
18-500 Design Review Report - 13 October 2023 Page 1 of 15

SceneScribe
Authors: Aditi Narasimhan, Nithya Sampath, Jaspreet Singh

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—We present a system capable of improv-
ing lecture experiences for visually-impaired students
by narrating text and graph data displayed on instruc-
tors’ presentation slides. Current solutions for this task
include apps where students can upload a photo of the
slide and receive spoken output of extracted text, which
is inconvenient and time-consuming. Our solution is a
camera attachment to glasses which will capture an
image of a slide, match it to a pre-uploaded lecture
slide using a Siamese Network, extract text and graph
descriptions with PDFReader and a CNN-LSTM, and
read them aloud to the user through an iOS app 2 times
faster than current solutions.

Index Terms—Accessibility, CNN-LSTM, Graph
Description, iOS App, Machine Learning, Siamese Net-
work, Text Extraction, Text-to-Speech, Voice Over,
YOLO

1 INTRODUCTION

1.1 Motivation and Application

During lectures, instructors do not always completely
explain all of the text and graph data on the slides they
are presenting. While this may not seem like an issue for
sighted students, who can easily glance up at the screen
and quickly read the text, it causes a substantial informa-
tion disparity between sighted students and blind/visually
impaired students. We classify the two possible kinds of
information disparity in the following ways:

1. The slide contains necessary information: informa-
tion on the slides is necessary for the visually im-
paired student to understand the lecture material.

2. The slide contains supplemental information: infor-
mation on the slides is not necessary for the under-
standing of the lecture, but can be used as reference.

The first kind of information disparity can be displayed
in the following scenario: imagine being a blind student
in an engineering class, where the instructor has projected
a scatterplot on the screen. The instructor, who forgets
to explain the graph, begins by saying “This is a graph of
the measured speed of a motor based on the input voltage.
Using this data, we would predict that with an input of
15V, the motor speed would be 1000rpm”. Even though
the professor addressed the graph in their explanation,
they did not explain the range of the axes or trend of the
graph, which makes it difficult for the blind student to un-
derstand the reasoning for the professor’s stated conclusion.

The second kind of disparity can be displayed in this
scenario: Imagine, once again, that you are a visually
impaired student in class. The instructor has already ex-
plained an important piece of terminology that is currently
being displayed on the screen, but you have forgotten it. It
would clearly be extremely helpful to you if you could read
the slide in order to refresh your memory about the term.
If you were a sighted student this would not be an issue,
which is where the information disparity is apparent.

Information disparities provide an inherent imbalance
between students in the class - in this case, between vi-
sually impaired and sighted students. This can lead to
visually impaired students understanding the material less
and performing worse on exams when compared to their
sighted peers, which is unfair and may hinder visually im-
paired students from performing at their highest standards.

We also spoke with someone who works as a Teaching
Assistant at a blind school, who agreed with our analysis,
and felt that the system would, in fact, be helpful to their
students.

Therefore, our solution is to provide the user with a sys-
tem that provides them with a narration of the displayed
slide at their request. During lecture, they can indicate to
our system that they want to know what is on the screen
(through a mechanism such as a button press) and our
device will narrate the projected information to them.

Our use case expects students to use the device in class
because any necessary or supplemental information will
be most valuable during lecture: the extra information
can help students better understand what the instructor is
talking about during the lecture, and can ask questions to
help clear up misunderstandings that the instructor might
build on later in the lecture. This way, the user will likely
be able to understand the entire lecture during class, and
will not be forced to go back and review it after class time
with our device.

Because our system will be used during class, while the
professor is speaking, we expect concerns from sighted in-
dividuals about the usefulness of the product. However, we
consider multiple factors to alleviate these concerns:

1. There will likely be pauses during the lecture dur-
ing which the visually-impaired student can use our
device. For example, instructors usually pause for
sighted students to copy down slide information in
their notes.

18-500 Design Review Report - 13 October 2023 Page 2 of 15

2. Our system allows the user to stop the audio if the
instructor starts speaking.

3. Visual impairments have been linked to enhanced au-
ditory perception, meaning blind users generally have
a much easier time distinguishing and processing mul-
tiple audio streams when compared with sighted users
[1].

4. When the slide contains necessary information (as
mentioned earlier), knowing the content on the slide
is more valuable than catching every sentence that
the instructor speaks, so missing a few sentences in
favor of a slide audio description is justified.

1.2 Competing Technologies

Competing technologies include free apps that connect
visually impaired students with sighted volunteers through
a video call [2]. The volunteer will then describe out loud
what the student is “seeing”. Other technologies are hand-
held cameras that can be pointed at text [3], which is then
extracted as text to speech, and glasses that perform scene
description [4]. Our system is advantageous compared to
these approaches because it will perform not just text de-
scription, but graph descriptions. It will also be much
cheaper, at about $100, when compared to the camera tech-
nologies mentioned above, which are in the $1000 to $2000
range. Our system will also allow visually-impaired users
to be independent, which is not the case for the application
where a sighted user will need to be involved.

1.3 Goals

Our system’s main goal is to correct information dis-
parities, which helps provide equal opportunities between
sighted and visually impaired students. We also sought to
make the system as inexpensive as possible (while main-
taining its accuracy) in order to level the playing field be-
tween more affluent students and students who cannot af-
ford higher cost options. Since we are limiting our scope
to three types of graphs, our product is not a replacement
for instructor attention to accessibility needs; instructors
should still design their lectures so they are conducive to
all students’ learning.

2 USE-CASE REQUIREMENTS

2.1 Latency Requirements

1. The latency between pressing the start button and
receiving an audio description of the slide should be
at most 8 seconds. Our device should be faster than
other options, such as taking an image with a smart-
phone and analyzing it with an app. After experi-
mentation, we found that the average time to do this
was 8 seconds, so our device should take less time
than this.

2. The latency between clicking the button to upload
a lecture from Canvas and the time that it takes to
process it and extract the descriptions of slides must
be less than 10 minutes because passing periods are
about that long - our device should be able to process
presentations between the end of a previous class and
the start of the next class.

