
1 

18-500 Design Project Report: Taichine 10/13/2023 

 
 

TaiChine: Body Posture 

Guidance Tool for 

Beginners in Tai Chi 

Hongzhe Cheng, Sirui Huang, Jerry Feng, Shiheng Wu 

Department of Electrical and Computer Engineering, 

Carnegie Mellon University 

Abstract—A system capable of comparing human poses against 

professional Tai Chi poses and generating informative verbal 

feedback for users to practice and learn Tai Chi easier on their 

own. The system is also capable of allowing users to upload custom 

reference poses as images for customized targets to practice which 

could extend beyond the scope of only Tai Chi. 

 
Index Terms—Machine Learning, OpenPose, Posture Detection, 

Tai Chi 

I. INTRODUCTION 

TAI Chi is a Chinese martial art that focuses on slow 

movements and holding certain poses.  Tai Chi has become 

popular as a form of exercise, especially among the elderly, in 

our modern day. Tai Chi has numerous benefits to health such 

as helping to reduce stress, improve balance, and relieve pain 

from knee osteoarthritis [1]. However, Tai Chi is difficult to 

learn as a beginner, and if performed incorrectly, practitioners 

will not be able to receive all the health benefits Tai Chi has to 

offer and may even result in injuries. To overcome this barrier 

among beginner practitioners, our team aims to develop a 

computer application that utilizes state of the art machine 

learning to help beginner practitioners correct their Tai Chi 

postures. Our application will take in video input from the 

practitioner and run the Openpose deep learning software on the 

video input. Our system will then compare the user's poses with 

a professional Tai Chi practitioner’s pose on the “Golden Rule” 

Tai Chi poses. A scoring algorithm will then calculate a rating 

for how accurate the user’s pose is based on limb angles. If the 

limb angles are outside of our tolerance the system will give 

audio and visual feedback to the user on how to adjust their pose 

to be more accurate. Our system will have pre-programmed 

poses it can rate users on, however our system will also support 

users uploading images of custom poses not in our system that 

they would like to practice. Our system will also be able to 

support a sequence of poses as well, with the system only letting 

the user move on to the next pose after the user scores above a 

certain threshold on the current pose. 

II. USE-CASE REQUIREMENTS 

Our system has several features critical to benefiting users: 

pose comparison, corrective verbal instructions, and an easy-to-

use interface. For pose comparison we want a 90% accuracy of 

being able to properly identify key points of the user’s body 

(knees, shoulders, elbows, etc.) and user’s pose correctly. The 

accuracy requirement of 90% was selected as Pedersen et. al. 

[2], tested Openpose’s ability to correctly identify key points on 

300 static image frames in different lighting environments and 

the lowest accuracy performance in a lit environment was 

89.74%, and we do not expect users to use our application in a 

dark poorly lit environment. Additionally, we have found that 

using joint angles for pose detection has been used in several 

studies examining computer-vision based approaches for 

physical rehabilitation and assessment according to a survey by 

Debnath et. al. [3]. One of these studies by De Gama et. al. [4] 

showed a joint angle-based posture detection prototype was able 

to identify correct movements 100% of the time on a limited 

sample size under controlled conditions.  Although there have 

not been extensive studies on how accurately joint angle-based 

pose detection extends to different body proportions, 

preliminary research we have done leaves us confident in the 

accuracy of our approach. To ensure users receive timely 

feedback from our system, there should be a maximum 1 second 

latency between when the system finishes receiving video input 

and the audio feedback is provided to the user. We also want to 

ensure that our application interface is easy to use, so in testing 

we would want to see users rating our app as an 8/10 on an out 

of 10 scale on how easy the interface is to use. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

As shown in the architecture image, our system is entirely 

based on software. The application in general takes two 

different types of input from the user and accomplishes the job 

of either real-time pose recognition and instruction or allowing 

users to upload and enlarge the reference dataset. 

On the top, we can see the first type of input, real-time video, 

which represents the captured video input of a user practicing 

the target Tai Chi pose. The raw video data will first be pre-

processed by the application to cut into frames and then passed 

to OpenPose for data processing. OpenPose is a pose 

recognition software that takes visual input data and returns a 

set of coordinates representing each “human” detected in the 

input and the core body coordinates associated with them. Thus, 

OpenPose generates potentially multiple coordinate sets, and 

then the pipeline feeds all of them to the user filtering function. 

