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Abstract— This project is intended to serve as an educational 

tool for children in middle school to learn basic circuit 

functionality through drawing. The project will be implemented 

by using a computer vision algorithm to identify components on a 

hand drawn circuit, feed the identified circuit into a circuit 

simulator, and display the analyzed circuit, all of which will be 

done through a mobile application. This system hopes to serve as 

a fun and safe way for children to learn about circuits through the 

appeal of drawing and without the risks of electrical components.  

 
Index Terms— Circuits, DC Analysis, Computer Vision, 

Simulation, iOS Application 

I. INTRODUCTION 

LECTRICAL circuits are expensive and potentially dangerous 

to experiment with. Not all students have the resources 

available to them to learn about circuits at a young age. To 

purchase the bare minimum components to create a simple 

circuit (breadboard, wires, resistors, power supply) people must 

spend at least forty dollars, which is a luxury that everyone 

cannot afford. Furthermore, improper education can lead to 

dangerous situations. If a student unknowingly causes a short 

circuit or improperly uses a component like a multimeter, they 

can harm themselves and their equipment. 

When learning about circuits, students typically first learn 

about the different symbols designating various electronic 

components. Learning to draw circuits and using the proper 

symbols are imperative steps in the process of mastering 

circuits. Young students are also often fond of drawing and 

recent studies show that drawing serves as one of the most 

effective ways to retain knowledge[3].  

Our application hopes to solve the issues of a lack of 

accessibility and safety when learning about circuits and 

capitalize upon young students’ fondness of drawing. We are 

creating an application in which users can take a picture of a 

schematic they draw, upload the picture, and then receive a 

simulated version of the circuit they drew with voltages and 

currents labeled.  

This application is primarily targeted towards middle school 

students. Students at this age are old enough to learn the basics 

of circuits, have access to mobile applications, and still indulge 

in drawing through school. Currently, there are no technologies 

that allow a user to upload a drawn circuit and have it analyzed. 

In addition, all circuit simulators online are accessed through 

web applications, thus less accessible to our primary use group. 

Furthermore, there are no applications that accomplish the 

intended goals of this project.  

II. USE-CASE REQUIREMENTS 

The use case requirements for our application encompass 

many factors of our application, with a focus on accuracy and 

usability. The use case requirements are as follows: 

  

1. The computer vision algorithm must have an 

individual component classification accuracy of 90% 
 

To ensure a good user experience for our application, being 

able to properly identify components is required. Users should 

not have to constantly take pictures of their circuits to get 

components to be identified properly. 

 

2. The computer vision algorithm must have a circuit 

classification accuracy of 90% 
 

We want to not only ensure each component is detected with 

an accuracy of 90%; we also want to ensure that all circuits are 

classified with 90% accuracy. This means that for the circuit 

options shown to the client, 90% of the time the user’s drawn 

circuit should be one of the shown options. If the user does not 

see their circuit, they need to redraw their circuit. 

 

3. The circuit simulator must simulate circuits with 

100% accuracy. 
 

Our circuit simulator must have perfect accuracy, otherwise 

the application cannot be used as an educational tool. Given an 

input circuit, our simulator must output the circuit with the 

correct voltages/currents at each node/component. 

 

4. The application's user interface must receive an 

average rating of 80% 
 

We will conduct user testing of our application on the target 

group of middle school students and provide them with a survey 

to record their feedback after testing. The survey questions must 

all have an average score of at least 8/10. 

 

5. The application must be free to the user. 
 

To ensure that most children can use our application, we need 

to make it free. This app was created so that children can learn 

about circuits without having to spend money on components, 

therefore we must make it free. 
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Fig. 1.  System Architecture Block Diagram 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

Our project is split up into three main parts: the computer 

vision system, the circuit simulator, and the front-end 

application. A block diagram of our application’s high level 

functionality is shown in Fig. 1 above. 

Once the user has uploaded their circuit image, the image will 

get sent to our computer vision algorithm for processing. The 

computer vision algorithm will first perform preprocessing on 

the input image to remove noise and make the nodes at the ends 

of each component more pronounced. Once the image has been 

preprocessed, a circle detection algorithm is used to detect the 

nodes. The algorithm will then detect all the components 

between nodes and create subimages of each component in the 

circuit.  

Once the components are detected, ORB will be run on each 

subimage. ORB is an algorithm that generates keypoints and 

descriptors based on the input image. Keypoints are parts of the 

image that ORB determines are distinct. The descriptors are 

extracted from the keypoints and each one is a binary string of 

encoded information about each keypoint. These descriptors 

can then be used to match features with different images. 

Instead of using ORB’s rBRIEF descriptors, we use BRIEF 

descriptors, which will be discussed later. After running ORB, 

we will use brute force matching to match the descriptors with 

precalculated descriptors from our reference dataset stored 

locally within the application.  

At this point, we have scores associating the component 

subimage with a type of component, like resistor or voltage 

source. We will take the top three most matching component 

types for each sub image and generate every combination of 

circuits that can be made. For each of these circuits, we generate 

another score that is a summation of each individual component 

score. The algorithm will output each circuit as a netlist-like 

structure for our frontend and circuit simulator to use. 
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The five highest scoring circuits will be shown to the user on 

the application’s user interface. The user can then select which 

of the shown circuits were the one that they drew. After 

selecting the circuit, they will enter values for each component 

(resistance, voltage, etc.). The circuit will then be sent to our 

circuit simulator, which will use modified nodal analysis to 

simulate the circuit. Once the circuit has been simulated, it will 

be sent to the front end where the circuit will be rendered. The 

user will then be able to see the simulated values for the circuit 

– this includes the voltage at every node and the current going 

through every component. 

