

Taichine: Tai Chi Form
Practice Tool for

Beginners

Hongzhe Cheng, Sirui Huang, Jerry Feng, Shiheng Wu

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—A system for comparing poses performed by users
against professional Tai Chi poses and generating verbal
feedback to help with Tai Chi learning. The system also allows
users to upload image/image sequences as custom training, thus
broadening its usage beyond the scope of Tai Chi.

Index Terms—OpenPose, Posture Detection & Evaluation, Tai
Chi, Machine Learning, Software Systems

I. INTRODUCTION

Tai Chi, as a form of Chinese martial art, highlights

controlled movements and sustained postures. Tai Chi has
been a popular exercise among senior citizens, and it is also
gaining popularity in younger generations. According to
research, Tai Chi can yield a multitude of health benefits,
including but not restricted to stress reduction, improved
balance, and alleviation of knee osteoarthritis pain [1]. Despite
the benefits, Tai Chi can pose challenges to beginners and
might lead to injuries if not practiced properly [13].

Our team aims to create an application that incorporates
state-of-the-art machine learning technology to aid
practitioners in evaluating their Tai Chi postures. Our
application analyzes user image input from the practitioner
with the OpenPose deep learning system and compares the
user's poses with those of a Tai Chi professional.

Our system will rate the user’s pose using a scoring
algorithm and give audio and visual feedback on correcting
one's pose if the limb angle error exceeds the set tolerance.
Our system integrates the 24-form Yang Style Tai Chi Poses,
while also supporting the option for users to upload their
custom poses/pose sequences that they would like to practice
onto our system, with custom pose sequences having a
maximum of 5 poses. In addition, our system supports pose
sequencing and will only progress to the next pose once the
user has met a minimum score on the current pose.

In general, utilizing machine learning technology, our
system provides an interactive approach for Tai Chi learning
and offers an accessible and flexible training experience to the
system users.

II. USE-CASE REQUIREMENTS
Our system provides three main functionalities: pose

comparison, corrective verbal instructions, and interactive user
interface.

For pose comparison, the system is expected to achieve
90% accuracy in identifying coordinates of the user’s body
(knees, shoulders, elbows, etc.) and user’s pose correctly.
According to Pedersen et al. [4], OpenPose’s lowest accuracy
performance in a lit environment was 89.74%. Due to the
significant decrease in OpenPose’s recognition accuracy in a
dark environment, the users are expected to use the application
where the camera is able to capture clear images of the user.
Additionally, joint angles have been used for pose detection in
several studies examining computer-vision based approaches
for physical rehabilitation and assessment according to a
survey by Debnath et al. [2]. In particular, De Gama et al. [3]
show that an angle-based posture detection algorithm could
identify correct movements approximately 100% of the time
on a limited sample size under controlled conditions based on
motor rehabilitation therapies with stroke victims. These
preliminary studies ensure the accuracy of the approach used
for the Taichine’s development.

The application interface has to be easy for all age groups
to use. In testing, an average score of at least 8 out of 10 is
expected in terms of users’ evaluation on how intuitive the
application is. Meanwhile, the application has to take into
account different health and movement conditions with respect
to the users. The system needs to provide enough approaches
for its users to follow the instructions. Taichine uses visual and
audio feedback for guiding its users.

The audio has to be minimal but effective so that the users
can follow easily in a short time frame, thus requiring clarity
and appropriate speed for the speech. To ensure users receive
timely feedback from our system, there should be a maximum
4-second latency from when the system finishes receiving user
image input to when the audio feedback is played.

Considering the minimum distance away from the camera
the user has to be in order for the camera to capture valid
footage, the information displayed by the system should be
visible from meters away. Meanwhile, Taichine should be able
to generate optimal feedback in edge cases, such as having
multiple people in captured images or operating in dark
environments, which will be discussed later.

III. ARCHITECTURE & PRINCIPLE OF

OPERATION
As in the system diagram (Fig. 1), our system is software-

based. The application takes two different types of input.
Depending on which type of input it gets, the system either
carries out real-time pose recognition and instruction, or lets
users upload custom poses and expand the reference set.

18-500 Final Project Report: Taichine 12/15/2023 2

Fig 1. Block Diagram of System Diagram

As shown at the top of the diagram, the first type of input
is a real-time captured image, which represents the captured
image input of the user practicing the reference Tai Chi pose.
OpenPose is a pose recognition software that takes image
input and returns a set of coordinates representing the core
body part associated with each “human” detected in the input.

As per Taichine, the pipeline feeds OpenPose-generated
coordinate sets to the user filtering function. The application
will load the reference pose and corresponding coordinates for
user-filtering. While it is recommended that only one single
trainee should be present in the camera frame for their
training, it is highly possible for users to use Taichine in
environments where other people are present. In cases where
passersby are present, Taichine assumes that the trainee’s
posture would be the most similar to the reference posture
compared with noisy coordinates from passersby.
Consequently, the filtering system works closely with the
comparison algorithm that evaluates all captured human forms,
and selects the one closest to the reference as the actual user.
For the selected user and their pose data, the comparison
algorithm generates body part correctness data and angle
differences if there are any. It then formats them with verbal
instruction templates and passes them to the speech
application. The verbal instruction consists of detailed
information on where and how the user’s poses are off from
the reference. Such instructions will be in the form of feedback
like “Your left arm needs to be 20 degrees up”. Alongside the
verbal feedback, as at the very bottom of the diagram, the
frontend will also offer visual feedback comparing the user

and the reference pose.

The second arrow pointing from the user to the system
represents the second type of input, the custom image
sequences. The customization pipeline allows users to pass in
images of poses that they are interested in practicing, and use
them as references beyond the built-in 24-form Yang Style Tai
Chi poses.

Users should input images containing one and only one
“human” to guarantee the effectiveness of the system. The
images will be passed to OpenPose and receive the coordinate
set for the pose in the image. The application will store the
image and coordinates separately into the file system for future
usage. This pipeline enables users to update the available
training options. After they upload images as custom pose
sequences, the application will show them on the selection
page next time the users open it up. Also, given that the
application processes the general definition of “Poses”, the
custom pipeline also supports other poses in 2D space (without
too many body parts perpendicular to the screen and camera).
Examples include Yoga, Dancing, etc.

IV. DESIGN REQUIREMENTS
To meet the User Requirements listed in section II,

Taichine has to first satisfy corresponding design requirements
for its various subsystems. Below are the design requirements
considered during the planning, development, and testing
process.

18-500 Final Project Report: Taichine 12/15/2023 3

Fig. 2: OpenPose Measurement of Joint Angle Error Compared to Older Posture Detection Algorithm Kinect [6]

A. Footage Input Calibration

Regarding the input footage, the integrated cameras of the
users’ laptops would suffice for the purpose of getting clear
input images. To help users set up the camera, a calibration
stage should be present in the training process. Taichine will
give the user time to position themselves and calibrate the
camera to capture their full body. Still, the user is expected to
utilize Taichine in a well-lit environment for more accurate
pose recognition. There will be no low-lighting support. The
user should also only train on a flat ground for safety concerns.