The application would load the reference pose and 

corresponding coordinates now and use that as a helper for user 

filtering. We highly recommend that only one single user should 

be in the camera range at a given time. However, in case there 

are noises or others passing by, we made the assumption that 

the user would be the most similar to the reference pose 

compared with other noisy coordinates. Thus, the filtering 

system works closely with the comparison algorithm that 

generates evaluation to all captured human bodies and picks the 

closest to be recognized as the real user. For that given user and 

pose data, the comparison algorithm will generate meaningful 

parameters and angle differences if there are any, insert them in 

verbal instruction templates and finally pass them to the speech 



2 

18-500 Design Project Report: Taichine 10/13/2023 

 

application. The verbal instruction provides users with detailed 

information and where and how they are wrong as “Your left 

arm needs to be 20 degrees up”. Alongside the verbal feedback, 

on the very bottom of the diagram, we illustrate that we will also 

put visual feedback comparing the user and the reference pose. 

This concludes the real-time pipeline for all the interaction with 

user input and information that we provide back to the user. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, the second arrow pointing from the user 

to the system shows the customization pipeline. The pipeline 

allows users to pass in images of poses that they are interested 

in practicing, and use them as references beyond the default Tai 

Chi poses that we have built in. The images are required to have 

only one “human” inside to guarantee the effectiveness of the 

system. The image will also be passed to OpenPose and receive 

the only reference coordinate set for the only pose in the image. 

Then, the application will store the image and coordinates 

separately into the file system for future usage. This pipeline 

serves as a backend update option for users. After they upload 

images, the application will show the custom options next time 

they enter the real-time instruction pipeline and are choosing 

poses to practice. At the same time, given that the application 

processes the general definition of “Poses”, the custom pipeline 

could also support instruction to other poses that is significant 

in 2D space (without too many body parts perpendicular to the 

screen and camera). Examples that the system could easily be 

extended to include Yoga, Dancing etc. 

 

 

 

 

 

 

 

 

 

 

IV. DESIGN REQUIREMENTS 

  Regarding the input footage, we suggest that a single 

integrated laptop camera will do the job of detecting body 

angles and recognizing the user. In setting up the camera, we 

will introduce a calibration stage for the user to place and 

calibrate the camera for our algorithm to capture the full body 



3 

18-500 Design Project Report: Taichine 10/13/2023 

 

of the user for us to evaluate their Tai Chi postures. We 

evaluated the performance of OpenPose models on laptops with 

as low resolution as 720p to higher ones with 1080p, which they 

turned out achieving the 90% accuracy in detection after we 

manually adjusted the camera angle and distance of the user 

from the camera to capture all key points. After calibrating and 

making sure the user stays inside the camera frame, we aim to 

control the difference between user body angle and reference 

angle should be within 10 degrees of the real-world setting. For 

example, when a user has an actual 20 degree lower in their arm 

position, our algorithm should detect their arm is lower within 

the 10–30-degree range. 

  For recognizing the key points of the user’s body, we aim to 

have at least capture 10 FPS from OpenPose to give real time 

feedback for users and showcase better visual information for 

them to improve their Tai Chi postures. We will expect the user 

to utilize our product in a well-lit place and preferably a flat 

ground for recognition and safety concerns as we do not aim to 

provide night vision/low lighting support. We will continue to 

pass these frames into our comparison algorithm for an 

evaluation period for at least 5 seconds where at least 50 

different frames are passed into our program and around 1000 

data points are being evaluated with our reference position. Our 

team aims to provide voice feedback within 1 second after the 

evaluation period to point out where the user could improve for 

a seamless experience of practicing Tai Chi. 

  In order to achieve the goal of giving voice feedback to human 

users and offer a smooth learning experience, we considered 

some requirements in receiving and processing feedback. Using 

a TTS speaking speed is similar to mean human listening rates 

around 309 words per minute discovered in a 2018 study [5] and 

a common instruction is around 10 words (e.g.  Move your left 

arm up twenty degrees), we estimate 2-3 seconds and 2-3 

sentences per posture and a total of at most 5 seconds time for 

TTS to give instructions on the most different limb postures. 

This design also considers that the user has no prior knowledge 

of Tai Chi and provides a step-by-step learning curve for them 

to correct problems in each limb. 

  To achieve our aim of ease to use on the interface, our UI 

should also be designed for people familiar with laptops who 

have basic computer knowledge to use without any additional 

training required. We aim to use the Kivy framework in Python 

as our basis for application development on laptops with the 

widgets and plugins provided from the open-source basis which 

will allow us to integrate various features and provide an 

appropriate user interface. 

Figure 2: OpenPose Measurement of Joint Angle Error Compared to Older 

Posture Detection Algorithm Kinect[6] 

  For our customization pipeline, we prefer poses that are 

parallel to the screen whether it is a screenshot or picture taken 

which allows us to label all joints clearly on a 2D scale for best 

reference in future practices for the user. We also require that 

the user upload an image with only one human inside doing the 

desired pose to eliminate the idea of recognizing the wrong 

posture or misidentification caused by overlapping of the limbs 

or multiple limbs inside the given picture. 

