
TAICHINE–
A New Way to Learn Tai Chi

Team B4: Hongzhe Cheng, Sirui Huang, Shiheng Wu, Jerry Feng
18-500 Capstone Design, Fall 2023

Electrical and Computer Engineering Department
Carnegie Mellon University

System Architecture

Product Pitch
Taichine is an interactive computer application that utilizes machine

learning and joint angle comparison to visual and computer generated
verbal feedback to help Taichi beginners practice and improve in Taichi.

We aimed to have a very intuitive and easy to use UI in our app. We
aimed to have a 90% accuracy in joint detection, a 10 degree margin of error
for joint angle detection, and a 4 second processing time for feedback
generation.

Our product features a self curated list of sequences of Taichi poses and
allows users to upload their own Taichi poses that they would like to train on.

Initial tests show users are satisfied with usability, but slightly
disappointed with the speed of the application.

Our system consists of 2 main components: a software frontend and a
backend machine learning backend with signal processing of images.

The frontend consists of settings screens to allow users to adjust
tolerance range for joint angles and how long the system waits for users to
get in the pose. The frontend has a training screen consisting of a live feed
of the user, an image of the reference pose, and a skeleton of keypoints of
the reference pose and user pose with correctness of limb positions being
indicated by red and green.

The frontend also allows users to upload custom images to train on and
dynamically reorder the pose sequence, delete poses, and name the
sequence in the app.

User pose images will be processed for key points using Openpose and
the backend compares the user’s joint angles with the joint angles of the
reference pose. Any joint angles not within tolerance will be used to
generate corrective verbal instructions on how to fix these errors, with errors
in lower body prioritized.

https://course.ece.cmu.edu/~ece5
00/projects/f23-teamb4/

System Description

System Evaluation

Conclusions & Additional Information

In our system, if the user chooses a native or custom Taichi pose
sequence to train on and will be taken to a training screen. The user will
click the start button and then do their best to imitate the reference, the user
will have a countdown from an adjustable “move-on” time (default 5
seconds) before a picture of their pose is taken.

The system will inform the user to adjust to include their full body in
frame, otherwise the system will use the Openpose machine learning model
to determine the keypoints of the users body, such as elbows, head, knees,
etc.

The backend pose comparison algorithm will then take in the keypoints of
the users body and calculate the angles of joints, and compare with the
reference angles of the reference pose. After which it will then find any joint
angles not within an adjustable tolerance range and generate voice
instructions for how to fix these errors, prioritizing those in the lower body.

The system also draws the user’s pose on top of the reference skeleton in
blue on the training page, with any limb not within tolerance level being
drawn in red.

If the user chooses to upload their own pose sequence consist of multiple
images, they will be able to add, remove and reorder the sequence of pose
pictures in the app.

The backend was tested
by training on poses and
calculating the angles using
online protractors on
rendered pictures from
Openpose and comparing
with the angles calculated
by the backend comparison
algorithm.

We were able to achieve many of our goals for our
system, meeting our runtime and accuracy
requirements. We did have users express that the
system is slow, so in the future, we would look at
improving performance. We learned a lot about the
difficulty of predicting how frontend elements in kivy will
interact, and how difficult system integration is.

User Pose Reference Pose

User and
Reference
Skeletons

Timing the application
was tested by timing the
system using timing
modules in python when
under use by team
members.

Metric Namez Desired Actual

Total Backend Runtime / 7s

Wait Time until Instruction 4s 3.6s

OpenPose Runtime / 3.1s

Backend Runtime / 0.5s

Accuracy for error body part 90% 95%

Average angle difference 10 degrees 5 degrees

User testing was done
on 5 users recruited by
team members who did the
“Commence Form” and
“Repulse the Monkey” pose
sequences at selected
tolerances of 15 and 20
degrees.

