lapel clip-on mi-
crophone, and a Windows laptop. Our system met most of
the design specifications. Most notably, the page flipping
accuracy was 90%, however, the combined accuracy of the
system with both audio alignment and eye tracking was
100%. We are very pleased with the latency of the back-
end subsystem. The latency’s of the audio alignment was
roughly 100ms, the eye tracking latency was about 30ms,
and the latency of the front end was about 50ms.

Some limitations of our system include overly repetitive
music, musicians who are playing out of tune, and tempo.
Due to the nature of our audio alignment algorithm, there

18-500 Design Review Report Template - 15 December 2023 Page 10 of 13

is low tolerance for blatantly wrong notes.

With more time, we would have liked to train an ML
model for eye tracking to better predict the confidence lev-
els of specific edge case eye movements such as looking up
off the screen or glancing down. These specific glances are
tied to when the user looks at the conductor or their in-
strument and would give extra information to work with.
Additionally, we would have liked our audio alignment algo-
rithm to include more support for edge cases and repetitive
sections of music.

SoundSync is designed to be accessible to those who
cannot operate existing page turning machines and for
those who are looking for a seamless and non-distracting
music experience.

10.1 Future work

The future of SoundSync involves better accounting for
some edge cases and testing our product with a wider range
of music with more nonlinear structures. We are excited to
keep working on the product during our free time over win-
ter break!

10.2 Lessons Learned

Our project was extremely ambitious and attempted
to solve a novel problem that is an ongoing research area.
Overall, integration is challenging. Our main takeaways are
to integrate components earlier in development. Another
takeaway is that work should constantly be saved. We ran
into an issue where a team member’s laptop got wiped.
Thankfully, through the use of git and all of us being well-
versed with the other subsystems, we worked together to
resolve and rewrite any code we lost.

Glossary of Acronyms

• API - Application Programming Interface

• BPM - Beats Per Minute

• DTW – Dynamic Time Warping

• MIDI - Musical Instrument Digital Interface

• ML – Machine Learning

• OS - Operating System

• SDK - Software Development Kit

• SNR - Signal to Noise Ratio

• TOPS - Terra Operations Per Second

References

[1] Andreas Arzt, Gerhard Widmer, and Simon Dixon.
“Automatic Page Turning for Musicians via Real-Time
Machine Listening”. In: Jan. 2008, pp. 241–245. doi:
10.3233/978-1-58603-891-5-241.

[2] Anna Bánki et al. “Comparing online webcam- and
laboratory-based eye-tracking for the assessment of in-
fants’ audio-visual synchrony perception”. In: Front.
Psychol. (2021).

[3] Google. 2023. url: https://coral.ai/products/
dev-board/#description.

[4] Pew Research Center. The Demographics Of Device
Ownership. Tech. rep. 2022. url: https : / / www .

pewresearch . org / internet / 2015 / 10 / 29 / the -

demographics-of-device-ownership/.

[5] Romain Tavenard. “Introduction to Dynamic Time
Warping”. In: (2021).

[3] [4] [1] [2] [5]

18-500 Design Review Report Template - 15 December 2023 Page 11 of 13

11 Appendix

Table 1: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Tobii Eye Tracker 5 N/A Tobii 1 $298.53 $298.53
Shure MVL Microphone N/A Amazon 1 $73.83 $73.83
Microphone Adapter N/A UGREEN 1 $7.00 $7.00
Google Coral Dev Board N/A Coral 1 $144.24 $144.24
Total $516.60

Figure 4: Gantt Chart Diagram. The green tasks (Caleb) are audio, the pink tasks (Rohan) are hardware, and the
blue tasks (Sanjana) are display and eye tracking. The division of labor is divided to optimize parallel development and
provide slack for integration of different components. The tasks were divided based on areas of expertise or interest and
accounted for breaks and holidays.

18-500 Design Review Report Template - 15 December 2023 Page 12 of 13

Figure 5: The measured coordinates of the Y coordinate of a user’s gaze as they played through all consecutive lines on
a page.

Figure 6: The measured Y coordinate of a user’s gaze as they played through one line at various tempos.

18-500 Design Review Report Template - 15 December 2023 Page 13 of 13

Figure 7: Results from all major tests

