
18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 1

Abstract— This project is intended to serve as an educational

tool for children in middle school to learn basic circuit

functionality through drawing. The project will be implemented

by using a computer vision algorithm to identify components on a

hand drawn circuit, feed the identified circuit into a circuit

simulator, and display the analyzed circuit, all of which will be

done through a mobile application. This system hopes to serve as

a fun and safe way for children to learn about circuits through the

appeal of drawing and without the risks of electrical components.

Index Terms— Circuits, DC Analysis, Computer Vision,

Simulation, iOS Application

I. INTRODUCTION

LECTRICAL circuits are expensive and potentially dangerous

to experiment with. Not all students have the resources

available to them to learn about circuits at a young age. To

purchase the bare minimum components to create a simple

circuit (breadboard, wires, resistors, power supply) people must

spend at least forty dollars, which is a luxury that everyone

cannot afford. Furthermore, improper education can lead to

dangerous situations. If a student unknowingly causes a short

circuit or improperly uses a component like a multimeter, they

can harm themselves and their equipment.

When learning about circuits, students typically first learn

about the different symbols designating various electronic

components. Learning to draw circuits and using the proper

symbols are imperative steps in the process of mastering

circuits. Young students are also often fond of drawing and

recent studies show that drawing serves as one of the most

effective ways to retain knowledge[3].

Our application hopes to solve the issues of a lack of

accessibility and safety when learning about circuits and

capitalize upon young students’ fondness of drawing. We are

creating an application in which users can take a picture of a

schematic they draw, upload the picture, and then receive a

simulated version of the circuit they drew with voltages and

currents labeled.

This application is primarily targeted towards middle school

students. Students at this age are old enough to learn the basics

of circuits, have access to mobile applications, and still indulge

in drawing through school. Currently, there are no technologies

that allow a user to upload a drawn circuit and have it analyzed.

In addition, all circuit simulators online are accessed through

web applications, thus less accessible to our primary use group.

Furthermore, there are no applications that accomplish the

intended goals of this project.

II. USE-CASE REQUIREMENTS

The use case requirements for our application encompass

many factors of our application, with a focus on accuracy and

usability. The use case requirements are as follows:

1. The computer vision algorithm must have an

individual component classification accuracy of 90%

To ensure a good user experience for our application, being

able to properly identify components is required. Users should

not have to constantly take pictures of their circuits to get

components to be identified properly.

2. The computer vision algorithm must have a circuit

classification accuracy of 90%

We want to not only ensure each component is detected with

an accuracy of 90%; we also want to ensure that all circuits are

classified with 90% accuracy. This means that for the circuit

options shown to the client, 90% of the time the user’s drawn

circuit should be one of the shown options. If the user does not

see their circuit, they need to redraw their circuit.

3. The circuit simulator must simulate circuits with

100% accuracy.

Our circuit simulator must have perfect accuracy, otherwise

the application cannot be used as an educational tool. Given an

input circuit, our simulator must output the circuit with the

correct voltages/currents at each node/component.

4. The application's user interface must receive an

average rating of 80%

We will conduct user testing of our application on the target

group of middle school students and provide them with a survey

to record their feedback after testing. The survey questions must

all have an average score of at least 8/10.

5. The application must be free to the user.

To ensure that most children can use our application, we need

to make it free. This app was created so that children can learn

about circuits without having to spend money on components,

therefore we must make it free.

Circuit Simulpaper

Authors: Jaden D’Abreo, Stephen Dai, and Devan Grover

Department of Electrical and Computer Engineering, Carnegie Mellon University

E

18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 2

Fig. 1. System Architecture Block Diagram

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our project is split up into three main parts: the computer

vision system, the circuit simulator, and the front-end

application. A block diagram of our application’s high level

functionality is shown in Fig. 1 above.

Once the user has uploaded their circuit image, the image will

get sent to our computer vision algorithm for processing. The

computer vision algorithm will first perform preprocessing on

the input image to remove noise and make the nodes at the ends

of each component more pronounced. Once the image has been

preprocessed, a circle detection algorithm is used to detect the

nodes. The algorithm will then detect all the components

between nodes and create subimages of each component in the

circuit.

Once the components are detected, ORB will be run on each

subimage. ORB is an algorithm that generates keypoints and

descriptors based on the input image. Keypoints are parts of the

image that ORB determines are distinct. The descriptors are

extracted from the keypoints and each one is a binary string of

encoded information about each keypoint. These descriptors

can then be used to match features with different images.

Instead of using ORB’s rBRIEF descriptors, we use BRIEF

descriptors, which will be discussed later. After running ORB,

we will use brute force matching to match the descriptors with

precalculated descriptors from our reference dataset stored

locally within the application.

At this point, we have scores associating the component

subimage with a type of component, like resistor or voltage

source. We will take the top three most matching component

types for each sub image and generate every combination of

circuits that can be made. For each of these circuits, we generate

another score that is a summation of each individual component

score. The algorithm will output each circuit as a netlist-like

structure for our frontend and circuit simulator to use.

18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 3

The five highest scoring circuits will be shown to the user on

the application’s user interface. The user can then select which

of the shown circuits were the one that they drew. After

selecting the circuit, they will enter values for each component

(resistance, voltage, etc.). The circuit will then be sent to our

circuit simulator, which will use modified nodal analysis to

simulate the circuit. Once the circuit has been simulated, it will

be sent to the front end where the circuit will be rendered. The

user will then be able to see the simulated values for the circuit

– this includes the voltage at every node and the current going

through every component.

IV. DESIGN REQUIREMENTS

A high-level description of the design requirements can be seen

below in Table 1:

TABLE I. DESIGN REQUIREMENTS

Description Requirement

Computer Vision Maximum Latency 5 seconds

Maximum Application Size 100 Megabytes

Maximum Number of Components 8

Supported Components
Voltage/Current Sources,

Resistors, Bulbs, Switches

We want to keep the application size low so that users do not

have to uninstall or delete existing items from their devices to

install our application. By looking at the size of other

applications with similar functionality like “Tiny Scanner”, we

decided that our application would have a maximum size of 100

MB. Our app ended up being 32 MB, which is well under this

requirement.