IV. DESIGN REQUIREMENTS 

A high-level description of the design requirements can be seen 

below in Table 1: 

TABLE I.  DESIGN REQUIREMENTS 

Description Requirement 

Computer Vision Maximum Latency 5 seconds 

Maximum Application Size 100 Megabytes 

Maximum Number of Components 8 

Supported Components 
Voltage/Current Sources, 

Resistors, Bulbs, Switches 
 
 

We want to keep the application size low so that users do not 

have to uninstall or delete existing items from their devices to 

install our application. By looking at the size of other 

applications with similar functionality like “Tiny Scanner”, we 

decided that our application would have a maximum size of 100 

MB. Our app ended up being 32 MB, which is well under this 

requirement.  

We also have restrictions on the components to maintain the 

effectiveness of our computer vision algorithm. We currently 

have a limit of eight components maximum per drawn circuit to 

ensure there is adequate spacing between each component and 

to ensure all components can fit on an image while maintaining 

the size requirements. The components must also be drawn 

horizontally and vertically at near-right angles so that we can 

easily detect components between nodes. We also planned to 

only perform steady-state DC analysis on the following 

components: voltage sources, current sources, resistors, bulbs, 

switches, and LEDs. Unfortunately, we were unable to 

implement diodes in the circuit simulator, which led to us 

dropping support for LEDs.  

We also have a design requirement that the computer vision 

code should take a maximum of five seconds to run. This means 

that when the user submits their image of their drawing, they 

should see the circuit options within eight seconds of their 

submission. According to a study by Google, the probability of 

abandoning a mobile application’s page loading increases by 

90% as the page load time goes from one to five seconds[11]. 

The best practice according to Google is three to five seconds. 

V. DESIGN TRADE STUDIES 

A. Offline Application 

When running our application, we decided to implement it 

with no need for internet connection. Due to a large portion of 

our target audience not having access to the devices with an 

internet connection[4] we decided that keeping the app offline 

will strengthen the argument for the accessibility use case and 

extend to a larger audience.   

This means that we will be storing everything locally through 

the user’s device. All that needs to be stored is reference data 

for dataset components. As one of the main benefits of having 

an online application is having access to large amounts of 

storage, we expect that our application will not exceed more 

than 100 MB. Most offline apps are anywhere between 20 to 

100 MB in size, and ones that perform image parsing tend more 

towards the higher end of 100 MB. For example, the offline 

mobile application “Tiny Scanner”, which generates PDFs 

(Portable Document Format) from pictures, has an app size of 

92.5 MB, which does not include document and data storage. 

Because this application generates and stores PDFs, it takes up 

lots of documents and data storage. For our application, we will 

not store images of previously simulated circuits because a user 

can always just reupload an image of the circuit from their 

camera roll. Thus, we consider the 92.5 MB as an appropriate 

benchmark for our application storage. By constraining the 

amount of storage our application will use, we believe keeping 

the application offline will reinforce the goals of our project 

while also functioning the same as an online application. 

B.  Mobile Application 

For how we want to display our application, we decided to 

implement a mobile application. We needed to decide between 

either a mobile application or a web application and after much 

thought we decided that a mobile application not only aligns 

with our use case of accessibility more. If the project progressed 

with a web application the user would have a much harder time 

uploading their drawing and uploading their picture rather than 

just doing it on their phone. In addition, this application is 

intended to be offline due to accessibility, thus a web 

application would not be possible to implement. Recent 

statistics show that around 71% of 12-year-old have phones and 

by age 14 roughly 91% have phones[5]. Furthermore, a different 

study stated that 95% of U.S. teens have access to a smartphone 

at home, while only 88% have access to a computer [1]. This 

comes out to around 2 million people of our target audience. As 

phones are much more of a necessity than laptops around the 

ages of 12-15, we felt like tailoring the application to be used 

on a phone would align more with our goal of making this 

project an accessible approach to help educate all those that are 

interested in circuits. Therefore, we decided that these reasons 

were enough to pursue the mobile application. 

C. Application Stack 

Swift is the most popular framework used for iOS 

applications today - almost all applications nowadays use it. 

Swift is a more modern language and easier to learn when 
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compared to Objective-C, which is why we are using it for our 

frontend. Objective C has traditionally been used to develop 

iOS applications because it has existed for nearly forty years. 

Swift, which is much newer, is also 2.6 times faster than 

Objective-C[8] and has memory and type safety built in. We will 

have to use Objective-C++ because OpenCV is only available 

as C++ library, and Objective-C++ is compatible with both 

Swift and C++. To allow the Swift application to interact with 

the C++ code, we will need to create bridging files in Objective-

C to bridge the Swift and C++ codebases. 