3. The latency between pressing the stop button and
hearing the audio stop should be at most 140 ms. The
purpose of the stop button is to immediately halt any
sound that is playing from our device, and we found
that for humans, a latency of less than 140 ms for a
change in sound would be perceived as instantaneous
[5]. The text-to-speech should also be cut off before
the start of the next word.

2.2 Weight Requirements

1. The weight of the attachment on glasses should be
at most 60 grams. We want the attachment to be
lightweight and convenient, since too much weight
would cause an excess of pressure on the user’s ears
and nose.

2.3 Power Requirements

1. The battery life of the device should be at least 6.64
hours. Our device is intended to be used in classroom
settings, and should be able to last throughout the
day for convenience. Our system should be able to
last as long as the average number of teaching hours
in a day, which in the United States is 6.64 hours [6].

2. The app should consume an appropriate amount of
power on the mobile device: at most 25% of the phone
battery when used for 6 hours. Since this is an assis-
tive device, the power usage of our smartphone app
should not detract from our user’s daily smartphone
usage. We found that on average, most people have
about 25% of their phone battery remaining at the
end of the day [7], so we will limit our power usage
accordingly.

2.4 Accuracy Requirements

1. 95% of well-formatted, standard font words that are
spelled correctly must be accurately identified. We
need to ensure that our text detection is accurate,
as we do not want to misinform or confuse our user.
With a lower accuracy, our device could actually de-
tract from the user’s learning experience.

2. The device must be able to identify the existence of
graphs on the slides with about 95% accuracy, and
must identify the type of graph (line, scatterplot, bar,
pie). Similarly to before, we must avoid detracting
from the user’s learning experience. Therefore, it is
important to correctly identify all graphs on the slide.

18-500 Design Review Report - 13 October 2023 Page 3 of 15

3. Graph trends and shape should be accurately iden-
tified 90% of the time. As of now, there is nothing
on the market that parses graphs to natural language
specifically for visually impaired students. Even if it
does not work 100% of the time, it will still be help-
ful for blind students who do not have an alternative
device.

2.5 Usability Requirements

1. The stop and start buttons for the device should be
easily distinguishable. Because the device should be
relatively straightforward to use out of the box, the
time it takes for a blind user to distinguish between
the buttons when they first get the device should be
at max 0.5 seconds. This is because the average early
or congenitally blind person can read up to 120 braille
words per minute [8], which corresponds to 1 word
per 0.5 seconds. In our system, each button will have
“start” and “stop” printed on it in braille, so the
length of time it takes a user to distinguish between
the buttons should be about the length of time it
takes them to read a short word.

2. All elements on the app should be compatible with
the VoiceOver accessibility mode so that every button
and header can be narrated to the visually impaired
user.

3. The speed of the Text-to-Speech (TTS) should be
understandable. We will provide multiple options for
the speed of text to speech, and the user will be able
to select it using our app. The default speed will be
150 words per minute, and we will allow users to se-
lect from a range between 75 words per minute (0.5x
speed) and 300 words per minute (2x speed). This
is because the average speaking speed of an English
speaker is 150 words per minute [9], but we want
to provide our user with options depending on what
speed they desire.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

3.1 Block Diagram

See Fig. 12 in the Appendix for a complete block di-
agram of our system architecture. We discuss how the
system will operate below, from both a user perspective
and system perspective.

3.2 Principle of Operation

3.2.1 User Perspective

When the user receives the system, these are the steps
they will take to set it up:

1. Download the application.

2. Upon install, the application will prompt the user to
input the names of their classes and the Canvas code
associated with each class.

3. The professors of each class will also need to provide
an API token which the user will input for each class
as well, in order to meet Canvas’s privacy guidelines.

Now, the app will be configured properly, with a display
of buttons corresponding with each class that the student
is taking. At least ten minutes before each lecture, the user
will click on a button that corresponds to their next class.

At the start of lecture, the user should:

1. Attach the device to their glasses.

2. Face the projected slideshow.

3. Open the app, and pair their headphones with their
phone.

During lecture, when the user wants to know what the
slide says, they should press the “START” button and lis-
ten for the audio. If the user wants to cut off the audio,
they should press the “STOP” button.

3.2.2 Developer Perspective

• Before Lecture: The iOS app will store a list of
classes that the user is taking. Before going to their
lecture, the user will indicate which class they are go-
ing to through the app interface. After this selection,
the most recent lecture PDF from the corresponding
Canvas course will be scraped and uploaded to our
server hosted on a Jetson. The Jetson will be on
campus at a central location (such as the disability
resources office), and our app will communicate with
it wirelessly.

Then, each slide of the PDF will be analyzed for
the existence of text and graphs; in particular, we
will run the YOLOv7 model to get bounding boxes
around the particular types of graphs we are consid-
ering (bar graphs, scatterplots, and pie charts). At
this point, we will have a processing step in which
we white-out all of the pixels within the bounding
boxes we have identified, so that any text within the
graph itself, such as the title and axis labels, are not
included as part of the extracted text from the slide.

The text will be extracted with a PDF reader
(PyMuPDF), and the graph descriptions will be ex-
tracted using our trained CNN-LSTM model. Then,
all of the associated text for each slide will be stored
in a JSON so that it can be easily accessed during
lecture.

18-500 Design Review Report - 13 October 2023 Page 4 of 15

• During Lecture: Whenever the user wants to hear
a slide description during lecture, the following steps
will occur: The user will press the start button on
the side of the glasses attachment, which will indicate
to the Raspberry Pi that it should capture an image.
The image will then be wirelessly sent over WiFi to
a server hosted on the Jetson.

Once received, the image will be pre-processed
(deskewed, warped, grayscaled) before being passed
to the matching algorithm, which will use a Siamese
Neural Network to identify the most similar slide in
the pre-uploaded slide deck. Once the correct slide is
identified, we can fetch the stored text and graph de-
scription for that slide (which was already extracted
and stored in a JSON) and send it to our iOS app,
where it is read aloud to the user using text-to-speech.
While this text description is being played, the user
can press the stop button at any time when they don’t
want to hear the audio anymore.