B. Angle Detection

After calibrating and making sure the user stays inside the
camera frame, we aimed to control the difference between user
body angle and reference angle should be within 10 degrees of
the real-world setting. For example, when the user is 20
degrees lower in their arm position, the comparison algorithm
should report that the arm is lower by an angle of 10 to 30-
degrees. Evaluating OpenPose models’ performance on
laptops with resolutions from 720p to 1080p reveals 90%
accuracy in angle detection after manually adjusting the
camera angle and distance of the user from the camera.

C. Verbal Feedback

Verbal feedback should be emitted within 1 second after
the evaluation period. This is to let the user know in real time
what and how to improve when practicing. To achieve this,
some requirements have to be met in receiving and processing
feedback. Mean human listening rate is around 309 words per
minute as in a 2018 study [5] and Taichine instructions are
mostly around 10 words (e.g. “Move your left arm up twenty
degrees”). Based on these, TTS should take at most 2 seconds

to instruct the user on the most different body parts. This
design will help users correct deviations in each limb step-by-
step. The TTS loudness can be adjusted with the user’s laptop
volume control, while the TTS loudness at maximum laptop
volume should ensure the verbal instructions be audible and
clear to a user 5 meters from the laptop. Still, it is preferable to
practice in environments with low background noise to reduce
distraction in general.

D. User Interface

The UI has to be easy to use. In particular, it should have
a short learning span even for people with minimal knowledge
in computers. Navigating from functionality to functionality
should feel like swiping on a smartphone, and most of the
information on screen ought to be visible from meters away.

E. Customization Pipeline

The customization pipeline has to support the most
common image file types, such as png and jpeg. The pipeline
should let the user batch upload images and edit the sequence,
including changing the sequence name, switching pose order,
and deleting poses from the sequence. Still, whether it is a
screenshot or photograph, a posture with all body parts visible
helps the application label all joints accurately. The user
should upload images with one and only one human present
doing the desired pose, to prevent misidentifying the reference
due to overlapping limbs or multiple poses within the picture.

F. Supported OS

Taichine will support Windows. Most potential users of
Taichine, especially the senior citizens, tend to be more
familiar with Windows rather than MacOS and Linux.

18-500 Final Project Report: Taichine 12/15/2023 4

V. DESIGN TRADE STUDIES
A. Decision of Local Application

While internet access improves compatibility and enables
access to cloud computations, local applications have the
advantage of faster performance and responsiveness as they
leverage the device's hardware and resources more efficiently
compared to web apps requiring cloud servers. Therefore,
Taichine works offline to ensure uninterrupted functionality in
environments with limited Internet support, like parks and
large outdoor spaces that have larger space and stronger
lighting. Local also provides more privacy and security. With
camera captured data stored locally, exposure to online threats
and insecure connections is reduced.

B. Decision for Laptop Platform

Smartphones have become so prevalent today that, when
it comes to application development, a smartphone application
comes to mind as an option naturally. In fact, a smartphone
application can be more convenient for Tai Chi practitioners,
as smartphones are much less cumbersome than laptops.
However, phone screens are not the best option to provide
detailed feedback. Taichine has to produce and convey real-
time images of the user, reference images processed by
OpenPose, and voice guidelines at the same time. A laptop
screen is often between 13 to 17-inches, as shown in Fig. 3,
making them more than 4 times larger than 7-inch smartphone
screens. Laptops allow Taichine to present much more
information on the training page than what smartphones can
do, leading to more detailed feedback. Meanwhile, with the
web app option ruled out for reasons discussed in Section A, a
local smartphone application becomes the only viable option.
Unfortunately, the models and engines Taichine uses only
support Windows and Linux, thus making a local Windows
application the most reasonable option for Taichine’s platform.

Fig. 3: Comparison of Smartphone Screen to Laptop Screen

[7]

C. Posture Model Selection

The recent boom of AI significantly increased the number
of options for posture detection models. Among them,
MoveNet and Openpose caught our attention. Google’s
MoveNet specializes in capturing detailed facial expressions
and tracking atypical/fast-moving postures. Conversely,

OpenPose works locally on both GPU (CUDA support) and
CPU without occupying too much resource. It focuses more on
the details of body part joints, in contrast to other models
developed on Tensorflow platforms, excelling at capturing
quicker motions. The said models also place more weight in
capturing the upper body instead of limb movements. One
particular functionality of Openpose is its multi-people
detection, which later proves particularly useful in
materializing our human filtering/selection module.

Models like MoveNet and Posenet provide relatively
higher FPS and quicker responses. According to a 2022 study,
MoveNet has a processing speed of (0.49±0.05s/frame),
followed by Openpose (0.51±0.08s/frame)[8]. Although
MoveNet is faster than Openpose, the few-millisecond
response difference is negligible. Considering additional
functionality it provides, OpenPose becomes the selected
model for Taichine for its posture detection specialty and
manageable resource utilization.

Tai Chi is an exercise aiming towards balance and control.
Therefore, a higher FPS camera and quick responses from the
model is unnecessary for tracking Tai Chi practitioners’
movements. Instead, posture accuracy is the major concern.
OpenPose performs best on angle errors in median numbers in
detecting critical joint positions, such as knees and hip,
according to a 2022 study conducted by Edward P.
Washabaugh et al (Fig. 4). OpenPose also produces the lowest
errors, averaging at 5.1±2.5 degrees of error over one iteration,
compared with 9.1±3.0 degrees found in MoveNet [9]. In
addition, OpenPose can handle complex and intricate poses.
This suits particularly well for analyzing Tai Chi, which
requires detailed pose information, including detailed hand key
points assigned to various hand joints. MoveNet and
DeepLabCut are more geared towards fitness tracking, which
only stands out in detecting simple and repetitive movements
like squats and jumps with no demand of giving accurate
instructions.

Fig. 4: Rain cloud plots depicting maximum absolute errors
for hip and knee kinematics. The circles on the plot indicate
individual data points. Abbreviations: Deg (degrees), OP
(OpenPose), MNL (MoveNet Lightning), MNT (MoveNet

Thunder), DLC (DeepLabCut). [10]

18-500 Final Project Report: Taichine 12/15/2023 5

Model
Name

Model Performance

Posture Detection Accuracy
Avg.
FPS

Multiple Person

OpenPose Great 15 Supported

MoveNet Difficulty for Overlaps 160 Not Supported

PoseNet
Difficulty for Overlaps &

Accuracy issues
90 Not Supported

Table I. Posture Detection Model Comparison

Fig. 5: Comparison of VoiceEngine Clarity and Quality
(Windows 2 represents pyttsx3,Judy represents Mozilla

TTS) engines) [11]

D. Voice Engine Choice

For the voice engine, Taichine uses the Pyttsx3 module.
Pyttsx3 works without an internet connection, which fits the
application’s local system design. Another choice considered
during the implementation process is Mozilla TTS, which is
also open source and provides high voice quality.
Unfortunately, the installation of the package is too bulky and
redundant for our system, with the total package size reaching
around 2 GB. In contrast, Pyttsx3 provides similar
functionality with only 40 KB size and much faster response
time (2-3 seconds compared to 10+ seconds wait time for
Mozilla TTS to synthesize the speech on full scale algorithm
without significant improvement).