We also have restrictions on the components to maintain the

effectiveness of our computer vision algorithm. We currently

have a limit of eight components maximum per drawn circuit to

ensure there is adequate spacing between each component and

to ensure all components can fit on an image while maintaining

the size requirements. The components must also be drawn

horizontally and vertically at near-right angles so that we can

easily detect components between nodes. We also planned to

only perform steady-state DC analysis on the following

components: voltage sources, current sources, resistors, bulbs,

switches, and LEDs. Unfortunately, we were unable to

implement diodes in the circuit simulator, which led to us

dropping support for LEDs.

We also have a design requirement that the computer vision

code should take a maximum of five seconds to run. This means

that when the user submits their image of their drawing, they

should see the circuit options within eight seconds of their

submission. According to a study by Google, the probability of

abandoning a mobile application’s page loading increases by

90% as the page load time goes from one to five seconds[11].

The best practice according to Google is three to five seconds.

V. DESIGN TRADE STUDIES

A. Offline Application

When running our application, we decided to implement it

with no need for internet connection. Due to a large portion of

our target audience not having access to the devices with an

internet connection[4] we decided that keeping the app offline

will strengthen the argument for the accessibility use case and

extend to a larger audience.

This means that we will be storing everything locally through

the user’s device. All that needs to be stored is reference data

for dataset components. As one of the main benefits of having

an online application is having access to large amounts of

storage, we expect that our application will not exceed more

than 100 MB. Most offline apps are anywhere between 20 to

100 MB in size, and ones that perform image parsing tend more

towards the higher end of 100 MB. For example, the offline

mobile application “Tiny Scanner”, which generates PDFs

(Portable Document Format) from pictures, has an app size of

92.5 MB, which does not include document and data storage.

Because this application generates and stores PDFs, it takes up

lots of documents and data storage. For our application, we will

not store images of previously simulated circuits because a user

can always just reupload an image of the circuit from their

camera roll. Thus, we consider the 92.5 MB as an appropriate

benchmark for our application storage. By constraining the

amount of storage our application will use, we believe keeping

the application offline will reinforce the goals of our project

while also functioning the same as an online application.

B. Mobile Application

For how we want to display our application, we decided to

implement a mobile application. We needed to decide between

either a mobile application or a web application and after much

thought we decided that a mobile application not only aligns

with our use case of accessibility more. If the project progressed

with a web application the user would have a much harder time

uploading their drawing and uploading their picture rather than

just doing it on their phone. In addition, this application is

intended to be offline due to accessibility, thus a web

application would not be possible to implement. Recent

statistics show that around 71% of 12-year-old have phones and

by age 14 roughly 91% have phones[5]. Furthermore, a different

study stated that 95% of U.S. teens have access to a smartphone

at home, while only 88% have access to a computer [1]. This

comes out to around 2 million people of our target audience. As

phones are much more of a necessity than laptops around the

ages of 12-15, we felt like tailoring the application to be used

on a phone would align more with our goal of making this

project an accessible approach to help educate all those that are

interested in circuits. Therefore, we decided that these reasons

were enough to pursue the mobile application.

C. Application Stack

Swift is the most popular framework used for iOS

applications today - almost all applications nowadays use it.

Swift is a more modern language and easier to learn when

18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 4

compared to Objective-C, which is why we are using it for our

frontend. Objective C has traditionally been used to develop

iOS applications because it has existed for nearly forty years.

Swift, which is much newer, is also 2.6 times faster than

Objective-C[8] and has memory and type safety built in. We will

have to use Objective-C++ because OpenCV is only available

as C++ library, and Objective-C++ is compatible with both

Swift and C++. To allow the Swift application to interact with

the C++ code, we will need to create bridging files in Objective-

C to bridge the Swift and C++ codebases.

D. Computer Vision Architecture

We opted to use a more traditional computer vision

architecture that does not utilize a neural network. Given that

we decided on creating a mobile application that does not

require the internet, we cannot feasibly utilize a neural network

as such. Loading and using a neural network locally in-app is

too computationally and storage intensive for a mobile phone,

especially for older iPhones. Ultimately what we considered is

how much of a difference there is in terms of accuracy when

using and not using a neural network. Some research that has

been previously conducted has achieved a 95% accuracy in

classifying electrical components using a CNN (Convolutional

Neural Network)[9], and additional research has been conducted

to achieve a 90% accuracy using KNN (K Nearest Neighbors)

without a neural network [10]. Given we are also not using a

neural network, we use this 90% as a benchmark for our design

as well. We acknowledge that using a neural network would

greatly increase the accuracy of classifying individual

components, but this would come at the expense of integrating

our mobile application with a backend server that can support

the neural network. Because the image preprocessing and usage

of ORB would stay the same, we have left the integration of a

neural network for work that can be done post-MVP to further

improve our accuracy goals if desired.

E. Circuit Segmentation

In order to be able to detect a circuit, we need to know what

individual components make up the circuit. To know what the

individual components are, we need to generate separate

subimages of each component in the circuit and feed those

subimages into a classification workflow. The most intuitive

way to separate components in a circuit is by looking at pairs of

adjacent nodes in a circuit, because a component is always

between them. Because we also use nodes in netlists and to

perform nodal analysis, first detecting the nodes in a circuit is

the most intuitive first step in our computer vision subsystem.

We considered two solutions to detecting nodes: Hough line

transform and Hough circle transform. Hough line transform

would be used to detect the line parts of components that

represent their ends, and we could denote the existence and

location of a node as the point where two lines intersect. For

Hough circle transform, we would require that every node be

drawn as a circle, and the transform will just detect every circle

in the circuit as a node. After testing both implementation ideas,

we ultimately decided on using Hough circle transform and

requiring the user to draw nodes as circles.

From testing with Hough line transform there were two

fundamental problems. The first problem was that the line

transform does not perform well with hand drawn lines. Hand

drawn lines are usually never straight, and the transform

consistently breaks down one line representing one end of a

component into multiple connected lines. The other critical

problem is that there are many lines that intersect in circuits that

do not represent nodes. For example, the “+” symbol in a

voltage source is made of two lines that intersect at 90-degree

angles, which is exactly what we expect for our nodes. Thus,

using Hough line transform is highly unreliable for node

detection.

