Taichine– A New Way to Learn Taiji

18-500 ECE Capstone Project, Team B4 Sirui (Ray) Huang, Hongzhe Cheng, Shiheng Wu, Jerry Feng

Use Case

The Problem:

• Many people self-learned Taiji, but doing Taiji incorrectly will not achieve the desired health benefits.

The Solution:

- Provide behavioral analysis through video processing using machine learning to compare against reference gesture.
 - Golden Rule 24 Gesture from the basic Yang's Taichi exercise
- Provide the flexibility for users to create instructions on their own gesture video

Use Case Requirement

- Need to provide verbal instruction for gesture adjustment
 - 90% accuracy for error joint detection, 10 degree tolerance for angle difference
 - 90% accuracy for correct posture detection
- Enable users to upload custom reference and provide automatic processing necessary for the app
- Ensure that the latency of software is reasonable for users to get real-time feedback when practicing
 - 10 frames per second, cool down time of 2 seconds for wrong postures
- Easy to use once app installed

Solution Approach

- Real-time Instruction Pipeline
 - Allows user to practice Taichi/Custom Pose in front of camera
 - Real-time user input -> Pose Processing -> Reference
 Comparison -> Verbal Instruction

- Customization Pipeline
 - Allows user to store postures as new reference in the app that could be used in the above instruction pipeline

Diagram Key

New Design

Backend Module

Frontend Module

Off the Shelf Library/Framework

Implementation & Design Choices

- OpenPose (Open source)
 - Real-time human posture detection application
 - General Internal Logic
 - CNN based with Python/C++ support
 - Detects body parts from all "human" in the image
 - Compute affinity between parts
 - Delete low-affinity connections between body parts
 - Design Choice
 - Output coordinates that is easy to use for angle computation
 - Potential 3D estimation functionality to better support posture comparison and real-world modeling

Implementation & Design Choices

- App Infrastructure
 - Language of Implementation: Python
 - Visual Display Package: Python TKinter
 - Storage Model:
 - Folder 1: Reference Posture Image
 - Folder 2: Body Part Coordinates as JSON file
 - Purpose: Save Computation
 - Structure:
 - Name of the pose
 - List of pairs of body parts corresponding to their coordinates

Implementation & Design Choices

• Comparison Algorithm (Python)

- Cosine Similarity Scoring
 - Based on posture instead of absolute position
- Select correct user when more than one person detected in frame
 - Similarity Threshold: 70%+ (modifiable) to recognize user

- Text to Speech Translation (Mozilla TTS on Python)
 - Support multiple languages
 - Support high quality voice offline

Testing, Verification and Metrics

- Gesture Comparison and Instruction Testing
 - Ensure the requirements of accuracy is achieved
 - (80% error detection, 80% angle accuracy)
 - Angles Elbow angle, Knee angle, Calf-Floor angle, Arm-body angle, Thigh-body angle, Head-body angle
- Pipeline Testing
 - Ensure the two pipeline are well connected from input to all backends
- Latency Testing
 - Ensure that the feedback is given with approximately 1 second latency after the input

Testing, Verification and Metrics

- Input
 - Real-time recognition Taichi Beginner poses with intentional errors
 - Poses come from team members; use videos as tests if time allows
 - Customization Images selected with obvious poses
- Output & Verification
 - Real-time recognition Check if intentional errors match instructions
 - Customization Check if the necessary data for real-time pipeline to use exist and can be used in the verification process for above

• Risk Factor

- If Test FAIL recheck the system pipeline and connections, debug comparison algorithm, ensure working solution for most cases
- Log the pipeline to know which part of the application breaks

Tasks and Division of Labor

- Hongzhe Cheng
 - OpenPose Usage, Display setup
- Sirui Huang
 - Application Infrastructure on Posture Display, Data collection
- Shiheng Wu
 - Gesture comparison/Scoring algorithm, Verbal instruction
- Jerry Feng
 - Custom image's pipeline and infrastructure, file storage system infrastructure

Stretch Goals:

• Dynamic Posture Instruction, 3D Openpose, Multi-Angle Integration, Cloud Storage