4 DESIGN REQUIREMENTS

4.1 Latency Requirements

4.1.1 Before-Class Latency

The total before-class latency can be summarized by the
following equation, which is explained in more detail below.
We calculate the total latency l in terms of the following
parameters:

• ls, the latency of scraping the PDF from Canvas.

• lbb, the latency of identifying the bounding boxes
around the graphs.

• lw, the latency of processing the graphs by whiting
out the boxes.

• le, the latency of computing the slide embeddings.

• lt, the latency of extracting the text from the slides.

l = ls + le + lbb + lw + lt (1)

A summary of our before-class pipeline latency goals
proceed as follows: The PDF will be scraped from Canvas
(2s), the bounding boxes of the graphs will be collected
(1s), the processing stage will white-out graphs (100ms),
the slide embeddings will be collected (1s), then the text
will be extracted (100ms).

This brings us to a total of 4.2 seconds, but we will pro-
vide some wiggle room, because we have not yet trained our
ML models and thus do not know the exact time measure-
ments, and set our goal to 10 seconds. Below, we discuss
the latency requirements for the limiting subtasks (other
subtasks’ latency values are negligible):

• The PDF should be scraped from Canvas to our
server within 2 seconds, which is possible when us-
ing chunking.

• The text from the PDF should be extracted within
1.5 seconds, which is possible using the PDFReader
Python package for a 100 slide, 5000 word presen-
tation (which is on the high end of the number of
lecture slides and word counts).

• The slide embeddings from the Siamese Network
should be computed and stored within 1 second. Get-
ting a single output from the network takes about 10
ms (based on our observed measurements), and even
if we assume sequential rather than parallel process-
ing, getting these embeddings will take about 1 sec-
ond for a 100-slide presentation.

4.1.2 During-Class Latency

A summary of our during-class pipeline latency goals
proceed as follows: user presses the button and an image
is sent from the RPi to the server on the Jetson (600 ms),
the image is matched with a slide in the deck (2s), the cor-
responding text is fetched and sent to the iOS app (100
ms), and the TTS begins (100 ms). This totals 2.8 sec-
onds, but we allow for plenty of leeway with our use-case
goal of 8 seconds. Below, we discuss the latency require-
ments for the limiting subtasks (other tasks’ latency values
are negligible):

• The wireless data transfer speed for the image should
take no longer than 600 ms to run. We can estimate
that we’ll send an image with a maximum resolution
of 2 Megapixels where each pixel is represented by 3
bytes. Therefore, with a wireless data transfer speed
of about 100 Mbps, the image would be sent within
600 ms.

• The ML model for matching the captured image with
a slide in the deck should take no longer than 2 sec-
onds to run. This is where the majority of the latency
in the “during class” pipeline will come from. Getting
a prediction/embedding from a trained model will
take around 10 ms (timed from experiments) since
it just involves performing a series of matrix multi-
plications. This will have to be done for all slides
in the deck, and then the captured image embedding
will be compared to all other embeddings from the
slide deck. We can expect this computation to take
a similar amount of time (< 10 ms), and given that
most presentations are under 100-200 slides, this step
should not take longer than 2 seconds.

4.2 Size and Weight Requirements

We want our device to be a universal attachment onto
the side of glasses. Therefore, it should be at most 100 mm
long, since the sides of most glasses range from 120-150 mm
long. It should have a width of at most 25 mm so it doesn’t

18-500 Design Review Report - 13 October 2023 Page 5 of 15

stick out as compared to the frame width of 125-150 mm,
and it should not be taller than 35 mm, as compared to
the average lens height of 32-38 mm [10].

Our weight requirements can be split up by component.
We estimate that the battery will weigh the most since we
want our device to have a long battery life, but it should
not weigh more than 25 g. We found that most batteries
satisfying our power requirements weigh between 20-25 g.
Next is the 3D printed component case, which should not
weigh more than 15 g. If we estimate that the case has a
thickness of 2 mm, and calculate the volume from our size
requirements, we get a total volume of (100 mm × 25 mm
× 35 mm) - (96 mm × 21 mm × 31 mm) = 25000 mm3,
or 25 cm3. If our plastic has a density of 1 g/cm3, and
we print using a 50% infill, the total weight would be 12.5
g, so 15 g is a reasonable bound. We can also adjust the
infill of the part in order to decrease the weight if needed.
Next, our on board computer should weigh at most 15 g,
which is a reasonable expectation given that it needs to be
small, and the attached camera should weigh at most 3 g.
Finally, the buttons should weigh at most 2 g. In total,
this would meet our desired use-case upper bound of 60 g
for total weight of the attachment.

4.3 Power Requirements

The battery should be able to power our on board com-
puter for about 6 hours according to our use case require-
ments. Therefore, if we estimate that the on board com-
puter draws a current of 200 mA, we would want at least a
1200 mAh battery. Given that our buttons and camera will
be attached to the on board computer, we do not have to
separately provide power to them. The Jetson power con-
sumption was considered, but we plan to have it plugged in
at a central location in the school, so the power consumed
will not matter.

4.4 Accuracy Requirements

1. The accuracy of the text extraction on the PDF
should be 100% on standard font and symbols, and
95% on PDFs without standard formatting. We
looked into the PyMuPDF reader and it worked ex-
tremely well, with close to 100% accuracy on special
characters and even other languages.

2. The accuracy of the graph identification (recognizing
the existence of graphs) should be approximately 95%
- this is for identifying bar graphs, scatter plots, and
pie charts. The bounding box for these graphs needs
to be sufficiently high such that it does not include
any part of the slide with non-graph text (text other
than graph title, axis labels, etc.).

3. The image-to-slide matching (using the Siamese Net-
work) accuracy needs to be approximately 95%. Oth-
erwise, we will be reading the wrong slide to the user,
which would be confusing and counterproductive.