We believe that requiring users to draw nodes as circles is

extra work for the user but has benefits that outweigh the extra

effort needed. Detecting the nodes is arguably the most

important step in the circuit detection: if one node is missed,

that means that an entire component will be missed, rather than

just one component being classified incorrectly. This means

that properly detecting the nodes is critical to achieving our

circuit detection accuracy marks. With the proper image

preprocessing, node detection is highly reliable with Hough

circle transform, which will be discussed later. Also, we believe

that being able to identify where nodes are in a circuit is

beneficial to the learning of our users. Being able to recognize

points of shared voltages and know where current diverges is

incredibly useful in doing elementary circuit analysis. Thus, we

chose to use Hough circle transform and require users to draw

filled-in circles for their nodes for increased circuit detection

accuracy and for their own learning’s sake.

F. Feature Detection Algorithm

We considered four different combinations of feature

detection algorithms, where each combination consists of

keypoint and descriptor generation. Keypoints refer to the

points/regions in the image that represent distinct features, and

descriptors are the numerical vector representation of the image

information surrounding each keypoint. Descriptors are what

are used when performing matching between images to

compare the similarities between features of the images.

The combinations we tested were as follows:

1. SIFT keypoint and descriptor generation,

2. ORB keypoint and descriptor generation,

3. ORB keypoint and BRIEF descriptor generation

4. FAST keypoint and BRIEF descriptor generation.

One thing to note about the second combination is that the

ORB descriptors are called rBRIEF descriptors, where the

“r” stands for rotation invariance. This means that if you had

two images, but one was rotated, the extracted rBRIEF

descriptors would match well even though one image had

rotated features.

Originally, we believed that we wanted rotation invariance

because we wanted horizontal and vertically aligned versions

of the same type of component to match well. But we failed

to consider that for certain components, namely voltage and

current sources, we don’t want different orientations of the

component to match well. As an example, say that we have a

18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 5

voltage source where the negative terminal is on the bottom,

and another voltage source where the negative terminal is on

the top. Because of the rotation invariance, although one

component is the 180-degree rotation of the other, rBRIEF

descriptors generated for each voltage source would match

well.

This is problematic because a voltage source matching

with one in the opposite direction would result in a different

circuit being produced. In Fig. 2. we see the results of testing

the combinations of feature detection. Each combination was

tested with the same testing set of component images, and

against the same dataset of component images. As expected,

using ORB had the highest number of correctly identified

components, but only when using BRIEF and not rBRIEF

descriptors did we have the highest number of correctly

identified orientations.

In this test, the correct component classification means

that just the type of the component was identified properly (if

a voltage source was upwards facing, if it was classified as a

voltage source did it count as a correct component

classification). From this point, when we discuss the

component classification accuracy, we consider differently

oriented (left, right, down, and upwards facing) current and

voltage sources to be classified as different types of

components, thus the component classification will consider

both component type and orientation.

Fig. 2. Difference of individual component classification accuracies

when using different feature detection algorithm pairs (keypoint and

descriptor generation)

G. Casing on Wires

One design decision we made to classify components is to

have special handling for wire components such that we did not

need to perform feature matching and store them in the dataset.

By doing this, we could save computation latency from needing

to extract features from the wires and perform matching, as well

as decrease our dataset size. Casing on wires and not other

components is possible because they are unique in the way that

they are simple and don’t have many features to begin with, as

they are just a line. How we do this is discussed in our

implementation.

H. Number of Considered Matches

Another design choice for classifying components was how

many of the feature matches should be considered when

calculating the similarity score for a component and a dataset

component. Typically, in object classification systems, only a

subset of the total matches found between features are

considered, such as the 20 best/most confident matches. Shown

in Fig. 3 is the result of testing component classification

accuracy when only considering the top N% of matches

generated. For example, an N of 20 means that the component

classification was performed where only the top 20% of

matches were considered when generating the similarity score

between the input component and a dataset component. The

testing was performed using the same feature detection and

matching algorithms, as well as having the same testing set and

dataset. The results suggest that it is best to consider all (100%)

of the matches generated.

Fig. 3. Change in component classification accuracy with different

percentages of considered matches

I. Dataset Size

The final design choice regarding component classification

was the sizing of the dataset. Because for each component

subimage we perform matching against every component in the

dataset, we expect two outcomes: 1. The larger the dataset, the

more likely it is to find a better match for a component

subimage, thus the higher classification accuracy; 2. The larger

the dataset, the longer it takes to perform matching against

every component in the dataset. Both these expectations are

supported as seen by testing results in Fig. 4 and Fig. 5. Because

of the latency and application size requirement, the size of the

dataset has an upper bound. Unfortunately, as we did not have

enough time to explore what this maximal size is, we only used

an 80 component-large dataset. We predict that before we hit

the latency requirement bound, we would reach maximum

application size as each additional dataset component equates

to only around 2ms in increased computation latency.

18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 6

Fig. 4. Change in latency to classify one component as the size of the dataset

is increased

Fig. 5. Change in individual component classification accuracy as the size

of the dataset is increased

J. Image Preprocessing

Before feeding images into our computer vision algorithms,

we want to perform preprocessing to better isolate the user’s

drawing and get rid of unintended features like shadows and

light marks on the paper. Upon receiving the user’s image, we

decided on first performing thresholding and median blurring.

Thresholding is useful because it generates a binary image,

and we can set the threshold to isolate the darker markings that

would come from concentrated amounts of pencil lead or ink

and ignore the effects of light shadows and accidental markings.

Because the first step in our circuit detection is detecting where

each node is and nodes are filled-in circles, thresholding will

best isolate these nodes. Specifically, we decided on using an

adaptive thresholding algorithm. Adaptive thresholding adjusts

thresholds accordingly depending on local contrast and

differences in illumination instead of applying one threshold for

the entire image. This is beneficial for us because we expect

user images to not always have the best lighting and have cast

shadows on some parts of the image.

After thresholding, we decided on using median blurring

over other blurring algorithms such as Gaussian blurring and

bilateral blurring. Median blurring is most effective after

thresholding for our use because it is the best in removing salt-

and-pepper noise and details. After we perform thresholding, it

is likely not only the filled-in nodes are left, but also some

darker pen/pencil spots for the components as well. Because we

want to isolate the nodes, median blurring sees the thin parts of

the drawing that correspond to the components as noise (the

pepper) and removes them. Additionally, sometimes

thresholding will create white spots in the filled-in circles

because the darkness of the circle is not uniform. Median

blurring will fill in these white spots (the salt) because it sees it

as noise, creating completely filled in circles. This way there is

no possibility of a circular white spot in the node to also get

detected as a circle/node.