V. DESIGN TRADE STUDIES 

A. Decision of Local Application 

 Our application installed locally will provide faster 

performance and responsiveness as they leverage the device's 

hardware and resources more efficiently compared to web apps 

requiring cloud servers. We understand that having internet 

access would allow us to improve compatibility, gain access to 

faster cloud computations and packages that need API support. 

However, we aim to make the application work offline, 

ensuring uninterrupted functionality in locations closer to 

nature, like parks and large outdoor open spaces that are not 

always equipped with fast and stable internet connection. 

Furthermore, local applications also provide better data privacy 

and security, as camera captured data is stored locally, reducing 

exposure to online threats and insecure connections. 

 

Figure 3: Comparison of 6.7 inch screen to 13.3 inch screen[7] 

 



4 

18-500 Design Project Report: Taichine 10/13/2023 

 

B. Decision for Laptop Platform 

  As most people are equipped with smartphones, it naturally 

comes to mind that developing a mobile application will be 

more convenient for Tai Chi practitioners. However, when it 

comes to providing detailed feedback, phone screens will not 

usually be the best option. Since we aim to output a real-time 

image of the user, reference image processed by OpenPose, and 

provide voice guidelines at the same time, a larger screen will 

be a better option. A laptop screen usually lies between 13 to 

17-inches, which is more than 4 times larger than 7-inch 

smartphone screens. As mentioned in Section A that we would 

not consider a web application, developing a local application 

on IOS or Android platform would become the only viable 

option for phone applications. Unfortunately, the models and 

engines we aim to use mostly only provide Windows support 

and limited Linux system support, which left our team deciding 

the appropriateness of developing a laptop application. 

C. OpenPose Posture Model 

   OpenPose works locally on both GPU (CUDA support) and 

CPU without occupying too many resources compared to 

Movenet from Google, which the latter focuses on capturing 

detailed facial expressions and tracking atypical/fast-moving 

postures. OpenPose focuses more on the details of joints 

compared to other models developed based on Tensorflow 

platforms that excels at capturing quicker motions and gives 

more weight in capturing upper body instead of more detailed 

limb movements which we are focused on.  

  Models like MoveNet and Posenet provide higher FPS and 

quicker responses to capture quick movements which take 

significantly more resources, but we sacrificed the efficiency 

and idea that taking in too many frames will cause pressure for 

processing on the backend and generate too much useless data 

points as the user is shifting into position or making 

adjustments before achieving the pose, causing an 

underestimation of accuracy and misjudgement of the posture.  

We utilized OpenPose for the accurate detection of postures 

and resource utilization concerns.  

  Due to the nature of Tai Chi, the practitioner will not perform 

atypically fast movements that require higher FPS from the 

camera and quick responses from the model. In our case of Tai 

Chi, we aim to prioritize the posture accuracy from the user 

where OpenPose performs best in detecting complex postures 

compared to examples below where MoveNet misclassified 

the hands’ position. OpenPose can handle complex and  

Figure 4: Comparison Posture Example of MoveNet and OpenPose [8][9] 

intricate poses, making it valuable for Tai Chi analysis where 

detailed pose information is required. MoveNet is more geared 

towards fitness tracking which works great in detecting simple 

movements like squats and jumps. 

TABLE I.  POSTURE DETECTION MODEL COMPARISON 

Model 

Name 

Model Performance 

Posture Detection Accuracy 
Avg. 

FPS 
Multiple Person 

OpenPose Great 15 Supported 

MoveNet Difficulty for Overlaps 160 Not Supported 

PoseNet 
Difficulty for Overlaps & 

Accuracy issues 
90 Not Supported 

a.  

a.  

Figure 5: Comparison of VoiceEngine Clarity and Quality Ratings  

(Judy represents Mozilla TTS engines) [10] 

D. Voice Engine Choice 

    Mozilla TTS can work without an internet connection with 

local packages and voice engines. This fits our system design 

of local applications compared to Google and Amazon 

products utilizing cloud services. Mozilla TTS is also open-

source and we could modify the code locally to cut down on 

redundancy and improve latency on voice responses, given we 

will be only picking up specific instructions instead of 

utilizing a whole package of voice lines for more complex 

interactions. 

   While we do not value voice quality that much compared to 

more high-end applications, we need the instructions to be 

loud and clear for users to follow, where most Mozilla engines 

provide clarity ratings compared to average humans as 

mentioned above. In terms of voice quality, Mozilla engines 

like Judy W 1/2 outperform Google C engine and provide a 

near-human experience for users based on a 2020 research 

conducted through surveys provided to human listeners and 

evaluation of clarity and quality [11]. While online products 



5 

18-500 Design Project Report: Taichine 10/13/2023 

 

like Google and Amazon provide larger possibilities of 

improvement with AI integrated voiceover, our team considers 

the smaller scale Mozilla could be more specific on finishing 

the task locally with lowest resource usage. 