While the voice quality might not be as high as more
advanced packages, it is imperative for the instructions to be
delivered with a pronounced clarity, ensuring ease of
comprehension for users to adhere to. Based on the data given
in Fig. 5, Pyttsx3 module sacrifices its voice quality and clarity
and, in exchange, becomes particularly fast and light-
weighted. Pyttsx3 uses Microsoft’s latest SAPI (Speech
Application Programming Interface) 5 drivers that are
integrated in Windows machines with XP or newer operating
systems installed. This makes it highly compatible with
current Windows laptops. Similar applications utilizing the
same driver include Microsoft Narrator and Adobe Reader, but
since the application development is in Python, Pyttsx3 offers
the most convenience and meets all the design requirements.

E. Comparison Algorithm

Taichine adapts vector representation for comparing user
body postures with reference postures presets. This is mainly
because OpenPose returns its data representing each body
posture as a high-dimension vector, with each dimension
corresponding to a key point. For example, when Openpose
detects 18 key points, each posture can be represented as a set
of 18-2D vectors.

The major advantage of representing posture data in
vector form surfaces when cosine similarity comes into the
picture. Cosine similarity ranges between 1 and –1 and lies
mostly between 1 and 0 in the case of Taichine because users
will realize from negative values that their posture is mirrored.
Any results less than 1 indicate dissimilarity between the user
posture and the reference, which quantifies similarity
concisely. Moreover, the calculated similarity can be
converted to a score with ease. The frontend can then display a
score to show how the user is doing and decide if a posture is
accurate.

A · B represents the dot product of the two vectors (postures).

|A| and |B| are the magnitudes (Euclidean lengths) of the
vectors A and B, respectively.

Additionally, using numpy.arctan2 can help determine the
signed angles for generating instructions related to pose
direction. The function takes in two vectors A and B as
defined above and outputs a signed angle difference between
two vectors with a range of [-𝜋, 𝜋] relative to the positive x-
axis. After converting it back to angles, the absolute value of
the difference represents the dissimilarity and the sign of the
difference indicates its direction. Each limb vector is also
compared with positive x-axis to yield a signed angle which is
passed to the frontend for skeleton drawing.

One algorithm Taichine could have used for comparison
is to measure the absolute positions of the user posture and
seeing how different the body joints are from those of the
reference. In this case, the user can get each of their body parts
as close to those of the reference as possible, which seems
more intuitive. Yet, given that Taichine is not a personalized
application, the evaluation result will be influenced by the
varied lengths of body parts different users have. For example,
a person with shorter limbs will not be able to reach reference
points that are easily reachable by a taller demonstrator. Even
if they have done the absolute correct posture, their score will
be low since their body parts are not at the same positions as
the reference body parts. Additionally, the vector
representation approach does not need ground reference. So if
the user attempts to do Tai Chi on an inclined ground, the
biased absolute positions will mess with the absolute-position
comparison scheme, but the joint angles measured with the

18-500 Final Project Report: Taichine 12/15/2023 6

vector will be the same. Based on hands-on testing as well as
the regular criterion for evaluating a Tai Chi pose, the joint
angles for a Tai Chi pose should be universal even for people
of different body sizes. As people approach the same posture
within a 10 degree tolerance, their posture will end up being
the same based on joint angles. For a more detailed discussion
on implementing more complex statistical and math models in
case joint angles are proven wrong, please refer to Risk
Mitigation section VIII.D.

F. Frontend Library

TKinter, PyQt, WxPython, and Kivy are the four potential
frontend libraries for Taichine. Considering system complexity
and time restriction, Kivy ends up as the best option. The
widgets Kivy provides are helpful for implementing all
different parts of the frontend infrastructure, and the http/css-
like structure helps separate UI design from functionality
development.

To briefly cover the disadvantages of the unchosen
packages, WxPython is only compatible with Python 2.7 and
is also not actively maintained. Issues with restricting Taichine
to Python 2.7 include the inability to work with an improved
“os” module and the incompatibility with f-strings in python 3
[14]. These issues would have made file system handling
much more difficult to implement. Additionally, the inactive
maintenance makes WxPython an especially risky choice.

The complexity of PyQt is the central reason it is not
chosen. PyQt requires a compile stage for its code, and many
PyQt users have run into a variety of compile stage issues
when using the package. PyQt also requires learning and
understanding other languages to be able to use some of its
features (for example, needing to understand javascript to use
its declarative programming feature and some C++ for the
general library).

Finally, due to its limited amount of widgets available and
overall less appealing aesthetics compared with Kivy, TKinter
is not used.

VI. SYSTEM IMPLEMENTATION
A. Frontend Infrastructure

The frontend app infrastructure is the interface our user
uses for interacting with the backend evaluation system. The
hierarchy of the app infrastructure is as follows:

1. Main Menu
The main menu is the first page the user will see when

they enter the app. It will consist of the app title “Taichine”
and a list of five option items. The user can select the first four
options to transition to different pages. They can transition to
the Mode Selection Page, the Customization Upload Page, the
Options page, or the Tutorial page from the main menu by
clicking the corresponding actions. Or, they can exit the
application by selecting the “Exit” option at the bottom.

Fig. 6A. Screenshot of the Main Manual

2. Mode Selection Page

The user can reach this page from the main menu when
they click the “Pose Selection” option. The Mode Selection
Page is where the user can select between the integrated 24-
form Tai Chi poses or the Custom poses the user uploaded
previously.

Fig. 6B. Screenshot for Mode Selection Page

3. Pose Selection Page

The user can reach this page from the Mode Selection
Page or if they just completed a training from the Training
Page. This page is dedicated to helping the user select the pose
they want to practice. The default 24-form Tai Chi poses and
the user custom poses will be displayed here depending on the
user’s selection on the Mode Selection Page. The poses are
displayed in list view, and a preview of the pose will be
displayed as a small image near the name of the pose.

Fig. 6C. Screenshot of pose selection screen for integrated

poses (Yang-Style 24-form Tai Chi Training)

18-500 Final Project Report: Taichine 12/15/2023 7

4. Customization Image Upload Page

The Customization Image Upload Page is where the user
can upload images of postures into the system and practice
with the system functionalities. The user will access the page
to upload custom images from the main menu. The user will
first arrive at the “upload” screen as can be seen in Fig. 6D,
where they will click the white button at the bottom of the
screen. A window of the native windows file manager will pop
up, where the user can select the png file/files they would like
to upload as a custom pose/pose sequence. The input images in
one upload attempt will be packed as a posture sequence, and
the user can switch the order of the poses on this page using
the left and right arrows at the bottom of each image, with the
left arrow swapping the position of the image with the image
to the left of it. The user can also click the red “X” button
above each pose image to remove it from the pose sequence.
Once the user hits the green “confirm” button at the bottom of
the screen, the poses are imported into the Pose Selection
Page, where the sequence order will be fixed according to the
order they are inputted when the user clicked the green
“confirm” button.