Gaussian blurring and bilateral blurring are similar, and both

use Gaussian distributions to remove noise, and bilateral

blurring uses two separate distributions instead of one. From

our testing we found that these two blurring techniques did not

perform as expected for our desired image preprocessing. For

component subimages, we use Canny edge detection instead of

thresholding before feature detection because while both

generate binary images, thresholding will more likely eliminate

entire parts of component drawings if the pen/pencil lead is too

thin and light. Additionally, we care more about the outline of

the component as features, so edge detection is the most

appropriate for detecting individual components. We found that

gaussian and bilateral blurring did not perform well in keeping

the edges of the components intact, resulting in the canny edge

detection not functioning at all.

K. Circuit Options

We heavily considered whether we wanted the options of

circuits we display to the user to only be valid circuits even if

they drew an invalid circuit, or if we should display options of

circuits that best match the user’s drawing, regardless of

whether the options are invalid or valid. For reference, an

invalid circuit can be one that is not a closed loop, doesn’t have

any sources of power (no voltage or current sources), or doesn’t

have any load. We ultimately decided that we should display

circuit options that best match the user’s drawing, regardless of

if the options are invalid or valid.

If we were to only display valid circuits, the user would not

be able to know if they don’t see their drawn circuit in the

options because they drew an invalid circuit, or because the

computer vision system didn’t work properly. Consider the

scenario where the user draws a valid circuit, but the computer

vision system does not function properly and gives them

options that do not match the user’s circuit. The user is unable

to tell if their circuit isn’t an option because the computer vision

didn’t work, or if because the circuit they drew is invalid. As

our application is designed to be a learning tool, we need to

make it clear to the user when their circuit is invalid or valid.

By first detecting the user’s circuit, regardless of its validity,

when the user chooses their circuit, we can ensure that the

application and the user are on the same page, and then we can

inform the user that their drawn circuit is invalid or not.

L. Value Detection

Rather than having users write down the values for each

component next to the component, we elected to have users

manually input the values onto the application itself. Although

there are many libraries available for text detection, it will be

hard for the computer vision algorithm to figure out which

value corresponds to which component. This can lead to

dissatisfied users because they may have to constantly redraw

18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 7

and take pictures of their circuit until it gets properly identified.

As a further extension to our project, we could implement the

ability for users to label components with their respective

values in the drawing.

Fig. 6. Node Detection Pipeline

M. Circuit Simulator Algorithm

We initially planned to create a graph data structure that

would consist of different components. Each component would

have attributes that would be used when running the simulation.

After doing research, we realized that this was not the best way

to go about simulating circuits. Most circuit simulators like

SPICE use modified nodal analysis because it is straightforward

and easy to implement on computers. It also gives a system of

equations which could potentially be displayed to the user to

show them how the circuit was solved.

N. Circuit Simulator Diode Implementation

Modified Nodal Analysis works very well for linear

components like current sources, voltage sources and resistors,

but it does not inherently work well for nonlinear components

like diodes. To implement nonlinear components like diodes,

you must make an initial guess for the current through the diode.

After making this guess, you use the derivative of the I-V curve

for the diode to determine the diode’s resistance at this voltage

and current. This calculated resistance and guessed current will

be used in the modified nodal analysis process. Once the

resulting current and node voltages are determined from

modified nodal analysis, the resulting current will be incorrect.

You must then adjust the initial guess and repeat the process

until the resulting current makes sense given the initial guess

for the diode’s current. Unfortunately, we were unable to

implement this feature.

VI. SYSTEM IMPLEMENTATION

We can separate our implementation into three separate

subsystems: the computer vision system, the circuit simulator

system, and the mobile application. We can further separate the

computer vision system into three separate workflows: parsing

the user image, performing individual component detection,

and generating circuit data structures.

A. User Image Parsing

Before running feature detection algorithms on individual

images of components, we must generate the subimages of the

individual components from the user’s original image. This

process is shown in Fig. 6. Once the user uploads the image of

their drawing, we load it as grayscale to perform adaptive

thresholding. Adaptive thresholding will create a binary image

from the grayscale image. After thresholding, our binary image

is entirely white except for the drawing itself, which is black.

Next, we apply a median blur to the binary image. Median

blurring is most effective in removing noise from images. The

first reason why we do this is because the blurring will remove

lighter pen/pencil markers from the image that corresponds to

the components themselves. This will allow us to isolate only

the filled-in nodes that the user has drawn. Also, the blurring

makes the nodes themselves more filled-in and distinct. Likely

18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 8

from the thresholding the less-filled in parts of the node will be

removed, leaving a black circle with spots of white. The

blurring will fill in this circle, which will remove all the

possibly smaller, white circles that could be accidentally

identified with Hough Circle Transform.

Fig. 7. Canny Edge Detection & Component Classification

Now that we have an image with just black circles

representing nodes, we use Hough Circle Transform to identify

the location of each circle with x and y pixel coordinates. We

know that a component must be between each pair of

neighboring nodes, thus we have the coordinates that represent

the far ends of the component, and we can use them to extract

subimages of each component. The subimages are taken from

the original grayscale image.

Originally in our interim demonstration, the bounds of the

subimages were hard coded to be certain dimensions. Our final

idea for generating the subimages is to first consider a straight

line between the given pair of nodes, and then iterate

left/downwards and right/upwards until we no longer detect any

black pixels. This allowed for adaptively and consistently

creating the subimages such that they always included the

entirety of the component.

B. Individual Component Classification

Before doing feature detection, we first perform median

blurring, denoising, adaptive thresholding, and median blurring

again. This is a combination of preprocessing that we have

tested that best works for these individual component

subimages. We then perform Canny edge detection, which will

isolate the edges of the drawing and black out everything else,

as seen in Fig. 7. For feature detection we use the ORB to

generate keypoints, and then generate BRIEF descriptors from

those keypoints. The descriptors are binary feature vectors that

represent all the important features in the subimage.