4. The graph description outputs should include the ti-
tle and axis labels if they are present in the graph
95% of the time.

5 DESIGN TRADE STUDIES

5.1 Raspberry Pi

Our computing device needs to be able to send image
data wirelessly to our server at the press of a button. It
also needs to be small and lightweight so that it can com-
fortably fit on the side of glasses. The Raspberry Pi Zero
WH fulfills all of these roles, and meets our requirements
better than other options. It has dimensions of 65 mm ×
30 mm × 10 mm and weighs 11 g, both of which meet our
size and weight requirements. The W in the name indicates
that it is compatible with WiFi, and the H indicates that it
has GPIO headers which can be connected to our buttons.
Another plus is that it has a built-in CSI camera connec-
tor, which we can take advantage of. Our next best option
that we considered was the smaller ESP32-CAM board,
which can serve as a backup option. However, we chose the
RPi because it is a simpler solution, and the ESP32-CAM
would require additional modules in order to transfer the
images wirelessly. Although the RPi is larger, it still fits
within our size requirements so we do not need to sacrifice
functionality.

5.2 Camera

Since we are using a Raspberry Pi Zero, it makes sense
to use a camera that is designed precisely for that board.
Therefore, we chose the Unistorm Raspberry Pi Zero W
Camera 5MP Mini Size Webcam. The camera portion it-
self is about 6 mm × 6 mm, and is attached to a 60 mm
flex cable. In total, the camera weighs less than 2 g, which
meets our weight requirements. We chose this camera mod-
ule over other similar modules because the camera is not
directly mounted onto a larger board, meaning it is small
enough to meet the dimension requirements for our over-
all device. For example, the regular Unistorm module has
a camera mounted to a 25 mm × 24 mm board, which is
too large as our 3D printed component case should have a
maximum width of 25 mm.

5.3 Battery

We need to be able to power our computing device,
which our camera and buttons are connected to. There-
fore, we chose the PiSugar 2 Power Module, which is a
custom board made specifically for the RPi Zero and is a
simple solution for powering the RPi. This weighs about
25 g, and has a 1200 mAh lithium battery. We chose the
PiSugar 2 instead of connecting separate lithium batteries
to a different power module because it is compact, conve-
nient, and relatively small. Although the PiSugar 2 weighs
about 5 g more than the alternative, we believe that the

18-500 Design Review Report - 13 October 2023 Page 6 of 15

benefits regarding size and ease of use outweigh the fact
that it weighs slightly more.

5.4 Jetson

We want to make sure that our ML models run quickly
so that our system’s latency is as low as possible. There-
fore, we plan to host our server on an Nvidia Jetson, due
to its relatively high computing power. This means that
we can speed up our graph description and matching mod-
els, which will reduce the major components of our total
system latency. However, in order to gain this increase in
speed, the Jetson will definitely consume more power than
if we had hosted our server on the RPi. We do not be-
lieve this will be an issue though, since as we mentioned in
our power requirements, the Jetson will be plugged in at a
central location such as the disability resources office.

5.5 Universal Attachment

We decided to create a universal camera attachment to
glasses so that our users can easily use our product. We
thought to attach the camera to the glasses rather than
place it on a desk or other flat surface because the user can
more easily control the direction that the camera is facing
— all they would need to do is turn their head. Once we de-
cided that the camera needed to be attached to the glasses,
we decided to place the rest of the hardware components
along with it. There are many reasons why a singular com-
ponent box is advantageous to a separated system. First of
all, it is much easier to keep track of a single piece of hard-
ware and attach it onto glasses. Second, the start and stop
buttons are easy to access, as they will always be on the side
of the user’s glasses. Third, we can avoid long wired con-
nections between different components, which could cause
safety issues. Overall, we want convenience: all the user
has to do is attach our component box to their glasses, and
press one of the two buttons.

5.6 iOS App

We decided to have all of the text and graph descrip-
tions route through a phone app because we felt like it was
the easiest for students to pair their headphones or listening
devices with the phone itself because this allows the camera
attachment and listening device to be separate. This way,
the headphone wires will not get in the way of the camera.
We assume that students already own headphones, because
most audio captioning tools for televisions and phones al-
ready require a listening device. However, if they do not
own one, a pair of basic wired headphones only costs about
$10. We chose iOS rather than Android for two reasons:
visually-impaired individuals overwhelmingly preferred Ap-
ple’s VoiceOver feature to Android’s TalkBack accessibility
feature [11], and more United States residents own iPhones
than Androids [12].

5.7 Graph Recognition Model

There are many different networks which are capable
of performing object detection and extracting bounding
boxes; we chose the YOLO-v7 network for our design over
other models. For object detection, there are two broad
types of models: one-shot and two-shot models. These
terms refer to the number of passes over the input image
the model needs; for example, we were originally planning
to use the Fast R-CNN model for object detection, and this
(and similar networks like Faster R-CNN, Mask R-CNN,
etc.) falls into the two-shot category. YOLO networks fall
into the one-shot category. We decided to choose a one-shot
model because these are better suited for real-time applica-
tions [13], as they only need to pass the input through one
network to produce output bounding boxes for detected
objects.

5.8 Slide Matching Model

There are a few different methods we could have used
to match the captured image of a slide during lecture with
one of the pre-uploaded slides. We decided to perform the
matching using a Siamese Network [14], from which we
will get similarity scores between all pairs (captured image,
slide k) for all slides k in the pre-uploaded presentation.
We discuss Siamese Networks in more detail in Section 6,
but it consists of twin networks which output embeddings
for a pair of inputs, and then calculates a similarity score
between these embeddings. With these similarity scores,
we will then identify the most similar slide and retrieve
the corresponding text and description. An alternative ap-
proach we considered was to simply extract the text from
the captured image using PyTesseract and then compare
this text to that of each slide, extracted using the PDF
Reader. However, we believe that the Siamese Network
approach is superior for two reasons. First, the accuracy of
PyTesseract may not be high enough to extract the text
properly, so comparisons with the text from slides may
be thrown off as a result. Additionally, using PyTesseract
would mean we are discarding information such as images
or font types which would be used by the Siamese Network
to help make a better prediction, rather than just relying
on the text alone.