 

E. Comparison Algorithm 

  We adapted the idea for vector representation in comparing 

user body postures vs. reference postures presets. OpenPose 

will return results that represent each body posture as a vector 

in a high-dimensional space, where each dimension corresponds 

to a key point. For example, we have 18 key points detected by 

OpenPose, each posture can be represented as a set of 18-2D 

vectors. 

A · B represents the dot product of the two vectors (postures). 

||A|| and ||B|| are the magnitudes (Euclidean lengths) of the 

vectors A and B, respectively. 

𝑐𝑜𝑠(𝜃)  = (𝐴 ·  𝐵) / (||𝐴||  ∗ ||𝐵||)  

The Cosine similarity will be between 1 and –1, and mostly 

lying between 1 and 0 as users will realize from negative 

values where they are mirroring the posture is the wrong 

direction. Any results less than 1 will indicate dissimilarity 

between the user posture and reference position which we 

could utilize directly to calculate a score on our end to 

evaluate how the user is doing and decide if a posture is 

accurately reflected. 

Another popular choice we considered is measuring the 

absolute positions of the user posture and seeing how different 

the body joints are from the reference posture joint coordinates. 

This approach makes sure that users could get as close to the 

reference posture as possible but given that we are not building 

a person specific application, evaluation of absolute positions 

will cause people of varied heights and weights to not reach 

optimized results. For example, a person with shorter limbs will 

not be able to reach reference points achieved by a taller 

demonstrator even if they have done the absolute correct posture. 

In addition, the vector representation approach does not need 

ground reference if the user attempts to do Tai Chi on an 

inclined ground which will bias the absolute positions, but the 

joint angles measured through the vector will be unaffected and 

allows us to calculate the similarity as usual. We are confident 

that joint angles should be universal among people of different 

body sizes based on our testing within the group and this level 

of abstraction for people should represent similar Tai Chi 

postures well. As people are approaching the same posture with 

detailed requirements and a 10-degree tolerance, we believe 

they should be reaching the same posture result based on joint 

angles. We have a more detailed discussion on implementing 

more complex statistical and math models in case joint angles 

are proven wrong inside our Risk Mitigation section VIII.D. 

 

 

 

Figure 6. Reference UI for Pose Selection Page in block view 

VI. SYSTEM IMPLEMENTATION 

A. Frontend Infrastructure 

The app infrastructure will both be the interface our user 

interacts with the backend evaluation system. The hierarchy of 

the app infrastructure will be as follows: 

 

1. Main Menu 

The main menu is the first page users will see when they 

enter the app. It will consist of the app title “Taichine” and a list 

of four options which they can select to transition to different 

pages. They can transition to the Pose Selection Page, the 

Customization Upload Page, or the options page from the main 

menu by clicking the corresponding actions. Or, they can exit 

the application by selecting the “Exit” option. 

 

2. Pose (Sequence) Selection Page 

The user can reach this page from the main menu or if they 

just completed a training from the Training Page. This page is 

dedicated to helping the user select the pose they want to 

practice. Both the default 24-form Tai Chi poses and the user 

inputted poses will be displayed here. The pose can be displayed 

in list view or block view. In the list view, the user will be able 

to see how many poses this sequence contains. If in the block 

view, the user can see a preview of the pose. Clicking on the 

pose will bring the user to the training page. 

 

3. Customization Image Upload Page 

The Customization Image Upload Page is where the user can 

upload their selected pose into the system and practice with the 

system functionalities. There will be instructions helping the 

user to input their poses, and the user can drag images onto the 

screen or select from their directories the images they want to 

input. The inputted images in one upload attempt will be packed 

as a posture sequence, and the user will be able to switch the 

order of the poses on this page. However, the order will be fixed 

once the poses are imported into the Pose Selection Page. The 

user will be able to delete their custom sequence from the Pose 

Selection Page. 

 

 

 

 

 

 

 



6 

18-500 Design Project Report: Taichine 10/13/2023 

 

4. Options Page 

The Options Page is where the user adjusts the parameters 

of the User Feedback Subsystem (described in the next section) 

to personalize their testing experience. The user can control the 

strictness of the system’s pose evaluation with slider control. 

The volume control will also be on this page. 