Using these BRIEF descriptors, we can perform brute force

matching with BRIEF descriptors we have stored in the

application’s data storage. These stored descriptors have

associated component names with them, such as “resistor”, or

“voltage source”. We perform the brute-force matching with

Hamming distance to quantify the accuracy of each match of

features; the lower the distance, the better the match. Taking an

average of the distances across all matches, we now have a

score we can use to quantify the similarity between a subimage

and a dataset image. Doing this with each subimage and each

set of BRIEF descriptors in storage, we can rank what the best

component match is for each subimage. See Fig. 7 as an

example of the Canny edge detection and classifying the best

match for subimages.

As previously mentioned, we do not perform feature

detection and matching on components that are wires. In order

to determine whether a component is a wire, we run Hough

Lines transform on the edge-detected image, and then find the

bottom/leftmost and top/rightmost coordinates of all the line

segments. If the difference between these coordinates is below

a certain threshold (the component is thin enough), then we

classify the component as a wire and skip the feature detection

and matching. The reason we use Hough Lines transform here

and not just attempting to find the lowest and highest white

pixels is because noise that may not have been already removed

would produce incorrect results.

C. Circuit Data Structure Generation

From parsing the user image and detecting individual

components, we now have identified nodes and the component

types that represent edges between each node. From this, we

want to generate a graph-like data structure so that the frontend

18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 9

of the mobile application and the circuit simulator can easily

reconstruct the circuit. This structure will be a modified netlist,

where each component is represented by three values: an (x, y)

node coordinate corresponding to the negative terminal node,

an (x, y) node coordinate corresponding to the positive terminal

node, and a string corresponding to the component type (ex:

“resistor”).

Originally a regular netlist was going to be generated at this

point, where nodes were simply identified using an index, such

as “N1” for node one, and “N2” for node two. Because a netlist

only accounts for how components are connected, a circuit with

the exact same components but rotated clockwise is represented

by the same netlist of the not rotated version. For users, it may

be confusing why the voltage source they drew is on the top of

the circuit instead of on the left. Thus, it would be better if we

could preserve the way that the user drew the circuit. By

sending the node coordinates, which provides absolute

positioning values, we can preserve the orientation that the

circuit was drawn.

Because we want to generate the five most matching circuits,

we must generate potential circuits and scores associated with

each circuit. For each individual component, we consider the

three best component types, and then generate every

combination of these components. Because our maximum

supported component limit is eight, the maximum number of

combinations we generate would be 38 = 6561 different circuits.

The score is simply a summation of the Hamming distance

scores that are already associated with each component

classification, so the lower the total score, the more confident

the component combination is:

𝑠𝑐𝑜𝑟𝑒 = ∑(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠)

D. Dataset

Our dataset is not a collection of images of individual

components, but a YML file which contains a dictionary format

of components: [component type]: [BRIEF descriptors].

Because BRIEF descriptors are representations of all the

important features in an image, we save on file storage size and

computation latency by storing the descriptors and not the

actual images of dataset components. The total file size for the

dataset is 4.3 MB, corresponding to 80 component images.

The breakdown of the dataset is as follows:
• Eight light bulbs (four horizontal, four vertical)

• 16 switches (eight horizontal, eight vertical)

• Eight resistors (four horizontal, four vertical)

• 24 current sources (six left-facing, six right-facing, six

down-facing, six up-facing)

• 24 voltage sources (six left-facing, six right-facing, six

down-facing, six up-facing)

Because all light bulbs and resistors are drawn identically

when they are horizontal or vertical, we only need eight for each

orientation. For switches, because there are four different ways

a switch can be drawn horizontally and four different ways a

switch can be drawn vertically, having 16 allows for two

different images for each way a switch can be drawn. For

current and voltage sources, because we consider each

orientation of these components as separate classifications, we

have six for each of the four possible orientations. As a

reminder, we no longer needed to have wires in our dataset

because we determine them by evaluating the width of the

component. Also, as previously mentioned in the design trade

studies, we would have liked to have a bigger dataset for higher

classification accuracy, but this relative number of each

component type would stay the same as we would increase the

dataset size.

E. Circuit Collapsing

The data structure given to the circuit simulator contains the

names of the components, their node coordinates, and their

associated values. This list of components consists of wires

which need to be removed for simulation purposes. Once the

simulator receives the data structure from the frontend, it

performs a node collapsing algorithm. It creates a dictionary

mapping from coordinate to node numbers. The algorithm will

first go through the components and set nodes connected by

wires to be considered the same node.

Once this pass has been performed, it will then go through all

the node numbers and ensure they are enumerated from 0 in a

counterclockwise formation. After this pass, a netlist will be

generated using the new nodes instead of the coordinates that

were input previously. Furthermore, this new netlist does not

contain any wires because the wire connections have been

accounted for when creating the node numbers.

F. Circuit Simulator

We used modified nodal analysis to solve and simulate

circuits[2]. The simulator takes in the above-mentioned netlist-

like structure as input and generates matrices that will be used

to solve a system of equations describing the circuit. Modified

nodal analysis tries to solve the equation:

𝐴𝑥 = 𝑧

in which A describes the connections and conductance of the

elements of the circuit, x describes the unknown values that we

are trying to solve, and z describes the current and voltage

sources. The A matrix is of size (𝑣 + 𝑛)(𝑣 + 𝑛), where v is the

number of voltage sources and n is the number of nodes. It is

constructed of four smaller matrices:

𝐴 = [
𝐺 𝐵
𝐶 𝐷

]

The G matrix details the conductance of the circuit elements,

the B and C matrices detail the connections of the voltage

sources, and the D matrix will always be a zero matrix if the

circuit only contains independent voltage sources. The

simulator will generate the required matrices and solve the

equation above for the x matrix, which contains the unknown

voltages and currents through independent voltage sources.

Once the node voltages have been determined, Ohm’s Law is

used to calculate the current going through each individual

component. Once these values are determined, they are added

18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 10

to a formatted string with all the listed values and sent to the

frontend for rendering. Although modified nodal analysis

generates a larger system of equations than other algorithms

such as traditional nodal analysis or mesh analysis, modified

nodal analysis is easier to implement algorithmically on a

computer system.

G. Mobile Application

The mobile application is written in Swift. The home screen

consists of a functionality description with a list of supported

components, two tips, one for drawing circuits and one for

taking a picture of the drawing, and an example image to help

the user upload their circuit correctly. Once the user clicks the

“Upload Circuit” button they are taken to a page where they are

given the option to either upload an image from their phone

gallery or take a picture. Once the user uploads their image the

image is displayed in the center of the screen and a next button

appears on the top right of the screen.