5.9 Text Extraction

We chose to use PyMuPDF, a PDF to text reader,
rather than an OCR model, like PyTesseract. PyMuPDF
provided consistently higher accuracy. According to the
benchmarks [15], PyMuPDF provides a 97% accuracy on
all PDFs, and we found a 100% accuracy on standard for-
matted PDFs. PyTesseract performed with a near 81%
accuracy, and other PDF readers performed at between
a 75% and 97% accuracy. After applying some natural
language processing and spell-checking to the PyTesser-
act output, it was still only able to get to about 93%
accuracy, and the latency was closer to 2 seconds when

18-500 Design Review Report - 13 October 2023 Page 7 of 15

compared with PyMuPDF’s average of 0.1 seconds. Out
of all possible PDF to text readers (including PDFMiner,
PyPDF2, PDFQuery and PyPDF), we chose PyMuPDF
because of its speed: the only other PDF reader that
matched PyMuPDF’s accuracy was PyPDF, which has an
average latency of 2.6 seconds. See Fig. 1 for speed com-
parisons.

Figure 1: Comparison of Speeds for Different PDF Readers

5.10 Canvas Scraping

We decided to scrape the PDFs directly from Canvas
instead of having the user download the file from Canvas
and upload it onto the app themselves. The latter process
took, at best, 22 seconds for a sighted user, and we expect
it to be higher for a visually-impaired user. The Canvas
scraping takes about 2 seconds (to perform a handshake
with Canvas, download the file, and send it to the app).
While this is an immense improvement, it also requires the
instructor of each of the user’s courses to provide them
with an API key which they will input at the beginning
of each semester or quarter — the API key is required by
Canvas’ development guidelines. This entire setup process
is expected to take less than 5 minutes once the student
has received the API keys. Assuming the student takes
4 lecture classes with (a conservative estimate of) 14 lec-
tures per semester, taking into account the 20 second dif-
ference between scraping from Canvas versus uploading a
PDF manually, we get: 4 × 14 × (22 - 2) = 1120 seconds,
or about 19 minutes. The user will clearly save time with
the Canvas scraping process. While the instructor might
suspect security concerns, the app will not be authorized
by Canvas to download anything other than what is specifi-
cally under a “Lectures” module, which the students should
be allowed to access regardless. However, this also means
that the professor must publish a module titled “Lectures”
and upload a PDF of their slideshow under this module at
least 10 minutes before class, which we feel is a reasonable
accommodation to make in order to enhance the learning
experience of a visually-impaired student.

6 SYSTEM IMPLEMENTATION

6.1 Camera Attachment

Our camera attachment should have the ability to send
images wirelessly from our camera to our server at the

press of a button. To accomplish this, we will create a
3D printed component case designed to hook on to the side
of the user’s glasses. This case will hold the Raspberry Pi
Zero WH, PiSugar 2 power module, Unistorm camera mod-
ule, and the buttons. There will be holes in the case for
the camera, buttons, and charging port, and there will be
an attachment mechanism on the side opposite of the but-
tons. The start and stop buttons will be connected to the
Raspberry Pi through the GPIO pins, so that the RPi can
detect when they are pushed and then execute the associ-
ated task. When the start button is pushed, the Raspberry
Pi will receive an image from the camera, and send it to
the server on the Jetson through WiFi. When the stop
button is pushed, the Raspberry Pi will indicate to the iOS
app to stop playing the slide description audio. Fig. 2 pro-
vides a rough model of our component box case, with holes
included for the camera and buttons:

Figure 2: CAD Model of Component Box

6.2 Pre-Lecture Software Pipeline

See Fig. 13 in the Appendix for a diagram of the before-
lecture software pipeline.

6.2.1 Canvas Scraping and PDF Download

To begin the pre-lecture pipeline, the user must first
navigate to the app, which they can easily do using the na-
tive iOS Accessibility feature VoiceOver. Once they open
the app, the name of our app, “SceneScribe” will be spo-
ken out loud, because this is the heading of our application.

Then, they must choose the next lecture class they have
from the button menu, so that the PDF of the lecture can
be scraped from Canvas. See Fig. 3 below for a visualiza-
tion.

Each button’s text will be narrated using VoiceOver, so
blind users will be able to tell which button they should
click. When VoiceOver is turned on, users can swipe right
to move to the next element, receiving a vibration to indi-
cate that they have done so. Then, the element’s text will
be read out loud. For example, if they are on the top-most

18-500 Design Review Report - 13 October 2023 Page 8 of 15

button, it will say “Organic Chemistry Button”. If they
double-press anywhere on the screen while that button el-
ement is selected, that is registered as a button press, and
the most recent lecture from the student’s Organic Chem-
istry course will be scraped.

Figure 3: iOS App Layout

In order to scrape anything from Canvas, we need to
go through a security handshake. Specifically, we had to
extract an API key from an authorized Canvas instructor
account, and send it as a header in our HTTP GET re-
quest. Canvas responds with a JSON of the hierarchy of
all elements in the Canvas Course, with the class name at
the top level, pages like “Home”, “Modules”, “Files”, and
“Assignments” below it, and all files within those pages un-
der each page name. Because professors usually put their
lecture PDFs under “Modules”, we extract all filenames
under “Class Name” → “Modules” → “Lectures”, then re-
quest the bottom-most (which is the most recent uploaded)
file, which returns a JSON with all metadata about the file,
including the URL it is located. This is a sample JSON:

{

{

"id": 95444986 ,

"title": "Week1Test.pdf",

"position": 1,

"indent": 0,

"quiz_lti": false ,

"type": "File",

"module_id": 13982117 ,

"html_url": "https :// canvas.

instructure.com/courses /7935642/

modules/items /95444986" ,

"content_id": 230656097 ,

"url": "https :// canvas.instructure.

com/api/v1/courses /7935642/ files

/230656097" ,

"published": true

},

"tags": [" programming", "web development

"]

}

Finally, we make a request to the URL under
“html url”, and can accept the file returned in chunks of
1024 bytes.