D. Computer Vision Architecture 

We opted to use a more traditional computer vision 

architecture that does not utilize a neural network. Given that 

we decided on creating a mobile application that does not 

require the internet, we cannot feasibly utilize a neural network 

as such. Loading and using a neural network locally in-app is 

too computationally and storage intensive for a mobile phone, 

especially for older iPhones. Ultimately what we considered is 

how much of a difference there is in terms of accuracy when 

using and not using a neural network. Some research that has 

been previously conducted has achieved a 95% accuracy in 

classifying electrical components using a CNN (Convolutional 

Neural Network)[9], and additional research has been conducted 

to achieve a 90% accuracy using KNN (K Nearest Neighbors) 

without a neural network [10]. Given we are also not using a 

neural network, we use this 90% as a benchmark for our design 

as well. We acknowledge that using a neural network would 

greatly increase the accuracy of classifying individual 

components, but this would come at the expense of integrating 

our mobile application with a backend server that can support 

the neural network. Because the image preprocessing and usage 

of ORB would stay the same, we have left the integration of a 

neural network for work that can be done post-MVP to further 

improve our accuracy goals if desired. 

E. Circuit Segmentation 

In order to be able to detect a circuit, we need to know what 

individual components make up the circuit. To know what the 

individual components are, we need to generate separate 

subimages of each component in the circuit and feed those 

subimages into a classification workflow. The most intuitive 

way to separate components in a circuit is by looking at pairs of 

adjacent nodes in a circuit, because a component is always 

between them. Because we also use nodes in netlists and to 

perform nodal analysis, first detecting the nodes in a circuit is 

the most intuitive first step in our computer vision subsystem. 

We considered two solutions to detecting nodes: Hough line 

transform and Hough circle transform. Hough line transform 

would be used to detect the line parts of components that 

represent their ends, and we could denote the existence and 

location of a node as the point where two lines intersect. For 

Hough circle transform, we would require that every node be 

drawn as a circle, and the transform will just detect every circle 

in the circuit as a node. After testing both implementation ideas, 

we ultimately decided on using Hough circle transform and 

requiring the user to draw nodes as circles. 

From testing with Hough line transform there were two 

fundamental problems. The first problem was that the line 

transform does not perform well with hand drawn lines. Hand 

drawn lines are usually never straight, and the transform 

consistently breaks down one line representing one end of a 

component into multiple connected lines. The other critical 

problem is that there are many lines that intersect in circuits that 

do not represent nodes. For example, the “+” symbol in a 

voltage source is made of two lines that intersect at 90-degree 

angles, which is exactly what we expect for our nodes. Thus, 

using Hough line transform is highly unreliable for node 

detection. 

We believe that requiring users to draw nodes as circles is 

extra work for the user but has benefits that outweigh the extra 

effort needed. Detecting the nodes is arguably the most 

important step in the circuit detection: if one node is missed, 

that means that an entire component will be missed, rather than 

just one component being classified incorrectly. This means 

that properly detecting the nodes is critical to achieving our 

circuit detection accuracy marks. With the proper image 

preprocessing, node detection is highly reliable with Hough 

circle transform, which will be discussed later. Also, we believe 

that being able to identify where nodes are in a circuit is 

beneficial to the learning of our users. Being able to recognize 

points of shared voltages and know where current diverges is 

incredibly useful in doing elementary circuit analysis. Thus, we 

chose to use Hough circle transform and require users to draw 

filled-in circles for their nodes for increased circuit detection 

accuracy and for their own learning’s sake. 

F. Feature Detection Algorithm 

We considered four different combinations of feature 

detection algorithms, where each combination consists of 

keypoint and descriptor generation. Keypoints refer to the 

points/regions in the image that represent distinct features, and 

descriptors are the numerical vector representation of the image 

information surrounding each keypoint. Descriptors are what 

are used when performing matching between images to 

compare the similarities between features of the images.  

The combinations we tested were as follows:  

 

1. SIFT keypoint and descriptor generation,  

2. ORB keypoint and descriptor generation,  

3. ORB keypoint and BRIEF descriptor generation 

4. FAST keypoint and BRIEF descriptor generation. 

One thing to note about the second combination is that the 

ORB descriptors are called rBRIEF descriptors, where the 

“r” stands for rotation invariance. This means that if you had 

two images, but one was rotated, the extracted rBRIEF 

descriptors would match well even though one image had 

rotated features.  

Originally, we believed that we wanted rotation invariance 

because we wanted horizontal and vertically aligned versions 

of the same type of component to match well. But we failed 

to consider that for certain components, namely voltage and 

current sources, we don’t want different orientations of the 

component to match well. As an example, say that we have a 
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voltage source where the negative terminal is on the bottom, 

and another voltage source where the negative terminal is on 

the top. Because of the rotation invariance, although one 

component is the 180-degree rotation of the other, rBRIEF 

descriptors generated for each voltage source would match 

well.  

This is problematic because a voltage source matching 

with one in the opposite direction would result in a different 

circuit being produced. In Fig. 2. we see the results of testing 

the combinations of feature detection. Each combination was 

tested with the same testing set of component images, and 

against the same dataset of component images. As expected, 

using ORB had the highest number of correctly identified 

components, but only when using BRIEF and not rBRIEF 

descriptors did we have the highest number of correctly 

identified orientations.  

In this test, the correct component classification means 

that just the type of the component was identified properly (if 

a voltage source was upwards facing, if it was classified as a 

voltage source did it count as a correct component 

classification). From this point, when we discuss the 

component classification accuracy, we consider differently 

oriented (left, right, down, and upwards facing) current and 

voltage sources to be classified as different types of 

components, thus the component classification will consider 

both component type and orientation.  