Fig. 6D. Screenshot of Options Page

5. Options Page

The user can reach this page from the main menu when
they click the “Options” option. The Options Page is where the
user adjusts the parameters of the User Feedback Subsystem
(described in the next section) to personalize their testing
experience. The user can control the evaluation strictness in
terms of “Tolerance” angle (maximum angle of the angle
between user limb and reference limb without the system
recognizing it as error) of the system’s pose evaluation with
slider control. The user can also change the preparation time
and the automatic move-on time in between incorrect poses.
“Preparation Time” signifies the number of seconds for the
user to prepare for the first pose, and “Move-on Time”
signifies the number of seconds for the user to adjust their
body positions between different reference poses.

Fig. 6E. Screenshot of Options Page

6. Tutorial Page
The user can reach this page from the main menu when

they click the “Tutorial” option. The Tutorial page is where
the user can get a quick overview of how to use the main
functionality of the program, the training screen.

Fig. 6F. Screenshot of tutorial page

7. Training Page

The training page is the main functionality page where the
user is able to start practicing the Tai Chi poses they selected
in the Pose Selection Page. This page will mainly consist of
three large widgets. The widget to the left is a camera widget,
showing the live footage from the laptop’s camera. The center
widget is the skeleton drawing canvas, where the user skeleton
and the reference skeleton will be drawn. The rightmost
widget is the reference image widget, which will display the
reference the user is supposed to follow for this training.

After the user accesses this page, the user can press the
“Start” button at the top-left corner of the screen. A
countdown will start, and the number of seconds counted will
be equal to the value “Preparation Time” the user configured
in the Options page. When the countdown ends, the
application will capture the user’s posture at the moment and
pass it to the backend. After the backend has finished
processing the input screenshot, it will take the coordinates
and the body part correctness checks from the backend. With
this data, the application will draw two skeletons on the
skeleton canvas. The skeleton in blue is the reference skeleton,
showing what the reference pose is like, and the skeleton in
green and red is the user skeleton, showing the user’s pose and
the correctness of each of the user’s body parts. If the body
part is marked red, it indicates that the user needs to adjust it to
an angle within the set tolerance. Otherwise, the body part is
correct and needs no correction.

When the user’s pose does not pass the system check (any
of the user body parts is marked red), the skeleton drawing
canvas will draw itself a red border. The countdown will
restart, this time counting the number of seconds equivalent to
the “Move-on Time” value the user configured in the Options
page. Also, verbal instructions on how to improve the pose
will be played from the laptop’s speakers. The reference pose
will be the same pose as before, and the user has to pass all the

18-500 Final Project Report: Taichine 12/15/2023 8

body parts tests before moving on to the next pose in the
training sequence.

When the user has performed the pose accurately (all user
body parts are marked green), the skeleton drawing canvas
will draw a green border. The system will proceed to the next
pose if the current training is not yet over, i.e. there are
references to images left in the set of training. Verbal
instructions will simply say “Great, you did it!” in this case. If
the current posture is the last one, the user will move on to the
Result screen.

The backend will also pass back a score, evaluating the
user’s overall performance in carrying out the previously
tested pose. This score will be displayed above the three
widgets.

Fig. 6G. Screenshot of ongoing Training Page

8. Result Page

The user can reach this page by passing their current
training. The Result page is where the user gets an overview of
their previous training. An overall score of the user’s
performance and the total time the user used to pass the
training will be displayed at the center of the screen.
Meanwhile, at the bottom of the screen, a randomized tip for
using the Taichine system will be displayed. Clicking the back
button at the top-left corner will bring the user back to the
Pose Selection page.

Fig. 6H. Screenshot of End of Training Result Page

For the implementation details, the page transitions will

be implemented with Kivy’s Screen Manager functionality,
with each page in our application being a separate Kivy screen

object.

According to the user inputs, the frontend sends and
retrieves relevant data from the backend, such as the
“Tolerance” variable for the User Feedback Subsystem and
posture images. Depending on which page the user is on, the
frontend should activate relevant backend functionalities when
and only when necessary.

On the training page, the frontend will retrieve reference
coordinates from the backend every time a new posture
training starts. Then it should capture the user’s footage and
send it to the User Feedback Subsystem, taken in by
OpenPose. After the backend has finished processing the
footage image, the frontend will retrieve the score of the user’s
pose and display it on screen. The frontend will also decide
whether it should move onto the next pose based on the body
part checklist passed from the backend. If the backend reports
correctness for all the user body parts, the frontend will
proceed to the next pose automatically. Otherwise, the
frontend will listen for backend verbal instructions and play it
when requested. A high level diagram of this process can be
seen in Fig. 15 in the Appendix.

B. User Feedback Subsystem
The user feedback subsystem will contain two main parts

inside the Python development environment, the comparison
algorithm system and voiceover feedback system.

The backend system would first load the processed output
of the user image from OpenPose and run the user selection
algorithm. Upon deciding on one single user and getting the
corresponding coordinate set consisting of 18-key points
representing the current user’s body posture, the Python
algorithm will first convert the key points into different
vectors representing arms, legs, head and upper body. From
received data, all four limbs, upper body, and head position
should be clearly reflected in vector form. Then the set of
vectors is compared with the stored reference position
(prerecorded or user uploaded) to generate differences
between the user's posture and reference posture and generate
a ‘score’ visible to users. This process is repeated for each
picture captured over an interval the same length as the user
defined move-on time (5s by default). While utilizing that
dataset to generate text, lower body parts are prioritized and
mentioned first to the user from the voice engine output. The
lower body provides a stable foundation for movement and
balance. Developing a strong connection with the ground,
known as "rooting," is essential for maintaining stability
during Tai Chi movements.[12] An example of one person
having multiple issues on their right leg and head for one
posture, the only instruction passed to the voice engine will be
the one on their right leg: ‘Move your left leg inward by 20
degrees’.

The instruction is structured in the following format:

18-500 Final Project Report: Taichine 12/15/2023 9

"Turn your {limb name}

{inward/outward/upward/downward}

by {angle_degrees} degrees."

Example instructions could sound like: “Turn your right
upper arm upward by 20 degrees”, “Turn your left calf inward
by 15 degrees.” based on the coordinates and angles returned.

Another case will be if the user has all their limbs angle
difference within the to the posture, the system will generate
text strings like ‘Good job! You’ve mastered this posture!’
and informed the pipeline that the user has passed this posture.
The pipeline will then trigger a change in the user interface to
allow them to proceed into the next posture.

The second part will be the Python package of voiceover
system pyttsx3. After receiving the text string, it generates the
corresponding speech waveform matching every instruction
generated. This .mp3 file can then be played utilizing the
pygames module to create the spoken instructions through the
speaker to inform the user on how to improve their Tai Chi
posture or congratulation comments when the user passed the
posture similarity check. The engine will be initialized when
first called upon, and will become dormant until a new set of
text strings is passed in.

The third part will be the backend processing system for
the coordinates received from the OpenPose algorithm for
frontend skeleton drawing. Similar but different from the first
system mentioned above to measure joint angles between user
and reference pose, this system aims to provide relative angles
utilizing the function of arctan2 from the numpy package.
Through measuring the relative signed angle between the
positive x-axis and the given limb vector, the set of data could
be passed to the frontend and combined with joint key points
data for skeleton drawing purposes.