 

5. Training Page 

The training page is the main functionality page where the 

user is able to start practicing the Tai Chi poses they selected in 

the Pose Selection Page. This page will consist of a large screen 

to the right of the screen showing the user’s live video footage 

captured from their laptop camera. A smaller screen will be on 

the top-left corner of the screen, displaying the reference 

posture. To the bottom-left corner, the score of the user’s 

posture will be displayed. When the user’s pose has not yet 

passed the system check, the score text (less than 90) will be 

displayed in red. When the user has performed the pose 

accurately, the score (greater than 90) will be displayed in 

green, and the screen displaying the user's life footage will have 

a green backlight. The system will proceed to the next pose if 

the current training is not yet over. If the current posture is the 

last one, a message box will appear telling the user that they 

have successfully completed the training, and they will be sent 

back to the Pose Selection Page after they confirm on the 

textbox. 

The implementation of this hierarchy will be in Kivy, which 

we consider to be the optimal tool for our system for its 

abundance in available widgets and support for mobile apps. 

We have considered using TKinter, PyQt, and WxPython, but 

considering the complexity of our system and the time 

restriction on our project, we believe Kivy will be the best 

option. The widgets Kivy provides will be helpful for 

implementing all different parts of the frontend infrastructure, 

and the mobile app support will be handy if we decide to move 

onto our stretch goal in implementing a mobile app for our 

system. 

As for the implementation details, the page transitions will 

be implemented with Kivy’s Screen Manager functionality, 

with each screen being a separate page. According to the user 

inputs, the frontend sends and retrieves relevant data from the 

backend, such as the strictness variable for the User Feedback 

Subsystem and posture images. Depending on which page the 

user is on, the frontend should activate relevant backend 

functionalities when and only when necessary. On the training 

page, the frontend will retrieve reference coordinates from the 

backend every time a new posture training starts. Then it should 

capture the user’s footage and send it to the User Feedback 

Subsystem, taken in by OpenPose. After the backend has 

finished processing the footage image, the frontend will retrieve 

the score of the user’s pose and display it on screen. The 

frontend will also decide whether it should move onto the next 

pose. If the backend has sent a score higher than 90 for more 

than 2 seconds, the frontend will proceed to the next pose 

automatically. Otherwise, the frontend will listen for backend 

verbal instructions and play it when requested. 

B. User Feedback Subsystem 

    The user feedback subsystem will contain two main parts 

inside the Python development environment, the comparison 

algorithm system and voiceover feedback system. 

1.           Calibration Stage 

In this stage, the user will be asked to adjust their camera 

and body positions (front-facing) to capture all 18 data points 

of their body. The comparison algorithm will continue to 

receive datasets that are missing certain data points and pass 

those missing values to the voice engine and produce feedback 

like ‘Please include your left arm’ and ‘Please include your 

right foot’ until the user keeps their whole body inside the 

frame for 2 seconds. At this time, the comparison algorithm 

will pass text string ‘Calibration complete, please stay in the 

camera frame’ to the voice engine to signal the user that the 

calibration is complete and transfer the system into the 

practice stage. 

 

2.           Practice Stage 

     Upon receiving a package consisting of 18-key points 

representing the current user’s body posture, the Python 

algorithm written by Shiheng will first convert the key points 

into different vectors representing arms, legs, head and upper 

body. From received data, all four limbs, upper body, and head 

position should be clearly reflected in vector form. Then the 

set of vectors is compared with our stored reference position to 

generate differences between the user's posture and reference 

posture and generate a ‘score’ which is only visible to 

developers. We repeat this process for all frames captured 

during the evaluation time (5s by default) and calculate an 

average score to determine the closest average posture we will 

use to evaluate the user's performance. We grab that image and 

pass that dataset to generate text, examples like: ‘Raise your 

left arm by 20 degrees’, ‘Lower your thigh by 10 degrees’. 

These generated strings will be then passed to the voiceover 

feedback system. Another case will be if the user performs 

over an average of 90% similarity to the posture, the system 

will generate text strings like ‘Good job! You’ve mastered this 

posture!’ and inform the pipeline that the user has passed this 

posture. The pipeline will then trigger a change in the user 

interface to allow them to proceed into the next posture. 

  The second part will be the Python package of voiceover 

system Mozilla TTS. After receiving the text string, it 

generates the corresponding speech waveform matching every 

instruction generated. This .wav file can then be played back 

on the default music player of the laptop to create the spoken 

instructions through the speaker to inform the user on how to 

improve their Tai Chi posture or congratulation comments 

when the user passed the posture similarity check. This system 

becomes dormant until a new set of text strings is passed in. 
 

C. Customization Subsystem 

    The customization subsystem will be a subsystem that 

allows users to upload custom Tai Chi poses, not natively in 

our application, that they want to practice using our 

application.  The user will interact with the interface from our 

application accessible from the main menu of our application. 