Fig. 2. Difference of individual component classification accuracies 

when using different feature detection algorithm pairs (keypoint and 

descriptor generation)  

G. Casing on Wires 

One design decision we made to classify components is to 

have special handling for wire components such that we did not 

need to perform feature matching and store them in the dataset. 

By doing this, we could save computation latency from needing 

to extract features from the wires and perform matching, as well 

as decrease our dataset size. Casing on wires and not other 

components is possible because they are unique in the way that 

they are simple and don’t have many features to begin with, as 

they are just a line. How we do this is discussed in our 

implementation. 

H. Number of Considered Matches 

Another design choice for classifying components was how 

many of the feature matches should be considered when 

calculating the similarity score for a component and a dataset 

component. Typically, in object classification systems, only a 

subset of the total matches found between features are 

considered, such as the 20 best/most confident matches. Shown 

in Fig. 3 is the result of testing component classification 

accuracy when only considering the top N% of matches 

generated. For example, an N of 20 means that the component 

classification was performed where only the top 20% of 

matches were considered when generating the similarity score 

between the input component and a dataset component. The 

testing was performed using the same feature detection and 

matching algorithms, as well as having the same testing set and 

dataset. The results suggest that it is best to consider all (100%) 

of the matches generated. 

 
Fig. 3. Change in component classification accuracy with different 

percentages of considered matches 

I. Dataset Size 

The final design choice regarding component classification 

was the sizing of the dataset. Because for each component 

subimage we perform matching against every component in the 

dataset, we expect two outcomes: 1. The larger the dataset, the 

more likely it is to find a better match for a component 

subimage, thus the higher classification accuracy; 2. The larger 

the dataset, the longer it takes to perform matching against 

every component in the dataset. Both these expectations are 

supported as seen by testing results in Fig. 4 and Fig. 5. Because 

of the latency and application size requirement, the size of the 

dataset has an upper bound.  Unfortunately, as we did not have 

enough time to explore what this maximal size is, we only used 

an 80 component-large dataset. We predict that before we hit 

the latency requirement bound, we would reach maximum 

application size as each additional dataset component equates 

to only around 2ms in increased computation latency. 
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Fig. 4. Change in latency to classify one component as the size of the dataset 

is increased 

Fig. 5. Change in individual component classification accuracy as the size 

of the dataset is increased 

J. Image Preprocessing  

Before feeding images into our computer vision algorithms, 

we want to perform preprocessing to better isolate the user’s 

drawing and get rid of unintended features like shadows and 

light marks on the paper. Upon receiving the user’s image, we 

decided on first performing thresholding and median blurring.  

Thresholding is useful because it generates a binary image, 

and we can set the threshold to isolate the darker markings that 

would come from concentrated amounts of pencil lead or ink 

and ignore the effects of light shadows and accidental markings. 

Because the first step in our circuit detection is detecting where 

each node is and nodes are filled-in circles, thresholding will 

best isolate these nodes. Specifically, we decided on using an 

adaptive thresholding algorithm. Adaptive thresholding adjusts 

thresholds accordingly depending on local contrast and 

differences in illumination instead of applying one threshold for 

the entire image. This is beneficial for us because we expect 

user images to not always have the best lighting and have cast 

shadows on some parts of the image.  

After thresholding, we decided on using median blurring 

over other blurring algorithms such as Gaussian blurring and 

bilateral blurring. Median blurring is most effective after 

thresholding for our use because it is the best in removing salt-

and-pepper noise and details. After we perform thresholding, it 

is likely not only the filled-in nodes are left, but also some 

darker pen/pencil spots for the components as well. Because we 

want to isolate the nodes, median blurring sees the thin parts of 

the drawing that correspond to the components as noise (the 

pepper) and removes them. Additionally, sometimes 

thresholding will create white spots in the filled-in circles 

because the darkness of the circle is not uniform. Median 

blurring will fill in these white spots (the salt) because it sees it 

as noise, creating completely filled in circles. This way there is 

no possibility of a circular white spot in the node to also get 

detected as a circle/node. 

Gaussian blurring and bilateral blurring are similar, and both 

use Gaussian distributions to remove noise, and bilateral 

blurring uses two separate distributions instead of one. From 

our testing we found that these two blurring techniques did not 

perform as expected for our desired image preprocessing. For 

component subimages, we use Canny edge detection instead of 

thresholding before feature detection because while both 

generate binary images, thresholding will more likely eliminate 

entire parts of component drawings if the pen/pencil lead is too 

thin and light. Additionally, we care more about the outline of 

the component as features, so edge detection is the most 

appropriate for detecting individual components. We found that 

gaussian and bilateral blurring did not perform well in keeping 

the edges of the components intact, resulting in the canny edge 

detection not functioning at all. 

K. Circuit Options 

We heavily considered whether we wanted the options of 

circuits we display to the user to only be valid circuits even if 

they drew an invalid circuit, or if we should display options of 

circuits that best match the user’s drawing, regardless of 

whether the options are invalid or valid. For reference, an 

invalid circuit can be one that is not a closed loop, doesn’t have 

any sources of power (no voltage or current sources), or doesn’t 

have any load. We ultimately decided that we should display 

circuit options that best match the user’s drawing, regardless of 

if the options are invalid or valid.  