The next button is linked to a wrapper function in Objective

C++ that allows the computer vision system to read the image

uploaded. When the computer vision algorithms finish, five

netlists will be generated. The wrapper function converts the

five net lists returned from the computer vision into a

compatible type for Swift. Based on these netlists, we will craft

and display circuits.

For this we will utilize reference images stored in the

application’s file data for each component and connect them

with lines for proper wiring and circles for distinction of nodes.

Each circuit will be displayed on a swipe-able page. The circuits

are ordered from the first page being the highest confidence

match to the last page being the fifth highest in confidence. The

user selects one of the circuits by tapping on one of the pages

that display a circuit. The user will then be taken to a page to

input all the values of each component drawn. This includes

resistors, lightbulbs, voltage sources, and current sources.

Inputs are taken the SI units, amps, volts, and ohms.

Once all the components have inputted values, an “Analyze

Circuit” button appears above the circuit representation. Once

the user has clicked the button, the contents of the completed

circuit will be sent to the circuit simulator via another Objective

C++ wrapper, and on the final page the results from the

simulator are displayed under a tab that says, “Show Results”.

The analysis includes voltages at every node and current

through every component. At any point the user can refresh the

app and go back to the home page to start the process over.

VII. TEST, VERIFICATION AND VALIDATION

A. Testing for Individual Component Classification

Accuracy

To test the individual component classification, we compiled

a total of 181 component subimages. In order to generate these

component subimages, we used our existing subimage

generation code such that these subimages used in testing would

match the expected generated component subimages format

from full circuits. This testing set was drawn by both members

of our team and members of our test group.

The breakdown of the components in the testing set is as

follows:
• 62 current sources (13 downwards, 18 leftwards, 18

rightwards, 13 upwards)

• 12 light bulbs

• 13 resistors

• 40 switches

• 46 voltage sources (9 downwards, 13 leftwards, 15

rightwards, 11 upwards)

• 6 wires

There are more components in the testing set for those that

had a harder time being classified properly (switches, current

sources) in development. Notably light bulbs, resistors, and

wires had extremely high correct classification rates. The result

from testing was that 166 of the 181 test subimages (91.7%)

were correctly classified, which meets our individual

component classification accuracy use case requirement. A

classification was deemed correct if the best of the three

component matches, we output was the correct component. To

reiterate, this accuracy value considers current sources and

voltage sources of different orientations as their own, unique

components. The raw score for the number of components that

were properly identified (not considering orientation) was 176

of the 181 test subimages (97.2%).

B. Testing for Full Circuit Classification Accuracy

To test the full circuit classification, we compiled a total of

52 images of circuits drawn by both our test group and members

of our team. The circuits were made up of a range of four to

seven total components. Image capturing of the drawings were

done in multiple different settings (bedroom, living room,

dining room, classroom, open school environment) in order to

capture varying appropriate and reasonable lighting settings.

Notably, all the tested settings provided the same type of

effect on the captured image, which was having a slight shadow

from the phone used to take the images. Of the 52 images, 43

were classified correctly (82.7%). A classification was deemed

correct if within three different captures of the circuit image

(without modifying the drawing itself), one of the five

displayed circuit options was correct. We determined that this

was a fair evaluation of correct classification because of how

bad photos captured affected circuit classification (poor

lighting, drawing out of focus, etc.). If the circuit could be

correctly classified without the drawing itself being changed, it

felt fair that the classification should count as correct.

One limitation of our testing was factoring bad drawing

skills, which is hard to quantify. From our testing we felt that

we had representation from a reasonable range of drawing

skills, but our live demonstration proved otherwise. Another

interesting result is that we had a higher classification accuracy

at the time of our final presentation (~85%). At the time this

was a reasonable result because it was just higher than the

individual component classification accuracy (~83%), which

made sense because all the incorrect circuits came from

incorrectly identified components. Because we display five

different circuit options, we expect that the circuit classification

18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 11

accuracy is slightly higher than the individual component

accuracy.

As we did more testing from 28 to 52 images, we got some

misidentified circuits because of failure to recognize the correct

number and location of nodes. This is why our circuit

classification accuracy went down from our final presentation,

and why it is no longer closely related to the individual

component classification accuracy.

C. Circuit Simulator Testing

The circuit simulator was tested using a program that

randomly generated netlists with a maximum of eight

components. The function would only create valid netlists with

components consisting of current sources, voltage sources,

switches, resistors, and lightbulbs. After creating the netlist, we

would simulate the circuit on the circuit simulator using our

own simulator. The results of the simulation from our simulator

would then be compared to the results from running a

simulation of the circuit in Altium Designer.

Fifty circuits of varying structures, sizes, and components

were all tested using this pipeline, and all fifty were simulated

correctly. This means that given a netlist, our simulator returns

the correct voltage at every node and current through each

component 100% of the time, meeting our use case requirement

of perfect circuit simulator accuracy.

E. Mobile Application Testing

To test the mobile application, we gave a test group of 7

individuals, ages 12 to 14, a usability survey as well as a series

of tasks to test the full pipeline of the system. The tasks included

going back and forth between pages in the application, drawing

and uploading an image of a circuit, inputting values for

components, and analyzing the results from the simulator.

After completing all these tasks, the users were asked these

questions:
• “How easy was it to upload your circuits?”

• “How useful were the tips on the home screen when

drawing your circuit?”

• “How clear were the schematics of all the circuits

displayed?”

• “Were the headers of the page useful when asked to do

complete some task?”

• “Do you think adding more tips and headers would

make the app clearer?”

• “Was it clear how to input values?”

After rounding the average score for each question, the

average score of the survey was 78.5%. The main issues with

the UI came from the inputting values page. The question “Was

it clear how to input values” got the lowest average score of a

6/10. Due to Swift's code structure, there were too many issues

when trying to display values next to the components that the

user input values for. Instead, we opted for adding tags to the

end of component names, ordered from top to bottom and left

to right if there were repeated components. For example, if there

were two resistors in parallel the leftmost would be “resistor_0”

and the rightmost would be “resistor_1.” Similarly, if there two

resistors on top of one another the topmost would be

“resistor_0” and the bottommost would be “resistor_1.”

However, doing this caused confusion amongst our test group.