For a visual demonstration of the backend workflow over
analyzing user poses and producing feedback, please refer to
the system diagram Fig. 1. This section is meant to dig deep
into the system implementations and talk about the program
logic for each functionality box in the right side (backend) of
the diagram.

C. Customization Subsystem
The customization subsystem will be a subsystem that

allows users to upload custom Tai Chi poses, not natively in
our application, that they want to practice using our
application. The user will interact with the interface from our
application accessible from the main menu of our application.
The user will first arrive at the “upload” screen as can be seen
in Fig. 7A, where they will click the white button at the bottom
of the screen, which will create a popup window of the native
windows file manager, where users can select the png file/files
they would like to upload as a custom pose/pose sequence.
The popup window of the native windows file manager is done

by calling a function from the “plyer” library. We did not use
Kivy’s native file chooser object was because it had a different
UI from the native windows file manager, and we thought this
would decrease the user experience as they would have to get
used to a new UI they were unfamiliar with, as compared to
the native Windows file manager UI that users would be
familiar with. A screenshot of the upload screen with the
native windows file manager popup can be seen in Fig. 7B.
Users will not be able to upload a directory of images for ease
of parsing the files. After the user finishes selecting the
file/files they would like uploaded, they are then taken to the
confirmation page, as can be seen in Fig. 7C.

For reasons of visual cleanliness, we limit the number of
images the user can upload in a pose sequence to 5 images, if
the user tries to upload more than 5 images, their upload fails
and they are met with a popup telling them they tried to upload
too many images. By default, the pose/pose sequence is
named after the first pose in the sequence (pose/pose sequence
name is underneath the text box), however the users can type
in the name they would like to give the pose/pose sequence
into the text box at the top of the screen and once they hit enter
the change will be registered by the system, and the name of
the pose underneath the text bar will change accordingly. As
can be seen in Fig. 7C, the confirmation screen has the names
of the png files above the png file/files the user uploaded. This
is kept track of using global variables, as this has been found
to produce cleaner and simpler code compared to writing code
to navigate Kivy’s parent-child screen and object structure.
The user can modify this order, by clicking the left arrow
button underneath one of the poses to swap the order of that
pose with the pose to the left of that pose with the position of
the poses in the screen changing to reflect this. A similar
process happens for the right arrow, except the right arrow is
used to move a pose “forward” in the pose sequence. The red
“X” is used to remove an image from the pose sequence. This
is done by having each image and button collection be a
“pose_sequence” object that is then made a child of the Kivy
grid layout object. For reasons of speed, it was decided that
the reordering would be done by swapping the elements in the
child array of the grid layout object, instead of clearing the
widgets, and adding the “pose_sequence” objects as children
back to the grid layout object in the correct order.

Once the user is satisfied with the name of the pose and the
order of the images the user hits the green “confirm” button at
the bottom of the screen. This will then start the following
process:

1. A new directory in the “user_poses” directory will be
created with the following name: “{number of the
custom pose sequence} - {pose sequence name input
by user in text box}”

2. The image files of the pose/s the user wants to store
will be uploaded into the new directory mentioned
previously

18-500 Final Project Report: Taichine 12/15/2023 10

3. A python function will feed the images the user
uploaded into OpenPose for processing to pick out
the poses’ key points coordinates

4. OpenPose will finish processing and upload JSON
files of all of the poses’ key points into the new
directory created in step 1

The uploaded pose sequence is now integrated with the rest of
our app. The user can now see their custom pose sequence in
the “Pose Selection” screen, under the “Uploaded Custom
Poses'' page, ready for them to train.

Fig. 7A. Screenshot of UI for upload pose/pose sequence

Fig. 7B. Screenshot of UI for upload pose/pose sequence with

native windows file browser

Fig. 7C. Screenshot of UI for confirmation of pose/pose

sequence to upload to application

VII. TEST, VERIFICATION AND

VALIDATION
In this section, we will introduce the test and verification

procedure that we conducted to verify the performance of our

system and algorithm as well as the usability of the training
against real users.

A. Modular Tests for Angle Calculation
The Degree Difference Modular Tests will target the

comparison algorithm of the system. The goal of these tests is
to ensure that the deviation of system detected angles from the
actual user body angles is within 5 degrees. For instance, if the
angle between that arm and body of the user is 20 degrees, the
system should report angle to be between 15 to 25 degrees.
Each test will consist of a reference skeleton (body part
coordinates derived from a reference pose picture) and a test
skeleton. The test skeleton will be generated from a photo of
one of the team members or users doing the reference pose via
OpenPose. Then for each detected angle that we care about,
we manually determine the best actual angle from human
decision and compare it to the reported angle from the system
in the backend. Fig. 8 shows a single example of how we
determine the actual angle.

In total, we tested on 20 different images, and for each
image our system generated 16 key angles used for pose
comparison, which in total created 320 unit test cases for angle
calculation. From the statistics we gather, we are 95%
confident that the angle error is within 5 degrees, which
matches the requirement of 10 degrees as desired. Since the
tolerance is at least 5 degrees in the system choices, we also
can say that we are 95% confident that if the user meets the
reference, we will definitely report a success.

Fig. 8. Angle measurement example

B. Modular Tests for Error Body Part
The Error Body part tests are designed to assess the

system's capability in detecting and evaluating errors related to
Tai Chi postures, particularly instances where a user's limbs
deviate beyond a specified threshold of degrees. This test
focuses on the system's ability to analyze body positions
during designated Tai Chi sequences and how the system
provides correct responses. When a deviance is detected in
users posture, we expect the system to respond in the
following manner: report the error body part correctly, identify
the deviance in degrees and if the degree is beyond a certain
error threshold, pass on the specified limb and difference in
angle for further processing.

18-500 Final Project Report: Taichine 12/15/2023 11

As shown in Fig. 9, we verified the test results on our
frontend UI by seeing on the skeleton picture drawn that the
user has the limb identified as red, hearing the angle reported
by the voice engine matches raw output on the backend, and
having the angle difference measured as mentioned in
subsection A. Combined with the test result from part A, we
are able to say that the system is 95% confident to capture
errors with more than 5 degrees off from the reference poses.
Most of the time, the user would be even further from the
reference pose if they have not fully learned the pose, in which
case the system would be even more confident to catch the
error.

Fig. 9. Intentional error detection test

C. Modular Tests for Error Priority
The Error Priority tests aim to grant assurance in

functionality of the system when multiple errors are detected
in one capture of the user’s Tai Chi posture. The system is
prioritized to recognize lower body part errors of the sequence
in the following order: starting with the feet, moving to the
calf, then progressing to the thigh, followed by the waist,
torso, upper arm, and finally, the lower arm and the head.
After identifying the prioritized sequence for the error, the
system should also behave in the same scope as mentioned in
the subsection A and B in terms of identifying the degree
differences and the incorrect limb for further processing of the
error body part.

We are 100% confident that if multiple errors are
detected, the system behaves as expected to report the error on
the lowest body part first. Fig. 10 shows an example of how
multiple errors could happen, and how the visual display
demonstrates it.