If we were to only display valid circuits, the user would not 

be able to know if they don’t see their drawn circuit in the 

options because they drew an invalid circuit, or because the 

computer vision system didn’t work properly. Consider the 

scenario where the user draws a valid circuit, but the computer 

vision system does not function properly and gives them 

options that do not match the user’s circuit. The user is unable 

to tell if their circuit isn’t an option because the computer vision 

didn’t work, or if because the circuit they drew is invalid. As 

our application is designed to be a learning tool, we need to 

make it clear to the user when their circuit is invalid or valid. 

By first detecting the user’s circuit, regardless of its validity, 

when the user chooses their circuit, we can ensure that the 

application and the user are on the same page, and then we can 

inform the user that their drawn circuit is invalid or not. 

L. Value Detection 

Rather than having users write down the values for each 

component next to the component, we elected to have users 

manually input the values onto the application itself. Although 

there are many libraries available for text detection, it will be 

hard for the computer vision algorithm to figure out which 

value corresponds to which component. This can lead to 

dissatisfied users because they may have to constantly redraw 
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and take pictures of their circuit until it gets properly identified. 

As a further extension to our project, we could implement the 

ability for users to label components with their respective 

values in the drawing. 
 

 

Fig. 6. Node Detection Pipeline 

 

M. Circuit Simulator Algorithm 

We initially planned to create a graph data structure that 

would consist of different components. Each component would 

have attributes that would be used when running the simulation. 

After doing research, we realized that this was not the best way 

to go about simulating circuits. Most circuit simulators like 

SPICE use modified nodal analysis because it is straightforward 

and easy to implement on computers. It also gives a system of 

equations which could potentially be displayed to the user to  

show them how the circuit was solved.   

N. Circuit Simulator Diode Implementation 

Modified Nodal Analysis works very well for linear 

components like current sources, voltage sources and resistors, 

but it does not inherently work well for nonlinear components 

like diodes. To implement nonlinear components like diodes, 

you must make an initial guess for the current through the diode. 

After making this guess, you use the derivative of the I-V curve 

for the diode to determine the diode’s resistance at this voltage 

and current. This calculated resistance and guessed current will 

be used in the modified nodal analysis process. Once the 

resulting current and node voltages are determined from 

modified nodal analysis, the resulting current will be incorrect. 

You must then adjust the initial guess and repeat the process 

until the resulting current makes sense given the initial guess 

for the diode’s current. Unfortunately, we were unable to 

implement this feature. 

VI. SYSTEM IMPLEMENTATION 

We can separate our implementation into three separate 

subsystems: the computer vision system, the circuit simulator 

system, and the mobile application. We can further separate the 

computer vision system into three separate workflows: parsing 

the user image, performing individual component detection, 

and generating circuit data structures. 

A. User Image Parsing 

Before running feature detection algorithms on individual 

images of components, we must generate the subimages of the 

individual components from the user’s original image. This 

process is shown in Fig. 6. Once the user uploads the image of 

their drawing, we load it as grayscale to perform adaptive 

thresholding. Adaptive thresholding will create a binary image 

from the grayscale image. After thresholding, our binary image 

is entirely white except for the drawing itself, which is black.  

Next, we apply a median blur to the binary image. Median 

blurring is most effective in removing noise from images. The 

first reason why we do this is because the blurring will remove 

lighter pen/pencil markers from the image that corresponds to 

the components themselves. This will allow us to isolate only 

the filled-in nodes that the user has drawn. Also, the blurring 

makes the nodes themselves more filled-in and distinct. Likely 



18-500 Final Project Report: Circuit Simulpaper, 12/15/2023 8 

from the thresholding the less-filled in parts of the node will be 

removed, leaving a black circle with spots of white. The 

blurring will fill in this circle, which will remove all the 

possibly smaller, white circles that could be accidentally 

identified with Hough Circle Transform. 
 

Fig. 7. Canny Edge Detection & Component Classification 

 

Now that we have an image with just black circles 

representing nodes, we use Hough Circle Transform to identify 

the location of each circle with x and y pixel coordinates. We 

know that a component must be between each pair of 

neighboring nodes, thus we have the coordinates that represent 

the far ends of the component, and we can use them to extract 

subimages of each component. The subimages are taken from 

the original grayscale image. 

Originally in our interim demonstration, the bounds of the 

subimages were hard coded to be certain dimensions. Our final 

idea for generating the subimages is to first consider a straight 

line between the given pair of nodes, and then iterate 

left/downwards and right/upwards until we no longer detect any 

black pixels. This allowed for adaptively and consistently 

creating the subimages such that they always included the 

entirety of the component.  

B. Individual Component Classification 

Before doing feature detection, we first perform median 

blurring, denoising, adaptive thresholding, and median blurring 

again. This is a combination of preprocessing that we have 

tested that best works for these individual component 

subimages. We then perform Canny edge detection, which will 

isolate the edges of the drawing and black out everything else, 

as seen in Fig. 7. For feature detection we use the ORB to 

generate keypoints, and then generate BRIEF descriptors from 

those keypoints. The descriptors are binary feature vectors that 

represent all the important features in the subimage. 