The user will be able to upload images stored locally on their 

phone to our application.  The application will then store the 



7 

18-500 Design Project Report: Taichine 10/13/2023 

 

image in a custom images directory.  Next, the application will 

make a Python API request containing the path to the image to 

OpenPose. OpenPose will then calculate the coordinates of the 

key points on the body of the practitioner in the image the user 

uploaded. These key points coordinates will then be stored in a 

Python dictionary and input into the backend of the application 

where an algorithm will calculate the joint angles between the 

users’ limbs. These joint angles will also be stored in a Python 

dictionary as well.  The joint angles and key points coordinates 

will then be written to a JSON file that will be stored in a 

separate JSON directory for lookup when the user selects the 

custom pose to practice in the application.  Users can also 

upload a custom sequence of poses they would like to practice, 

where they will upload all the images and then order the 

images with a drag and drop mechanism in the order they are 

supposed to come in the sequence.  These images will all go 

through the same pipeline as described before, except there 

will be an extra two fields in the JSON file for the name of the 

sequence they are a part of and their number order the pose is 

in the sequence to let the application know what order the 

poses should come in. 

 
Figure 7. Flowchart of user interface interaction to upload image sequence. 

VII. TEST, VERIFICATION AND VALIDATION 

We will conduct modular and overall tests to evaluate the 

design implementation. After we have a working prototype, we 

will be refining the system by conducting the following 

Modular Tests for examining the system’s performance in 

fulfilling the design requirements: 

A. Modular Tests for Degree Difference 

The Degree Difference Modular Tests will target the 

comparison algorithm of the system. The goal of these tests is 

to ensure that the deviation from system detected angles to 

actual user body angles is 10 degrees maximum. For instance, 

if the user is 20 degrees lower on their upper arm with respect 

to their chest, the system should report the arm to be lower by 

some degree between 10 to 30. The system should consider the 

user’s arm position correct if it is within 10 degrees of the 

reference angle. Each test will consist of a reference skeleton 

(body part coordinates derived from a reference pose picture) 

and a test skeleton. The test skeleton will be generated from a 

photo of one of the team members doing the reference pose 

while deliberately positioning one of the body parts incorrectly. 

All body parts will have at least three tests, one with a higher 

angle than the reference, one with a lower angle, and one with 

the correct angle.  

 

B. Modular Tests for FPS 

The FPS Modular Tests focus on the OpenPose Module. 

This test involves inputting videos of different resolutions and 

poses to OpenPose. The goal of these tests is to make sure the 

FPS of the video output always meets the required 10fps. 

Openpose will take in test videos and team members will 

manually inspect Openpose’s fps. The test videos will be team 

members doing Tai Chi poses shot in different resolutions. 

Since we do not expect users to input videos or images with a 

resolution lower than 360p (lowest resolution for most video 

platforms/screenshots) or higher than 2160p (highest resolution 

for most video platforms/phone screenshots), we will be testing 

the system with videos of these two resolutions.  We plan to use 

10 random poses for this test. 

 

C. Modular Tests for Verbal Instructions 

The Verbal Instruction Modular Tests will ensure that the 

verbal instructions provided by the system have reasonable 

latency and clarity. The verbal instruction system will be 

provided with pairs of photos, one reference pose and one 

incorrect pose, and is expected to output instructions within 5 

seconds consistently.  The lengths of the verbal instructions will 

be manually evaluated. 

D. Modular Tests for UI 

For the UI, we plan to stick with functionality tests during 

the prototyping process. The tests will simply be trying to 

access each of the poses through the implemented UI. Also, 

the intuitiveness of the UI will be evaluated manually. 

 

 

 



8 

18-500 Design Project Report: Taichine 10/13/2023 

 

E. Modular Tests for Customization Pipeline 

The customization pipeline is expected to work as long as 

the input images fulfill the expected requirements, i.e., the 

perspective of the image being parallel to the screen. We will 

choose 10 random poses for this test. Each test consists of an 

input image of one of the team members doing a chosen pose, 

and the system is expected to extract the pose correctly from 

the image with an accuracy close to 100%. 

 

After each subsystem passes their modular tests, we will 

integrate the full system. Then we will run the full integrated 

system against the following overall tests to make sure it meets 

all the user case requirements. 

 

B.  Overall Tests on Accuracy of Posture Detection 

     These tests examine the system’s ability in detecting users’ 

inaccurate postures. The tests consist of images of team 

members doing correct and incorrect postures, and customized 

postures will also be tested. For correct postures, the system 

should report both with UI and verbal instructions, clearly 

enough to convey to the user the correctness of their pose. For 

incorrect postures, the system should detect the incorrect body 

parts and give verbal feedback on the body part with the most 

prominent mistakes. The system has to pass 90% of the tests 

consistently to reach the user case requirement on accuracy. 