Fig. 10. Multiple pose errors example

D. Modular Tests for Environmental Lighting
The Environmental Lighting tests aim to understand the

system performance in low lighting situations in terms of
detecting persons and limbs. This performance is also limited
to the ability of the camera the user aim to use,

Fig. 11 shows that during low light settings, our system,
specifically OpenPose, is unable to detect the person in frame
and give instructions on deviances in limbs. In this case, the
system will treat as if there is no one in the frame and proceed
to evaluate the next captured picture. This is due to the
limitations of OpenPose and the webcam quality of the user’s
computer. We assume that the user would actively change the
lighting environment since too much brightness or darkness
would basically disable their own visual system.

Fig 11. System running in pitch-dark environment

E. Modular Tests for User Selection

The User Selection tests aim to have the system choose
the correct user in frame. We assume that the user would be
the one in frame who tries the hardest to produce the reference
pose, and thus should be the closest to the reference pose. The
system thus achieves this functionality by always selecting the
person with the most similar posture to the reference pose. The
backend evaluates every person with complete posture and
chooses the one with the highest similarity to be passed for
further evaluation.

18-500 Final Project Report: Taichine 12/15/2023 12

Fig. 12 shows how we conduct the test. We intentionally
let two humans get fully detected by the system with the left
one closer to the standing pose, while the right one is wrong
on the arms. We verify the result is correct by checking which
user pose gets displayed as the skeleton in the front end. In
Fig. 12, we can see that the standing pose is chosen by the user
as expected. The accuracy of this functionality is 100% when
only 2 people are tested for different poses. However, when
the system is used in public with 5-10 potential bodies
captured by the camera and passed to OpenPose, the accuracy
is significantly compromised as OpenPose is less reliable in
that setting. Thus, we still highly recommend the users to use
the system with fewer people in the camera, but without the
need to worry about a single person passing by like family
members.

Fig. 12. User selection test outcome

F. Modular Tests for Verbal Instructions

The Verbal Instruction Modular Tests will ensure that the
correct verbal instructions text is output from the speaker. We
conducted the test by manually feeding instruction messages to
the text to speech application and listening to the output. The
accuracy is 100% as expected since we are using a fully built
text-to-speech module in Python. One concern is the limitation
of the laptop speaker volume when loud background noise
persists and makes it hard to hear from a distance of 5-6 feet,
for example, during a public demo session where multiple
groups and various people are having discussions. We prefer
the user to perform Tai Chi in a relatively quieter environment
as mentioned in Section IV, but thanks to our vocal and visual
approach, users will still be able to see the limbs color
correctly and follow visual instructions if that could not be
achieved.

G. Modular Tests for Customization Pipeline
The customization pipeline modular test aims to check

that all user uploaded images can be correctly uploaded,
ordered and processed by OpenPose to generate necessary files
for actual training. The accuracy is 100% as expected. Note
that we do not check in the background whether the user is
uploading a valid image or not (i.e. an image without even a
human in it). Thus, the user needs to choose their input wisely.

After the whole system is integrated, we also conducted
the following overall system tests to gain performance
parameters and tests the functionality workflow are working as
expected. We will also include the result for user feedback and
the ability of pose instruction here.

H. Overall Tests on Training Loop Functionality
This test aims to show the capability of training a

sequence of poses and automatically move on to the next pose
when the user passes the current one. It also tests the move to a
train summary page after the end of the sequence. The test
requires backend information of the user training result and
correctness, and the front end adaptability to different
sequence length and capability of showing the correct image
or page after each iteration. The accuracy for this functionality
is 100% as expected, and the exact way of using the training
loop can be found in the project video.

I. Overall Tests on Verbal Instruction Latency
Verbal Instruction Latency tests aim to measure the

duration in the training loop between the second the user
image is captured and the second verbal instruction actually
starts to speak. The duration basically represents waiting time
for each evaluation cycle until some intuitive instructions are
generated. We inserted timing code in the system to get the
metrics.

The final waiting time is 3.6 seconds which is lower than
the 4 seconds requirement of the system as expected. To break
down the waiting time for understanding the bottleneck, we
found that the majority (3.1 seconds) is occupied by OpenPose
runtime. The rest represents the time used for angle
computation, pose comparison and instruction speech
generation.

J. Overall Frontend Verification
The overall frontend verification aims to test that all the

front end UI buttons, page changes and widgets are displayed
and working properly including the pop up file explorer
window for custom pose upload. The accuracy is 100% as
expected.

Here in table II, before we move on to the user
investigation for feedback on the usability of the system, we
would like to summarize the systematic tests introduced so far
and aggregate the results here.

Metric Desired Actual

User Wait Time
for verbal
feedback

4s 3.6s

Angle Accuracy 90% 95%

Angle Confidence
Interval

10 degrees 5 degrees

18-500 Final Project Report: Taichine 12/15/2023 13

Frontend
Accuracy

100% 100%

Verbal Feedback
Accuracy

100% 100%

Error Priority
Accuracy

100% 100%

User Selection
Accuracy (Under
normal private
environment)

100% 100%

Table II. Final System Metrics

K. User Investigation
We did two rounds of user testing to gather feedback

about our application. For the first round of user testing, 5
users were asked to perform the “commence form” and
“repulse the monkey” pose sequences using our application.
Users were asked to perform the pose sequences with a 15
degree and 20 degree tolerance, and then asked about their
preferred tolerance. Preparation time and move-on time were
set at 15 seconds and 5 seconds by default, however users
were instructed that they were free to change these settings as
they desired. Users then filled out a google form asking for
usability of UI, speed of the app, usefulness of voice generated
instructions, the usefulness of the score, optimal move-on
time, optimal tolerance, and other miscellaneous feedback and
comments about how we might be able to improve our
application. Unfortunately, one user neglected to answer the
questions on the usefulness of voice generated instructions and
score, leading to us only having 4 responses for those
questions. For the questions about usability of UI, speed of
the app, and usefulness of voice generated instructions, and
usefulness of the score; users were asked to score the
application out of 5, with a score closer to 1 indicating a more
negative view, and a score closer to 5 indicating a more
positive view.

As can be seen in Fig. 13A, we found that users found our
app’s UI fairly usable, with an average user score of around
3.8. As can be seen in Fig. 13B, found that users found the
speed of our application somewhat lacking with an average
user score of around a 3, however this is in part due to the user
testing being done on a laptop that was not compatible with
CUDA, so OpenPose had to be configured to run on CPU
which is slower than being run on a GPU with CUDA. As can
be seen in Fig. 13C, we found that users thought the voice
generated instructions were moderately useful, with an average
user score of 3.25, with most users finding the instructions
about the feet being unhelpful and not reflective of their actual
feet position. The instructions for the feet position were
adjusted in the algorithm to be more lax before the final demo.
As can be seen in Fig. 13D, we found that users only found the
score to be moderately useful as well, with an average user
score of 3.25. As shown in Fig. 13E, we found that 80% of

users preferred 20 degree tolerance over 15 degrees, however
(as shown in Fig. 13F) there was little consensus on move-on
time, with 60% of users preferring a move-on time between 5
and 10 seconds and the remaining 40% of users preferring a
move-on time of 15 seconds.