When there were many repeated components and a larger

circuit, most users lost track of which component they inputted

a value for. When surveying, a lot of clarification was asked for

when inputting values, however once explained, the majority of

the individuals understood the relationship between the tag and

the components. All other survey questions had an average

score of 7 or above and the users did not report any other

hardships when using the application. However, we did proceed

to add an example image on the homepage as more than half of

the individuals wanted additional tips on drawing circuits.

F. Complete Integration Testing

When testing the full pipeline, we first tested the image

uploading functionality. A picture from the phone application

would be uploaded straight from the in-app camera feature or

from the user’s photo library, and this picture would need to be

read into data by the computer vision system. After fully

integrating this was functioning 100% of the time. We were

able to get this success rate by reading file paths from the Swift

codebase and feeding it as a parameter to the computer vision

system, which then created a dedicated image data structure.

The second test was regarding netlist parsing to create the

circuit UI. This was tested by manually checking the display on

the phone application and cross-referencing it with the drawn

picture and the netlists returned. With a circuit that met our

requirements of a maximum of eight components, the UI was

able to display the five circuits returned from the computer

vision system 100% of the time.

Lastly, we tested the net list received by the circuit simulator

net list expected from the values inputted by the user. Because

the expected accuracy for the circuit simulator was 100%, this

portion of testing was crucial for the entire system. After cross-

referencing the output of the circuit simulator with the user’s

input, we were able to achieve 100% accuracy as well.

G. Application Size and Latency

The application had a final size of 32 MB, which we were

able to verify by looking at the application’s storage

specifications in the settings of an iPhone. The computer vision

latency was ~3.2 seconds. As a reminder, this is the time it takes

from when the user submits their image of their drawn circuit

to when the five circuit options are displayed on their screen.

This latency was measured by logging timestamps when the

circuit classification function exposed to the frontend of the

application was called to when the function returned. This was

done during the circuit classification accuracy tests, which

spanned 52 different circuit images. As mentioned previously,

we would have liked to increase our dataset to use more of the

remaining 68 MB we allowed the application to have, as well

as use the 1.8 seconds remaining of latency to improve the

classification accuracies. Notable to mention is that the longest

task to perform was the adaptive thresholding, which is a

necessary algorithm to use to best detect the circuit nodes. For

future improvements, we would definitely want to explore

increasing the dataset size as each addition to the dataset is

approximately equal to two milliseconds of added latency.

18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 12

VIII. PROJECT MANAGEMENT

A. Schedule

Fig. 8 is the Gantt Chart with the schedule of work as well as

each team member's weekly tasks.

B. Team Member Responsibilities

Each member has taken on one of the main three subsystems

of the project.

• Stephen Dai: Computer Vision

• Devan Grover: Circuit Simulator

• Jaden D’Abreo: iPhone Application

In addition to the ownership of their respective subsystems,

Jaden and Devan created the bridging files and integration that

allowed the computer vision code and circuit simulator to work

seamlessly with the application. Each member was also in

charge of the testing for each of their respective subsystems.

C. Bill of Materials and Budget

All necessary materials will be items the user must have

themselves. These materials consist of an iPhone or iPad, a

writing utensil, and paper.

D. Risk Management

We initially met issues when dealing with components that

act differently based on their orientation. We initially wanted to

use ORB’s rBRIEF descriptors because they are rotationally

invariant – this meant that our algorithm would not have issues

detecting components if they were in different orientations. We

realized however, that by doing so we were unable to detect the

direction of voltage and current sources. As a result, we had to

use BRIEF descriptors – even though this meant having to take

images in different directions for our dataset, we were able to

achieve a higher accuracy for voltage sources and current

sources.

Furthermore, we initially had issues being behind schedule

due to the infrastructure change of our project from a web

application to an iOS application. Initially, we developed our

code in Python and created an initial version of a web app. We

realized that an application would be better because it would be

more accessible to users and easier to use. As a result, we had

to change our codebase from Python to Swift, Objective-C++,

and C++. To mitigate the risk from this switch, we all did work

over Fall and Thanksgiving breaks to catch up.

There were lots of integration issues that we encountered

when trying to build the C++ code for iOS. Since we started this

step of integration early, we were able to spend lots of time on

this issue and get it fixed before we started our final integration

towards the end of our project.

Due to there being too many issues when displaying the input

and final values next to the correct component, we decided to

modify the UI of the application. Instead of displaying the

values we opted to add tags at the end of components to refer to

components in the order top to bottom left to right. Similarly,

we display final values in a string at the bottom in the bottom

of the page with values at each node and current through each

component, matching the tags on the input value page. While

this negatively affected the usability of the application, it kept

the application functional.

IX. ETHICAL ISSUES

When designing our product, we concluded that there were

three main ethical concerns that come with our system: public

health, public safety, and public welfare. As our system is a

phone application, its use would lead to an increase in screen

time for our primary user group, a public health concern. One

common problem with extensive phone usage is digital eye

strain, where long term damage to the eyes can be caused from

prolonged phone usage. This is especially concerning for kids

whose eyes are still developing and are more prone to long term

damage. Our application is designed to not need extensive use

because the users do not draw their circuits in the app

themselves. Only until the user has finished drawing their

circuit on paper do they then start to interact with our

application. In addition to this, the runtime for the total pipeline

of the application should take no longer than 2 minutes, and

around half this time would the user be interacting with the

phone application.

We require access to the camera and photos for the user to

either take or upload a photo of their circuit drawing. This is a

potential security and privacy risk for the user as they entrust us

with their photos, a public safety concern. Privacy and security

have become a significant aspect of social and global concern.

Most relevant to our application is how we handle the user’s

photo. We need to ensure to the user that the image is stored

securely and the information we gather about the image is

solely related to generating circuit information and nothing else.

Our project design targets this area well in two ways. The first

is that our application operates completely offline and only uses

local storage. In order for there to be a security breach, the

user’s phone must actually be hacked, which means they would

already have access to the user’s photos. The second is

regarding how we would store photos. As we wanted to keep

the application lightweight, we do not store any images that the

user uploads. The phone application stores the file path when

the user uploads an image, and once they are done with it, either

analyzing it or replacing it, that image gets wiped from local

storage. By keeping the application offline and lightweight, we

mitigate all potential privacy concerns.