Using these BRIEF descriptors, we can perform brute force 

matching with BRIEF descriptors we have stored in the 

application’s data storage. These stored descriptors have 

associated component names with them, such as “resistor”, or 

“voltage source”. We perform the brute-force matching with 

Hamming distance to quantify the accuracy of each match of 

features; the lower the distance, the better the match. Taking an 

average of the distances across all matches, we now have a 

score we can use to quantify the similarity between a subimage 

and a dataset image. Doing this with each subimage and each 

set of BRIEF descriptors in storage, we can rank what the best 

component match is for each subimage. See Fig. 7 as an 

example of the Canny edge detection and classifying the best 

match for subimages. 

As previously mentioned, we do not perform feature 

detection and matching on components that are wires. In order 

to determine whether a component is a wire, we run Hough 

Lines transform on the edge-detected image, and then find the 

bottom/leftmost and top/rightmost coordinates of all the line 

segments. If the difference between these coordinates is below 

a certain threshold (the component is thin enough), then we 

classify the component as a wire and skip the feature detection 

and matching. The reason we use Hough Lines transform here 

and not just attempting to find the lowest and highest white 

pixels is because noise that may not have been already removed 

would produce incorrect results. 

C. Circuit Data Structure Generation 

From parsing the user image and detecting individual 

components, we now have identified nodes and the component 

types that represent edges between each node. From this, we 

want to generate a graph-like data structure so that the frontend 
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of the mobile application and the circuit simulator can easily 

reconstruct the circuit. This structure will be a modified netlist, 

where each component is represented by three values: an (x, y) 

node coordinate corresponding to the negative terminal node, 

an (x, y) node coordinate corresponding to the positive terminal 

node, and a string corresponding to the component type (ex: 

“resistor”).  

Originally a regular netlist was going to be generated at this 

point, where nodes were simply identified using an index, such 

as “N1” for node one, and “N2” for node two. Because a netlist 

only accounts for how components are connected, a circuit with 

the exact same components but rotated clockwise is represented 

by the same netlist of the not rotated version. For users, it may 

be confusing why the voltage source they drew is on the top of 

the circuit instead of on the left. Thus, it would be better if we 

could preserve the way that the user drew the circuit. By 

sending the node coordinates, which provides absolute 

positioning values, we can preserve the orientation that the 

circuit was drawn. 

Because we want to generate the five most matching circuits, 

we must generate potential circuits and scores associated with 

each circuit. For each individual component, we consider the 

three best component types, and then generate every 

combination of these components. Because our maximum 

supported component limit is eight, the maximum number of 

combinations we generate would be 38 = 6561 different circuits. 

The score is simply a summation of the Hamming distance 

scores that are already associated with each component 

classification, so the lower the total score, the more confident 

the component combination is: 

 

𝑠𝑐𝑜𝑟𝑒 = ∑(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠) 

D. Dataset 

Our dataset is not a collection of images of individual 

components, but a YML file which contains a dictionary format 

of components: [component type]: [BRIEF descriptors]. 

Because BRIEF descriptors are representations of all the 

important features in an image, we save on file storage size and 

computation latency by storing the descriptors and not the 

actual images of dataset components. The total file size for the 

dataset is 4.3 MB, corresponding to 80 component images. 

 

The breakdown of the dataset is as follows: 
• Eight light bulbs (four horizontal, four vertical) 

• 16 switches (eight horizontal, eight vertical) 

• Eight resistors (four horizontal, four vertical) 

• 24 current sources (six left-facing, six right-facing, six 

down-facing, six up-facing) 

• 24 voltage sources (six left-facing, six right-facing, six 

down-facing, six up-facing) 

 
Because all light bulbs and resistors are drawn identically 

when they are horizontal or vertical, we only need eight for each 

orientation. For switches, because there are four different ways 

a switch can be drawn horizontally and four different ways a 

switch can be drawn vertically, having 16 allows for two 

different images for each way a switch can be drawn. For 

current and voltage sources, because we consider each 

orientation of these components as separate classifications, we 

have six for each of the four possible orientations. As a 

reminder, we no longer needed to have wires in our dataset 

because we determine them by evaluating the width of the 

component. Also, as previously mentioned in the design trade 

studies, we would have liked to have a bigger dataset for higher 

classification accuracy, but this relative number of each 

component type would stay the same as we would increase the 

dataset size. 

E. Circuit Collapsing 

The data structure given to the circuit simulator contains the 

names of the components, their node coordinates, and their 

associated values. This list of components consists of wires 

which need to be removed for simulation purposes. Once the 

simulator receives the data structure from the frontend, it 

performs a node collapsing algorithm. It creates a dictionary 

mapping from coordinate to node numbers. The algorithm will 

first go through the components and set nodes connected by 

wires to be considered the same node.  

Once this pass has been performed, it will then go through all 

the node numbers and ensure they are enumerated from 0 in a 

counterclockwise formation. After this pass, a netlist will be 

generated using the new nodes instead of the coordinates that 

were input previously. Furthermore, this new netlist does not 

contain any wires because the wire connections have been 

accounted for when creating the node numbers. 