In the second round of user testing, 3 users were asked to
practice the “repulse the monkey” pose sequence with a video
that we used for our reference poses for 5 minutes, and then at
the end of the 5 minutes a picture of the user doing the first
pose in the “repulse the monkey” pose sequence would be
taken. Users were then asked to practice the “repulse the
monkey” pose sequence with our application for 5 minutes,
with our application modified to store the latest user pose
(users were notified of this and pictures of the users’ pose was
deleted after data analysis was complete). At the end of the 5
minutes of training with our application, users were asked to
try the first pose one more time and this is the final pose we
would take. The photo of the user doing the pose without our
application was input into OpenPose, and the json file of the
user’s key points coordinates generated by OpenPose was then
fed into our comparison algorithm along with the json file of
key points coordinates of the reference pose which would give
us a similarity score for all the joints we use in our application
and an average similarity score. The same process was done
with the json file of the user’s key points coordinates
generated when they practiced with our application for 5
minutes.

It was found that the average similarity score (similarity
scores for all limbs and all users summed and divided by
number of users multiplied by number of limbs) was slightly
higher when the user’s trained without our system (cosine
similarity score is higher by 0.0026), however when we broke
the similarity scores down by specific joints it was found that
for most joints users showed a higher similarity score when
using our application, there was just one notable outlier for the
angle between the right lower leg (below the knee) and right
foot that skewed the data, and when this coordinate was
removed, users showed a higher average similarity score using
our app (cosine similarity score using our app is 0.071). We
believe that this outlier is simply due to our small sample size
of 3 users and were we to test with more users for longer, this
effect would be mitigated and the average similarity score for
users practicing with our app would be higher than the
similarity score for users practicing without our app.

Fig. 13A: User scores for usability of app

18-500 Final Project Report: Taichine 12/15/2023 14

Fig. 13B: User scores for speed of app

Fig. 13C: User scores for usefulness of voice generated

instructions

Fig. 13D: User scores for usefulness of score in training page

Fig. 13E: User selection of optimal tolerance for joint angles

in degrees

Fig. 13F: User preferences for the optimal move-on time

VIII. PROJECT MANAGEMENT
A. Schedule

As a team, we cooperate throughout the way to work on
the parts assigned as in design documents. After we have

gained sufficient progress on each of our subsystems, we
cooperate in multiple different ways for different purposes.
Hongzhe and Shiheng worked primarily on updating the
backend infrastructure, enabling and supporting new features
from OpenPose and using them in comparison. Jerry and Sirui
worked together for the whole frontend architecture and
learned from each other’s experiences on the Kivy library. We
also work together to determine the final training loop and
display logic in order to provide the best experience and
enough information for the user to practice.

In terms of extra events in the schedule, we used much
more time on integration than expected over multiple different
system bugs and new features we tried to add in. The result
came back positive since we were finally able to enable the
pose sequencing feature which was not in the MVP goal of the
project. We also split up the work for testing and verification
on the real system testing and user investigation. Overall, we
as a team were able to cooperate and communicate efficiently
that leads to the accomplishment of this project, as can be seen
in our Gantt chart in Fig. 14 in appendix.

B. Team Member Responsibilities

Name Responsibility Input Output

Hongzhe
Cheng

OpenPose Usage,
Integration,
Metric Testing

User pose
image passed by
application

JSON file
containing
coordinates

Sirui
Huang

Real-time
instruction pipeline
and application
infrastructure

User real-time
video captured
by camera

Cut video into
frames.
Interact with
OpenPose to get
real-time
coordinates, pass to
user selection and
comparison

Shiheng
Wu

User selection and
pose comparison
algorithm, Speech
Application,
Backend
Verification

Coordinates
output from
OpenPose

User Selection,
Error Detection,
mp3 files of
instruction played
to the user

Jerry
Feng

Custom poses
pipeline and file
storage
infrastructure, User
testing

User uploaded
image/sequence
of images

JSON file and
image storage

Table III. Team B4 Work Division

C. Bill of Materials and Budget

After careful consideration, we decided not to order any
materials externally but decided just to use a laptop as our
platform for our project.

For normal laptop cameras, they usually already have over
30fps and 720p+ resolution, which already exceeds the

18-500 Final Project Report: Taichine 12/15/2023 15

minimum requirements that OpenPose requires (15 fps). In
addition, they are usually embedded inside the system that are
default setup with video drivers. As Fig. X shown in the
Section V, both pictures are taken using the integrated cameras
on different laptops which achieve the posture detection goal
perfectly with excess fps for the system to process.

We initially also considered using a Logitech webcam as a
usb-addon to the laptop for better capture qualities. After
testing its effect based on the one that Shiheng owns, we
figured out that the differences between image and video
capture by laptop cameras are not significant and laptop
cameras already fulfilled our requirements. We also accounted
for the fact that different laptops have different USB ports
supports (e.g. Macbook and mainstream Ultrabooks lack USB-
A ports) and it’s hard to find a one-size fit-all camera which
we could not extensively test on all laptops considering
compatibility issues with video drivers and hardware
requirements.

For other parts of our program, we concluded that a laptop
already integrated all the functionality we require, and
purchasing of services like cloud servers or computing devices
are not necessary. Most of the work is developing software
systems, processing video inputs, and giving feedback locally
without the need of hardware and cloud service requirements.

With all the factors mentioned above, we decided to stay
with the idea of developing our project on laptops alone and
rejected the idea of purchasing an extra camera for pose
recognition purposes.

D. Risk Mitigation Plans

One Risk that we face is the fact that OpenPose is a black
box system. OpenPose has its own internal accuracy and might
generate invalid data by miscategorizing body parts or
returning bad coordinates. Since we are not defining our own
pose recognition model, we might try to add some data
filtering to sort out the coordinates that seem inaccurate and
unusable, based on coordinates and distances.

Another risk is that we assume that the angle
representation of poses would be acceptable for most of the
postures. The most statistically significant way is to gather a
huge dataset of people with different heights and weights
doing the same pose, and create a model that maps body sizes
to the best angle for users to practice. However, this requires a
significant amount of data collection, calculation and even the
necessities of professional Tai Chi players of different body
sizes. Thus, we are not taking this approach for now.

IX. ETHICAL ISSUES
During the development of Taichine, we have majorly

considered two ethical issues related to our users.

The first issue is how to maintain the privacy of users
while still getting the appropriate data for the system to work
as expected. The project we are building requires camera
access and human image storage to enable the pose processing
feature of the pipeline. We do not want to leak the user
information to the outside or other malicious users. In order to
protect privacy, we first made the decision not to create a web
application online with backend server and cloud pose storage.
Even though this would make the development experience
more preferable as there are far more existing frameworks and
services for online and cloud systems, it creates the risk that if
insufficient data protection or encryption are used, user
information would be leaked. At the same time, we enabled
flash local storage of the user image. Instead of taking a new
snapshot and storing it as a different local file, the system
would delete the previous image once a new one is generated
from the next training iteration. This ensures that there will not
be a local image still existing after the user finishes using the
application.Users also store their custom uploaded poses inside
the same directory as the application, in case they want to
uninstall the whole application, their custom information will
be wiped as well.