 

C. Overall Tests on Verbal Instruction Latency 

Verbal Instruction Latency tests aim to verify that the 

verbal instruction system still has reasonable latency when 

running together with other segments of the system. These 

tests will be conducted together with the Accuracy tests. As 

the system provides verbal instructions during the Accuracy 

tests, we track the corresponding latency for each of the poses. 

The latency should be under 5 seconds consistently throughout 

all Accuracy tests and should be easy to follow in terms of 

word speed and clarity. 

 

D. Overall Tests on Accessibility 

On accessibility, we want to ensure our system is easy to 

use for the user group we are targeting. The accessibility tests 

will involve showing the system to people outside of the team 

and getting feedback on how accessible the system is to use. 

The criteria for evaluating the system include: the intuitiveness 

of the UI, the visual and audio latency, the posture detection 

accuracy, the difficulty of using the customization pipeline, 

and how easy it is to use under different environments. 

VIII. PROJECT MANAGEMENT 

A. Schedule 

All team members have worked together to complete 

research and design of the project and will work on collecting 

images of professional reference poses for the system. Jerry will 

work on interfacing with the OpenPose API using Python and 

implementing the file storage system described in the design. 

Sirui will also work on interfacing with the OpenPose API and 

building the user interface for the app. Hongzhe will set up and 

install OpenPose and work on integrating it with the rest of the 

application. Shiheng will work on developing the scoring 

algorithm for judging how accurately a user was able to mimic 

a posture and also develop the verbal feedback system. All team 

members will work on integrating each subsystem together and 

doing module and full system testing. All members will help to 

make the final presentation slides, and we also have accounted 

for unexpected roadblocks in our project by building in slack 

time into our schedule and accounted for Thanksgiving and fall 

break. Please refer to figure 7 at the end for the schedule Gantt 

Chart. 

B. Team Member Responsibilities 

Hongzhe Cheng: OpenPose Usage 

- Input: User pose image passed by application 

- Output: JSON file containing coordinates 

Sirui Huang: Real-time instruction pipeline and application 

infrastructure 

- Input: User real-time video captured by camera 

- Output: Cut video into frames and interact with 

OpenPose to get real-time coordinates, pass to user 

selection and comparison  

Shiheng Wu: User selection and pose comparison algorithm, 

Speech Application 

- Input: Coordinates output from OpenPose 

- Output: User Selection, Error Detection, generate 

instruction message and play them in .wav files 

Jerry Feng: Custom poses pipeline and file storage 

infrastructure 

- Input: User uploaded image/sequence of images 

- Output: JSON file and image storage 

C. Bill of Materials and Budget 

    After careful consideration, we decided not to order any 

materials externally but decided just to use a laptop as our 

platform for our project. 

    For normal laptop cameras, they usually already have over 

30fps and 720p+ resolution, which already exceeds the 

minimum requirements that OpenPose requires (15 fps). In 

addition, they are usually embedded inside the system that are 

default setup with video drivers. As Figure X shown in the 

Section V, both pictures are taken using the integrated cameras 

on different laptops which achieve the posture detection goal 

perfectly with excess fps for the system to process. 

    We initially also considered using a Logitech webcam as a 

usb-addon to the laptop for better capture qualities. After 

testing its effect based on the one that Shiheng owns, we 

figured out that the differences between image and video 

capture by laptop cameras are not significant and laptop 

cameras already fulfilled our requirements. We also accounted 

for the factor that different laptops have differed USB ports 

supports (e. g. Macbook and mainstream Ultrabooks lack 

USB-A ports) and it’s hard to find a one-size fit-all camera 

which we could not extensively test on all laptops considering 

compatibility issues with video drivers and hardware 

requirements. 

     For other parts of our program, we concluded that a laptop 

already integrated all the functionality we require, and 

purchasing of services like cloud servers or computing devices 

are not necessary. Most of the work is developing software 



9 

18-500 Design Project Report: Taichine 10/13/2023 

 

systems, processing video inputs, and giving feedback locally 

without the need of hardware and cloud service requirements.  

    With all the factors mentioned above, we decided to stay 

with the idea of developing our project on laptops alone and 

rejected the idea of purchasing an extra camera for pose 

recognition purposes. 

D. Risk Mitigation Plans 

One Risk that we face is the fact that OpenPose is a black box 

system. OpenPose has its own internal accuracy and might 

generate invalid data by miscategorizing body parts or returning 

bad coordinates. Since we are not defining our own pose 

recognition model, we might try to add some data filtering to 

sort out the coordinates that seem inaccurate and unusable, 

based on coordinates and distances. 