6.2.2 Graph Identification Model

We need to be able to identify the existence of a bar
graph, scatterplot, or pie chart on a slide and get a bound-
ing box around it. To do so, we will use the YOLO-v7
network, which will output the coordinates of the bound-
ing box around the graph. See Fig. 4 below for the
architecture of YOLO-v7 [16].

YOLO is a CNN, but with several key features. The
first is a feature pyramid network, which is a feature extrac-
tor that takes an input image and produces feature maps
at multiple scales. The second is the use of anchor boxes,
which help pinpoint both the general shape and position
of the detected object. By training YOLO on our custom
dataset, we will be able to detect and identify bounding
box coordinates around the graphs of interest.

6.2.3 Graph Description Model

For generating graph descriptions, we need a model ca-
pable of taking an image (the graph) as an input, and
outputting a sequence (the caption/description). Image
captioning is an extremely similar problem to our graph
description task, and since these tasks are combined Com-
puter Vision/Natural Language Processing tasks, they are
solved using an architecture which combines CNNs with a
sequence model: the Long Short-Term Memory network, or
LSTM. These LSTM networks belong to a family of mod-
els called Recurrent Neural Networks, or RNNs, commonly
used in generating output sequences such as sentences. The
model essentially works in two parts: the CNN performs
feature extraction from the image, and these features are
passed to the LSTM, which generates the description. See
Fig. 5 for the architecture of the CNN-LSTM [17].

6.2.4 Text Extraction

For text-extraction, we use a PDF to text extractor
called PyMuPDF. The filename downloaded by the Can-
vas scraping software can be extracted, and thus the spe-
cific file can be opened and parsed with PyMuPDF. Then,
it is parsed into a list that holds the text from each slide,
indexed by the slide number. This extraction process will
take about 0.1 seconds for even large PDFs. If we upload
a presentation with the slide in Fig. 6:

18-500 Design Review Report - 13 October 2023 Page 9 of 15

Figure 4: YOLO-v7 Architecture

Figure 5: CNN-LSTM Architecture

18-500 Design Review Report - 13 October 2023 Page 10 of 15

Figure 6: Example Slide for Text Extraction

We can extract the following text with PyMuPDF:

Figure 7: Extracted Text from Fig. 6

6.3 During-Lecture Software Pipeline

See Fig. 14 in the Appendix for a diagram of the during-
lecture software pipeline.

6.3.1 Slide Matching Model

First, we will preprocess the image by grayscaling it,
deskewing it, and applying a canny-edge detection. Here is
a before and after of the process:

Figure 8: Slide Image Before Preprocessing

Figure 9: Slide Image After Preprocessing

It can then be compared with the pre-uploaded
slideshow PDF using a Siamese NN model, and the best-
matching slide can be identified. When the student uses
our system to capture an image of a slide during class, this
slide will need to be matched up with one of the slides
in the pre-uploaded slide presentation, so that the corre-
sponding text and graph description can be sent back to
the app and read aloud to the user. To do this, we need a
matching algorithm.

For the slide matching model, we will be using a Siamese
Neural Network. See Fig. 10 for the architecture of the
Siamese NN [18].

The architecture consists of two twin CNN subnetworks,
and this network learns a similarity function between pairs
of inputs by calculating embeddings for each input, and
then computing the distance between these embeddings.
To give an example application, face recognition uses this
type of model to learn face embeddings and then compare
an image to known faces to determine the identity. Simi-
larly, we will compare the embedding for an image of a slide
with the embeddings for each of the pre-uploaded slides to
determine which is the closest match.

Here is a diagram depicting the input slides and cap-
tured image, and the output similarity scores computed
between each pair:

Figure 11: Similarity Scores for an Input Slide

18-500 Design Review Report - 13 October 2023 Page 11 of 15

Figure 10: Siamese NN Architecture

18-500 Design Review Report - 13 October 2023 Page 12 of 15

6.3.2 Text Fetching and TTS

After the slide matching model identifies the slide num-
ber that the instructor is displaying on the screen, we can
index into the list that holds all of the extracted text and
graph data. The text from this list index is then posted to
the iOS app. Then, the iOS app will use a speech synthe-
sis object called AVSpeechUtterance to synthesize the text
into speech, then a speech function can be called to actually
speak it out loud. The app will also constantly be listening
for a “STOP” button press, which can immediately cut off
the text to speech.

7 TEST & VALIDATION

7.1 Tests for Accuracy of Text Extraction

We will measure the test set accuracy from the PDF
reader, using a metric called the character error rate
(CER). The CER represents the percentage of incorrect
output characters extracted, which clearly tests the accu-
racy of the text extraction, and this can be easily extracted.
We hope to achieve a 100% accuracy for text extraction.

7.2 Tests for Accuracy of Graph Descrip-
tion

Similar to the CER for the text extraction accuracy, we
will use the similarity score between the reference and can-
didate embeddings to determine the accuracy of our graph
descriptions. Our graph description templates were ref-
erenced in the use case requirements, so the outputs will
follow that pre-assigned format. We hope to achieve a 95%
accuracy for graph description.

7.3 Tests for User Experience

In order to test our system’s user experience, we will
create a test presentation. Slides will include all types of
graphs we plan to use, slides with just text, slides with im-
ages, and slides with a combination of some or all of these
elements. Then, we will have volunteers do the pre-lecture
steps, then have them use the device for each slide of the
test presentation. We will recruit at least one visually-
impaired volunteer, and have them rate each slide’s output
as “Helpful”, “Mostly Helpful”, “Somewhat Helpful”, or
“Unhelpful” on a scale from 1-4, and average these ratings
to calculate our metric. We will also recruit sighted volun-
teers to classify each slide as “Correct,” “Mostly Correct,”
“Considerable Errors,” or “Incorrect” on a scale from 1-4
and average these ratings as well. For both of these met-
rics, we will consider an average score between 1-2 to be
satisfactory.