The second issue is how to ensure the usability of the
application to users with limited mobility or certain body
disabilities. Specifically since Tai Chi is an exercise among
seniors in China, we would expect that the user age also varies
in a wide range. We do not want the application to be too strict
a virtual instructor that forces every user to match exactly the
reference pose 100%. We hope that each user could get a
tailored learning experience given their own body situation
and expectation of learning. Thus, we enabled a tunable
tolerance parameter so that the user could tune to get a more
lenient training experience.

X. RELATED WORK
OpenPose – underlying pose recognition software

Virtual Yoga Coach – instruct Yoga based on OpenPose
comparison, but without customization

XI. SUMMARY
To summarize, Taichine is a piece of software and

application that enables and enhances the accessibility of pose
training in general with a default emphasis on Tai Chi poses.
The system supports one pipeline for real-time pose
recognition and instruction feedback for pose practice. It also
contains the other pipeline allowing custom reference poses to
be uploaded and processed.

Our major challenge would be enabling the OpenPose
software to work, ensuring the connectivity between our
infrastructure and the OpenPose algorithm module.
Meanwhile, we need to ensure the pipeline and data flow
works well, instructions are generated with correct and

18-500 Final Project Report: Taichine 12/15/2023 16

informative content, and create an easy-to-use interface and
setup environment for the user.

For future work, we plan to accomplish the various stretch
goals for the project. One of our stretch goals was to use 3D
OpenPose, and have the user’s pose skeleton and reference
pose skeleton that is drawn in the training screen be 3
dimensional. We think this would provide even better
feedback to the user as the feedback would then be able to
account for depth in the image, and provide users an idea of
how to place their limbs in the pose in terms of distance from
the laptop they are using. We also could show a real-time
video of the user’s pose skeleton, as interpreted by OpenPose
to be displayed on the screen and do our pose recognition and
checking with a video of the user’s pose and a fixed image of
the reference pose, as opposed to just using an image of the
user and an image of the reference pose.

We learned a lot about project management and ethics
over the course of our project, which forced us to think in new
ways about our project. One thing we relied very heavily upon
to complete our project was the importance of slack time, as
we used up basically all of our slack time to finish the
implementation of our project. In terms of ethical issues, we
were forced to consider the ways our project could be misused
and harm our users, whether it be physically or violate their
privacy. As a result, we made changes to our project: such as
adding in an adjustable tolerance and deleting photos of the
user after they were used for processing.

Overall, we learned a lot about the ethical responsibilities
we had to ensure our product was an ethical contribution to
society and to the wellbeing of our users, and would like to
add functionalities to enhance the user experience of our
project in the future.

REFERENCES

[1] Fenneld. (2023, September 6). “Slow and steady: The health benefits of
Tai Chi.” Cleveland Clinic. https://health.clevelandclinic.org/the-health-
benefits-of-tai-chi/

[2] Debnath, B., O’Brien, M., Yamaguchi, M. et al. A review of computer
vision-based approaches for physical rehabilitation and assessment.
Multimedia Systems 28, 209–239 (2022).
https://doi.org/10.1007/s00530-021-00815-4

[3] A. D. Gama, T. Chaves, L. Figueiredo and V. Teichrieb, "Guidance and
Movement Correction Based on Therapeutics Movements for Motor
Rehabilitation Support Systems," 2012 14th Symposium on Virtual and
Augmented Reality, Rio de Janeiro, Brazil, 2012, pp. 191-200, doi:
10.1109/SVR.2012.15.

[4] Pedersen, Jannik & Jensen, Niklas & Lahrissi, Jonas & Hansen, Mikkel
& Staalbo, Patrick & Wulff-Abramsson, Andreas & Sander, Mattias.
(2019). Improving the Accuracy of Intelligent Pose Estimation Systems
Through Low Level Image Processing Operations.

[5] Danielle Bragg, Cynthia Bennett, Katharina Reinecke, and Richard
Ladner. 2018. A Large Inclusive Study of Human Listening Rates. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing

Systems (CHI '18). Association for Computing Machinery, New York,
NY, USA, Paper 444, 1–12. https://doi.org/10.1145/3173574.3174018

[6] Woojoo Kim, Jaeho Sung, Daniel Saakes, Chunxi Huang, Shuping Xiong,
Ergonomic postural assessment using a new open-source human pose
estimation technology (OpenPose), International Journal of Industrial
Ergonomics,Volume 84,2021,103164,ISSN 0169-
8141,https://doi.org/10.1016/j.ergon.2021.103164.

[7] Apple MacBook Pro 13" (4th Gen) Dimensions & Drawings. RSS.
https://www.dimensions.com/element/apple-macbook-pro-13-inch-4th-
generation

[8] Edward P. Washabaugh, Thanikai Adhithiyan Shanmugam, Rajiv
Ranganathan, Chandramouli Krishnan, Comparing the accuracy of open-
source pose estimation methods for measuring gait kinematics, Gait &
Posture, Volume 97, 2022, Pages 188-195, ISSN 0966-6362,
https://doi.org/10.1016/j.gaitpost.2022.08.008.

[9] Washabaugh, E.P., Shanmugam, T.A., Ranganathan, R., Krishnan, C.
(2022). "Comparing the accuracy of open-source pose estimation methods
for measuring gait kinematics." Gait & Posture, 97, 188-195.
https://doi.org/10.1016/j.gaitpost.2022.08.008.

[10] Washabaugh et al, (2022). "Comparing the accuracy of open-source pose
estimation methods for measuring gait kinematics." Gait & Posture, 97,
188-195. https://doi.org/10.1016/j.gaitpost.2022.08.008.

[11] Julia Cambre, Jessica Colnago, Jim Maddock, Janice Tsai, and Jofish
Kaye. 2020. Choice of Voices: A Large-Scale Evaluation of Text-to-
Speech Voice Quality for Long-Form Content. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems (CHI '20).
Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3313831.3376789.

[12] Strawberry K. Gatts, Marjorie Hines Woollacott, How Tai Chi improves
balance: Biomechanics of recovery to a walking slip in impaired seniors,
Gait & Posture, Volume 25, Issue 2, 2007,Pages 205-214, ISSN 0966-
6362, https://doi.org/10.1016/j.gaitpost.2006.03.011.

[13] Wayne PM, Berkowitz DL, Litrownik DE, Buring JE, Yeh GY. What do
we really know about the safety of tai chi?: A systematic review of adverse
event reports in randomized trials. Arch Phys Med Rehabil. 2014
Dec;95(12):2470-83. doi: 10.1016/j.apmr.2014.05.005. Epub 2014 May
27. PMID: 24878398; PMCID: PMC4499469.

[14] What’s new in Python 3.12. (n.d.). Python Documentation.
https://docs.python.org/3/whatsnew/3.12.html#summary-release-
highlights

18-500 Final Project Report: Taichine 12/15/2023 17

Fig 14. Gantt Chart Schedule

Fig 15. High Level Front-end Back-end Interaction Diagram