Lastly, a misapplication of our project is students using it to

do their homework for them, a public welfare concern. Cheating

seriously affects public welfare, especially for engineers, as

cheating means that students do not properly learn material and

fundamentals that they will need to apply in the real world. The

classic example we hear is if you would use a bridge built by an

engineer that cheated in school. An important design choice that

we made to combat this is that when we display the calculated

current and voltage values, we only display what they are, and

not any of the work that shows the calculations done to get those

values. Because students almost always need to show work for

them to get credit on their assignments, they will need to

calculate the values themselves and then they can check their

answers, which is fine because they did the work anyways.

18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 13

X. RELATED WORK

There are numerous online circuit simulators such as

LTSpice. But all these simulators require building the circuit in

the application itself and are not free of cost to users. Regarding

the computer vision aspect, there exists research that was

conducted to contrast the use of SIFT and ORB with drawn

electrical components[7], but these components were digitally

and not hand drawn, and they only classified individual

components and not entire circuits. Research has been

conducted to reconstruct full circuits from drawn circuits[6], but

this uses digitally drawn circuits by providing an online GUI,

and it also uses a CNN. Neither of these tools are available to

the public.

XI. SUMMARY

The Circuit Simulpaper system is designed to allow a

younger audience to learn basic circuit functionality through an

iPhone application coupled with drawing. It serves as an

educational tool that can be accessible for all. The system

requires three items, items that most households already

contain, to produce a desired circuit analysis. Foreseeable

challenges include circuit detection accuracy, integration

between the phone application and the computer vision aspect,

and user testing. We are confident that through our thorough

design and integration plans we will be able to overcome all

challenges and provide a high-quality educational tool.

Over the course of this project, we encountered many issues

with each separate subsystem that we were able to help mitigate

by changing aspects of our design. We initially started to create

a Python web application to house our project, but after a month

we realized that this was not ideal. Creating a phone app would

make our app easier to use and have a wide audience of middle

schoolers. We also encountered issues with our computer vision

algorithm not being able to detect the direction of components

– with our initial classification algorithm using rBRIEF

descriptors, we had a correct direction classification accuracy

of ~50%. To mitigate this issue and properly detect the direction

of voltage and current sources, we switched our computer

vision algorithm to use BRIEF descriptors.

We also encountered issues with the phone application due

to none of our group members not having any prior experience

with Swift or Objective-C++. There was a learning curve that

we had to initially overcome to start development. This learning

curve was hard to initially overcome because we changed our

application’s structure from a web application to an iOS

application in October, so we had to learn iOS app development

very quickly to stay on schedule.

Integration was also much harder than we initially expected,

and we are very thankful that we tried to initially integrate the

simulator with the application very early on. This allowed us to

setup the infrastructure needed to run C++ code on our iOS

application, which helped when importing the computer vision

code later on in the integration process.

 Trying to create a project with many new languages and

technologies that we had never used before (CV, Swift,

Objective-C++, C++) was a very had process because we had

to learn the new languages and technologies while actively

working on the project. Requiring us to do this did allow us to

learn at a very high rate, which was extremely gratifying.

GLOSSARY OF ACRONYMS

BRIEF - Binary Robust Independent Elementary Features

CNN - Convolutional Neural Network

DC - Direct Current

FAST - Features from Accelerated Segment Test

GUI - Graphical User Interface

I-V - current-Voltage

LED - Light Emitting Diode

MB - Megabytes

ms - Milliseconds

ORB - Oriented FAST and Rotated BRIEF

rBRIEF - Rotation-invariant Binary Robust Independent

Elementary Features

SI - International System of Units

SIFT - Scale-Invariant Feature Transform

SPICE – Simulation Program with Integrated Circuit

Emphasis

UI - User Interface

YML - YAML (programing language)

REFERENCES

[1] Anderson, M. (2018, May 31). Teens, Social Media and Technology

2018. Pew Research Center: Internet, Science & Tech.

https://www.pewresearch.org/internet/2018/05/31/teens-social-media

technology-2018/
[2] Cheever, E. (n.d.). Analysis of Circuits. Analysis of circuits.

https://lpsa.swarthmore.edu/Systems/Electrical/mna/MNA1.html

[3] Heideman, P. D., Flores, K. A., Sevier, L. M., & Trouton, K. E. (2017).
Effectiveness and adoption of a drawing-to-learn study tool for recall

and problem solving: Minute sketches with folded lists. CBE life

sciences education. https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5459246/

[4] Mejía, D. (2023, April 13). Four out of five households with children

owned tablets. Census.gov. https://www.census.gov/library/stories/
2023/04/tablets-more-common-in-households-with-children.html#:~

:text=The%20share%20jumped%20to%2075,17%20years%20old%20%

E2%80%94%20owned%20tablets
[5] Miller, C. (2023, March 13). When should you get your kid a phone?.

Child Mind Institute. https://childmind.org/article/when-should-you-get-

your-kid-a-phone/
[6] Keerthi Priya, A., Gaganashree, N., Hemalatha, K. N., Chembeti, J. S.,

Kavitha, T. (2022). AI-based online hand drawn engineering symbol
classification and recognition. Lecture Notes in Networks and Systems,

195–204. https://doi.org/10.1007/978-981-16-8512-5_22

[7] Pavithra, S., Shreyashwini, N. K., Bhavana, H. S., Nikhitha, G., &
Kavitha, T. (2023). Hand-drawn electronic component recognition using

Orb. Procedia Computer Science, 218, 504–513.

https://doi.org/10.1016/j.procs.2023.01.032

[8] Swift. A powerful open language that lets everyone build amazing apps.

Apple. (n.d.). https://www.apple.com/in/swift/

[9] Haiyan Wang,Tianhong Pan, efei,Anhui and Jiangsu.(2020) “Hand-
drawn electronic component recognition using deep learning

algorithm”China, Int J:Computer Application in Technology

[10] Dewangan, A. and A. Dhole,(2018) “KNN based hand drawn electrical
circuit recognition” International Journal for Research in Applied

Science & Engineering Technology:p. 1111-1115.

[11] An, D. (2018, February). Find out how you stack up to new industry
benchmarks for mobile page speed. Google.

https://www.thinkwithgoogle.com/marketing-strategies/app-and-

mobile/mobile-page-speed-new-industry-benchmarks/

18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 14

 Fig. 8. Gantt Chart Schedule