 

F. Circuit Simulator 

We used modified nodal analysis to solve and simulate 

circuits[2]. The simulator takes in the above-mentioned netlist-

like structure as input and generates matrices that will be used 

to solve a system of equations describing the circuit. Modified 

nodal analysis tries to solve the equation: 

𝐴𝑥 = 𝑧 

in which A describes the connections and conductance of the 

elements of the circuit, x describes the unknown values that we 

are trying to solve, and z describes the current and voltage 

sources. The A matrix is of size (𝑣 + 𝑛)(𝑣 + 𝑛), where v is the 

number of voltage sources and n is the number of nodes. It is 

constructed of four smaller matrices:  
 

𝐴 = [
𝐺 𝐵
𝐶 𝐷

]  

 

The G matrix details the conductance of the circuit elements, 

the B and C matrices detail the connections of the voltage 

sources, and the D matrix will always be a zero matrix if the 

circuit only contains independent voltage sources. The 

simulator will generate the required matrices and solve the 

equation above for the x matrix, which contains the unknown 

voltages and currents through independent voltage sources. 

Once the node voltages have been determined, Ohm’s Law is 

used to calculate the current going through each individual 

component. Once these values are determined, they are added 
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to a formatted string with all the listed values and sent to the 

frontend for rendering. Although modified nodal analysis 

generates a larger system of equations than other algorithms 

such as traditional nodal analysis or mesh analysis, modified 

nodal analysis is easier to implement algorithmically on a 

computer system.  

G. Mobile Application 

The mobile application is written in Swift. The home screen 

consists of a functionality description with a list of supported 

components, two tips, one for drawing circuits and one for 

taking a picture of the drawing, and an example image to help 

the user upload their circuit correctly. Once the user clicks the 

“Upload Circuit” button they are taken to a page where they are 

given the option to either upload an image from their phone 

gallery or take a picture. Once the user uploads their image the 

image is displayed in the center of the screen and a next button 

appears on the top right of the screen.  

The next button is linked to a wrapper function in Objective 

C++ that allows the computer vision system to read the image 

uploaded. When the computer vision algorithms finish, five 

netlists will be generated. The wrapper function converts the 

five net lists returned from the computer vision into a 

compatible type for Swift. Based on these netlists, we will craft 

and display circuits.  

For this we will utilize reference images stored in the 

application’s file data for each component and connect them 

with lines for proper wiring and circles for distinction of nodes. 

Each circuit will be displayed on a swipe-able page. The circuits 

are ordered from the first page being the highest confidence 

match to the last page being the fifth highest in confidence. The 

user selects one of the circuits by tapping on one of the pages 

that display a circuit. The user will then be taken to a page to 

input all the values of each component drawn. This includes 

resistors, lightbulbs, voltage sources, and current sources. 

Inputs are taken the SI units, amps, volts, and ohms.   

Once all the components have inputted values, an “Analyze 

Circuit” button appears above the circuit representation. Once 

the user has clicked the button, the contents of the completed 

circuit will be sent to the circuit simulator via another Objective 

C++ wrapper, and on the final page the results from the 

simulator are displayed under a tab that says, “Show Results”. 

The analysis includes voltages at every node and current 

through every component. At any point the user can refresh the 

app and go back to the home page to start the process over. 

VII. TEST, VERIFICATION AND VALIDATION 

A. Testing for Individual Component Classification 

Accuracy 

To test the individual component classification, we compiled 

a total of 181 component subimages. In order to generate these 

component subimages, we used our existing subimage 

generation code such that these subimages used in testing would 

match the expected generated component subimages format 

from full circuits. This testing set was drawn by both members 

of our team and members of our test group. 

 

The breakdown of the components in the testing set is as 

follows: 
• 62 current sources (13 downwards, 18 leftwards, 18 

rightwards, 13 upwards) 

• 12 light bulbs 

• 13 resistors 

• 40 switches 

• 46 voltage sources (9 downwards, 13 leftwards, 15 

rightwards, 11 upwards) 

• 6 wires 

 

There are more components in the testing set for those that 

had a harder time being classified properly (switches, current 

sources) in development. Notably light bulbs, resistors, and 

wires had extremely high correct classification rates. The result 

from testing was that 166 of the 181 test subimages (91.7%) 

were correctly classified, which meets our individual 

component classification accuracy use case requirement. A 

classification was deemed correct if the best of the three 

component matches, we output was the correct component. To 

reiterate, this accuracy value considers current sources and 

voltage sources of different orientations as their own, unique 

components. The raw score for the number of components that 

were properly identified (not considering orientation) was 176 

of the 181 test subimages (97.2%). 

B. Testing for Full Circuit Classification Accuracy 

To test the full circuit classification, we compiled a total of 

52 images of circuits drawn by both our test group and members 

of our team. The circuits were made up of a range of four to 

seven total components. Image capturing of the drawings were 

done in multiple different settings (bedroom, living room, 

dining room, classroom, open school environment) in order to 

capture varying appropriate and reasonable lighting settings.  

Notably, all the tested settings provided the same type of 

effect on the captured image, which was having a slight shadow 

from the phone used to take the images. Of the 52 images, 43 

were classified correctly (82.7%). A classification was deemed 

correct if within three different captures of the circuit image 

(without modifying the drawing itself), one of the five 

displayed circuit options was correct. We determined that this 

was a fair evaluation of correct classification because of how 

bad photos captured affected circuit classification (poor 

lighting, drawing out of focus, etc.). If the circuit could be 

correctly classified without the drawing itself being changed, it 

felt fair that the classification should count as correct.  