7.4 Tests for Latency During Lecture

For the start button latency, we can directly measure
the latency between the moment the button press is regis-

tered and the time the app begins the text to speech, and
then print out the measured result. We will do the same for
the stop button, and also measure the amount of full words
that are spoken before the audio stops. As mentioned in
our requirements, we want the latency for the start button
to be under 8 seconds and the latency for the stop button
to be under 140 ms.

7.5 Tests for Latency Before Lecture

Before the lecture, when the user indicates which class
they are attending next, we can measure the time it takes
for our system to finish processing the presentation PDF.
We will measure the time from when the button press is
registered to when the ML models have finished process-
ing the slide information, and then print out the measured
result. We want this latency to be under 10 minutes.

7.6 Tests for Power

All of us have iPhones, so we will measure the amount of
battery our phone consumes during the school day and av-
erage this value. Then, we will keep our app running in the
background while using the device during a similar school
day, measure the amount of battery our phone consumes,
and check the difference in battery consumption. When we
are testing with our sighted volunteers, we will also check
how long it takes for the system battery to deplete with
constant use of the device. Our system should not have to
be recharged until 6 hours have passed since the last time
it was at full charge.

7.7 Tests for Weight

We will measure the device weight by zeroing out a scale
with a pair of glasses, attaching the device, then placing it
on the scale. The device should weigh less than 60 g, and if
it weighs more than this we will have to consider decreas-
ing the weight of the component case or choosing lighter
components.

8 PROJECT MANAGEMENT

8.1 Schedule

Our schedule is split among ourselves with very limited
dependencies — almost none of our weekly work depends
on someone else finishing their part of the project. We have
also included room for slack, as well as time for completing
the group deliverables and presentations, and enough time
to account for school breaks. See Fig. 15 for a detailed
breakdown.

8.2 Team Member Responsibilities

Jaspreet will be working mostly on hardware and hard-
ware integration, Nithya will be working mainly on the
graph description model and slide recognition models, and

18-500 Design Review Report - 13 October 2023 Page 13 of 15

Aditi will be working on Canvas scraping, the iOS app, and
setting up server communication. We will all collect data
for the ML models and work on major deliverables.

8.3 Bill of Materials and Budget

Our bill of materials is included as Table 1. Our pur-
chases include the Raspberry Pi Zero WH, the Unistorm
Raspberry Pi Camera Module, and the PiSugar 2 Power
Module. We were able to acquire an NVIDIA Jetson Orin
Nano Developer Kit from ECE Inventory, and had push
buttons in our personal supplies. We also plan on using 3D
printers in TechSpark to make our component case. Our
total cost ended up being $83.67.

8.4 Risk Mitigation Plans

A major risk for our system is the latency of the ML
models being too large. Our main mitigation technique
was separating the system into the “before lecture” and
“during lecture” stages. This allows the bulk of the latency-
limiting work (the graph and text extraction) to be done
when it is not as important to receive the information
right away. During lecture, when it is important to receive
timely outputs, we will only need to fetch the pre-extracted
data. If this mitigation technique is not enough, we plan
on pivoting to a simpler model. Another risk is the graph
extraction model not having a high enough accuracy, so
our mitigation techniques were to limit the types of graphs
we can support, as well as collecting a lot of data from
pre-existing datasets. We can also retrain the model with
more data or to pivot to a more complex model depending
on the tradeoff between latency.

Another risk is the power consumption of the device and
the iOS app. To mitigate, we can optimize the number of
operations we perform. Regarding the power consumption
of the Raspberry Pi, we can shut down any unnecessary
functionality like the USB and HDMI outputs. We can
also increase the battery capacity if deemed necessary af-
ter testing.

8.5 Ethical Considerations

The system must be electrically safe, it should not over-
heat, and as a safety measure, the electronic components
should not touch the user’s skin directly, which is why we
have encased them in a component box. The attachment
should be light and comfortable to wear, so as to maximize
user comfort. Our product should also only be used as a
learning aid, not a substitute for accessibility or navigation
tools. In order to limit complexity, our product will only
be able to recognize English text, but to increase global
accessibility, an expansion of the system can include dif-
ferent languages. For environmental concerns, our product
should be energy efficient and should not require constant
battery recharges. Finally, it should be affordable so as to
appeal to a wider population.

9 RELATED WORK

There are several products which provide similar func-
tionality to our system. We discuss these below.

1. BeMyEyes – this is a free app which connects visu-
ally impaired users with sighted users through a video
call, and the sighted user describes what the visu-
ally impaired user is looking at. Our approach has
a few advantages over this system. First, BeMyEyes
causes the user to be dependent on another person by
physically calling them to receive a description; this
is not feasible for our use case of assisting a blind
user follow along with lecture content, since having
the blind student place a call during a lecture would
be distracting for this student, other students in the
class, and the professor. Additionally, the BeMyEyes
solution provides a completely manual description as
opposed to our system, which provides an automated
description.

2. Envision Glasses – This product reads text aloud to
the user through an app, similar to ours. However,
our system has a few advantages over this product.
For one, this product is extremely expensive, costing
about $1900 for the read edition and $2500 for the
home edition, which is the version that performs au-
dio descriptions similar to our product. For reference,
the cost of our product is about $100. Secondly, our
system will perform graph description, whereas the
Envision glasses only perform scene description.

3. OrCam – this product is primarily meant to be used
as a handheld device which can be pointed at text
in a close proximity, and reads the text to the user.
It can be attached to glasses, but compared to our
system, this is a disadvantage since the way that the
user clips the device onto their glasses may not pro-
vide an optimal FOV for the camera. This system
does not perform graph description, and the product
is also quite expensive compared to our system: it
requires a subscription of about $528 yearly.