Another risk is that we assume that the angle representation 

of poses would be acceptable for most of the postures. The most 

statistically significant way is to gather a huge dataset of people 

with different heights and weights doing the same pose and 

create a model that maps body sizes to the best angle for users 

to practice. However, this requires a significant amount of data 

collection, calculation and even the necessities of professional 

Tai Chi players of different body sizes. Thus, we are not taking 

this approach for now. 

IX. RELATED WORK 

OpenPose – underlying pose recognition software 

Virtual Yoga Coach – instruct Yoga based on OpenPose 

comparison, but without customization. 

X. SUMMARY 

To summarize, Taichine is a piece of software and 

application that enables and enhances the accessibility of pose 

training in general with a default emphasis on Tai Chi poses. 

The system supports one pipeline for real-time pose recognition 

and instruction feedback for pose practice. It also contains the 

other pipeline allowing custom reference poses to be uploaded 

and processed. 

Our major challenge would be enabling the OpenPose 

software to work, ensuring the connectivity between our 

infrastructure and the OpenPose algorithm module. Meanwhile, 

we need to ensure the pipeline and data flow works well, 

instructions are generated with correct and informative content, 

and create an easy-to-use interface and setup environment for 

the user. 

REFERENCES 

[1] Fenneld. (2023, September 6). “Slow and steady: The health benefits of 

Tai Chi.” Cleveland Clinic. https://health.clevelandclinic.org/the-health-

benefits-of-tai-chi/  

[2] Debnath, B., O’Brien, M., Yamaguchi, M. et al. A review of computer 

vision-based approaches for physical rehabilitation and assessment. 

Multimedia Systems 28, 209–239 (2022). 

https://doi.org/10.1007/s00530-021-00815-4 

[3] A. D. Gama, T. Chaves, L. Figueiredo and V. Teichrieb, "Guidance and 

Movement Correction Based on Therapeutics Movements for Motor 

Rehabilitation Support Systems," 2012 14th Symposium on Virtual and 

Augmented Reality, Rio de Janeiro, Brazil, 2012, pp. 191-200, doi: 

10.1109/SVR.2012.15. 

[4] Pedersen, Jannik & Jensen, Niklas & Lahrissi, Jonas & Hansen, Mikkel 

& Staalbo, Patrick & Wulff-Abramsson, Andreas & Sander, Mattias. 
(2019). Improving the Accuracy of Intelligent Pose Estimation Systems 

Through Low Level Image Processing Operations.  

[5] Danielle Bragg, Cynthia Bennett, Katharina Reinecke, and Richard 
Ladner. 2018. A Large Inclusive Study of Human Listening Rates. In 

Proceedings of the 2018 CHI Conference on Human Factors in 

Computing Systems (CHI '18). Association for Computing Machinery, 
New York, NY, USA, Paper 444, 1–12. 

https://doi.org/10.1145/3173574.3174018 

 
[6] Woojoo Kim, Jaeho Sung, Daniel Saakes, Chunxi Huang, Shuping 

Xiong, Ergonomic postural assessment using a new open-source human 

pose estimation technology (OpenPose), International Journal of 
Industrial Ergonomics,Volume 84,2021,103164,ISSN 0169-

8141,https://doi.org/10.1016/j.ergon.2021.103164. 

[7] Apple MacBook Pro 13" (4th Gen) Dimensions & Drawings. RSS. 
https://www.dimensions.com/element/apple-macbook-pro-13-inch-4th-

generation  

 
[8] Kendall, A., Grimes, M., & Cipolla, R. (2016, February 18). PoseNet: A 

convolutional network for real-time 6-DOF camera relocalization. 

arXiv.org. https://arxiv.org/abs/1505.07427  
 

[9] Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., & Sheikh, Y. (2019, May 

30). OpenPose: Realtime multi-person 2D pose estimation using part 
affinity fields. arXiv.org. https://arxiv.org/abs/1812.08008  

 

[10] Julia Cambre, Jessica Colnago, Jim Maddock, Janice Tsai, and Jofish 
Kaye. 2020. Choice of Voices: A Large-Scale Evaluation of Text-to-

Speech Voice Quality for Long-Form Content. In Proceedings of the 

2020 CHI Conference on Human Factors in Computing Systems (CHI 
'20). Association for Computing Machinery, New York, NY, USA, 1–

13. https://doi.org/10.1145/3313831.3376789 

 
[11] Julia, Choice of Voice, Association for Computing Machinery, New 

York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376789 

 
 



10 

18-500 Design Project Report: Taichine 10/13/2023 

 

 
Figure 8. Gantt Chart Schedule 