10 SUMMARY

In summary, we aim to provide assistive learning tech-
nology to visually-impaired users by devising a camera at-
tachment system which is able to read text and describe
graphs to the student in a lecture setting. Our system
will reduce the information disparity between sighted and
visually-impaired students, giving these students the tools
they need to succeed in the classroom. Challenges we an-
ticipate include gathering enough training data for all 3
models (CNN-LSTM, YOLO v-7, and Siamese) and train-
ing them so they are able to achieve the accuracies set forth
in our use-case and design requirements. We will tackle
these challenges by gathering data early as well as aug-
menting our online dataset with synthetic data (generated
by us), and using established methods (such as training

18-500 Design Review Report - 13 October 2023 Page 14 of 15

Table 1: Bill of Materials

Description Model # Manufacturer Quantity Cost @ Total
Raspberry Pi Zero WH Zero WH Raspberry Pi 1 $23.29 $23.29
Unistorm Camera 8541707548 Unistorm 1 $16.89 $16.89
PiSugar 2 Power Module PiSugar2V2.1 PiSugar 1 $35.99 $35.99
3D Printed Component Case N/A TechSpark 1 $7.50 $7.50
NVIDIA Jetson Orin Nano 945-137766-000-000 NVIDIA 1 $0 $0
Push Buttons N/A Reland Sun 2 $0 $0

$83.67

longer, tweaking learning rate and architecture, etc.) to
reduce the bias and variance of our models.

Glossary of Acronyms

• CER - Character Error Rate

• JSON - JavaScript Object Notation

• LSTM - Long Short-Term Memory Network

• ML - Machine Learning

• RPi - Raspberry Pi

• TTS - Text-to-Speech

• YOLO-v7 - You Only Look Once Network (for Object
Detection)

References

[1] E. Huber, K. Chang, I. Alvarez, A. Hundle, H. Bridge,
and I. Fine, “Early blindness shapes cortical rep-
resentations of auditory frequency within auditory
cortex,” Journal of Neuroscience, vol. 39, no. 26,
pp. 5143–5152, Jun. 2019.

[2] “Be my eyes.” (Oct. 2023), [Online]. Available:
https : / / www . bemyeyes . com/ (visited on
10/13/2023).

[3] “Orcam.” (Oct. 2023), [Online]. Available: https:

//www.orcam.com/en-us/orcam-learn (visited on
10/13/2023).

[4] “Envision.” (Oct. 2023), [Online]. Available: https:
/ / www . letsenvision . com / glasses (visited on
10/13/2023).

[5] B. Kosinski and J. Cummings, The Scientific Method:
An Introduction Using Reaction Time. W.H. Free-
man and Company, 1999.

[6] “Schools and staffing survey.” (2008), [Online]. Avail-
able: https : / / nces . ed . gov / surveys / sass /

tables / sass0708 _ 035 _ s1s . asp (visited on
10/13/2023).

[7] “Phone battery statistics across major us cities.”
(Nov. 11, 2015), [Online]. Available: https : / /

veloxity.us/phone- battery- statistics/ (vis-
ited on 10/13/2023).

[8] Lukasz Bola, K. Siuda-Krzywicka, M. Paplińska, E.
Sumera, P. Hańczur, and M. Szwed, “Braille in the
sighted: Teaching tactile reading to sighted adults,”
PLOS One, vol. 11, no. 5, May 2016.

[9] “Voice qualities.” (), [Online]. Available: https://
archive.ncvs.org/ncvs/tutorials/voiceprod/

tutorial/quality.html (visited on 10/13/2023).

[10] “Glasses measurements: How to find your frame
size.” (Jul. 27, 2022), [Online]. Available: https :

/ / www . warbyparker . com / learn / eyeglasses -

measurements (visited on 10/13/2023).

[11] S. Knight. “Android vs ios: How do smartphone plat-
forms compare on accessibility?” (Oct. 2021), [On-
line]. Available: https://info.webusability.co.
uk/blog/android-vs-ios-how-do-smartphone-

platforms-compare-on-accessibility (visited on
10/13/2023).

[12] L. Whitney. “Ios vs android market share: Do more
people have iphones or android phones?” (Jun. 2023),
[Online]. Available: https://www.techrepublic.

com/article/ios- vs- android- market- share/

(visited on 10/13/2023).

[13] R. Kundu. “Yolo: Algorithm for object detection ex-
plained [+examples].” (Jan. 2023), [Online]. Avail-
able: https : / / www . v7labs . com / blog / yolo -

object-detection (visited on 10/13/2023).

[14] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese
neural networks for one-shot image recognition,”
2015. [Online]. Available: https : / / api .

semanticscholar.org/CorpusID:13874643.

[15] M. Thoma. “Pdf library benchmarks.” (Aug. 2023),
[Online]. Available: https : / / github . com / py -

pdf/benchmarks/blob/main/README.md (visited
on 10/13/2023).

[16] J. Solawetz. “What is yolov7? a complete guide.”
(Jul. 17, 2022), [Online]. Available: https://blog.
roboflow . com / yolov7 - breakdown/ (visited on
10/13/2023).

18-500 Design Review Report - 13 October 2023 Page 15 of 15

[17] A. K. Poddar and R. Rani, “Hybrid architecture
using cnn and lstm for image captioning in hindi
language,” Procedia Computer Science, vol. 218,
pp. 686–696, Jan. 2023.

[18] S. Dey, A. Dutta, J. I. Toledo, S. K. Ghosh, J. Lladós,
and U. Pal, “Signet: Convolutional siamese network
for writer independent offline signature verification,”
Sep. 2017. [Online]. Available: https://arxiv.org/
pdf/1707.02131.pdf.

18-500 Design Review Report - 13 October 2023 Page 16 of 15

11 APPENDIX

Figure 12: Block Diagram of System Architecture

18-500 Design Review Report - 13 October 2023 Page 17 of 15

Figure 13: Visualization of Before-Lecture Software Pipeline

Figure 14: Visualization of During-Lecture Software Pipeline

18-500 Design Review Report - 13 October 2023 Page 18 of 15

Figure 15: Schedule