One limitation of our testing was factoring bad drawing 

skills, which is hard to quantify. From our testing we felt that 

we had representation from a reasonable range of drawing 

skills, but our live demonstration proved otherwise. Another 

interesting result is that we had a higher classification accuracy 

at the time of our final presentation (~85%). At the time this 

was a reasonable result because it was just higher than the 

individual component classification accuracy (~83%), which 

made sense because all the incorrect circuits came from 

incorrectly identified components. Because we display five 

different circuit options, we expect that the circuit classification 
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accuracy is slightly higher than the individual component 

accuracy.  

As we did more testing from 28 to 52 images, we got some 

misidentified circuits because of failure to recognize the correct 

number and location of nodes. This is why our circuit 

classification accuracy went down from our final presentation, 

and why it is no longer closely related to the individual 

component classification accuracy. 

C. Circuit Simulator Testing 

The circuit simulator was tested using a program that 

randomly generated netlists with a maximum of eight 

components. The function would only create valid netlists with 

components consisting of current sources, voltage sources, 

switches, resistors, and lightbulbs. After creating the netlist, we 

would simulate the circuit on the circuit simulator using our 

own simulator. The results of the simulation from our simulator 

would then be compared to the results from running a 

simulation of the circuit in Altium Designer.  

Fifty circuits of varying structures, sizes, and components 

were all tested using this pipeline, and all fifty were simulated 

correctly. This means that given a netlist, our simulator returns 

the correct voltage at every node and current through each 

component 100% of the time, meeting our use case requirement 

of perfect circuit simulator accuracy.  

E. Mobile Application Testing 

To test the mobile application, we gave a test group of 7 

individuals, ages 12 to 14, a usability survey as well as a series 

of tasks to test the full pipeline of the system. The tasks included 

going back and forth between pages in the application, drawing 

and uploading an image of a circuit, inputting values for 

components, and analyzing the results from the simulator.  

 

After completing all these tasks, the users were asked these 

questions: 
• “How easy was it to upload your circuits?” 

• “How useful were the tips on the home screen when 

drawing your circuit?” 

• “How clear were the schematics of all the circuits 

displayed?” 

• “Were the headers of the page useful when asked to do 

complete some task?” 

• “Do you think adding more tips and headers would 

make the app clearer?” 

• “Was it clear how to input values?” 

 

After rounding the average score for each question, the 

average score of the survey was 78.5%. The main issues with 

the UI came from the inputting values page. The question “Was 

it clear how to input values” got the lowest average score of a 

6/10. Due to Swift's code structure, there were too many issues 

when trying to display values next to the components that the 

user input values for. Instead, we opted for adding tags to the 

end of component names, ordered from top to bottom and left 

to right if there were repeated components. For example, if there 

were two resistors in parallel the leftmost would be “resistor_0” 

and the rightmost would be “resistor_1.” Similarly, if there two 

resistors on top of one another the topmost would be 

“resistor_0” and the bottommost would be “resistor_1.” 

However, doing this caused confusion amongst our test group.  

When there were many repeated components and a larger 

circuit, most users lost track of which component they inputted 

a value for. When surveying, a lot of clarification was asked for 

when inputting values, however once explained, the majority of 

the individuals understood the relationship between the tag and 

the components. All other survey questions had an average 

score of 7 or above and the users did not report any other 

hardships when using the application. However, we did proceed 

to add an example image on the homepage as more than half of 

the individuals wanted additional tips on drawing circuits.  

F. Complete Integration Testing 

When testing the full pipeline, we first tested the image 

uploading functionality. A picture from the phone application 

would be uploaded straight from the in-app camera feature or 

from the user’s photo library, and this picture would need to be 

read into data by the computer vision system. After fully 

integrating this was functioning 100% of the time. We were 

able to get this success rate by reading file paths from the Swift 

codebase and feeding it as a parameter to the computer vision 

system, which then created a dedicated image data structure. 

The second test was regarding netlist parsing to create the 

circuit UI. This was tested by manually checking the display on 

the phone application and cross-referencing it with the drawn 

picture and the netlists returned. With a circuit that met our 

requirements of a maximum of eight components, the UI was 

able to display the five circuits returned from the computer 

vision system 100% of the time.  

Lastly, we tested the net list received by the circuit simulator 

net list expected from the values inputted by the user. Because 

the expected accuracy for the circuit simulator was 100%, this 

portion of testing was crucial for the entire system. After cross-

referencing the output of the circuit simulator with the user’s 

input, we were able to achieve 100% accuracy as well.  

G. Application Size and Latency 

The application had a final size of 32 MB, which we were 

able to verify by looking at the application’s storage 

specifications in the settings of an iPhone. The computer vision 

latency was ~3.2 seconds. As a reminder, this is the time it takes 

from when the user submits their image of their drawn circuit 

to when the five circuit options are displayed on their screen. 

This latency was measured by logging timestamps when the 

circuit classification function exposed to the frontend of the 

application was called to when the function returned. This was 

done during the circuit classification accuracy tests, which 

spanned 52 different circuit images. As mentioned previously, 

we would have liked to increase our dataset to use more of the 

remaining 68 MB we allowed the application to have, as well 

as use the 1.8 seconds remaining of latency to improve the 

classification accuracies. Notable to mention is that the longest 

task to perform was the adaptive thresholding, which is a 

necessary algorithm to use to best detect the circuit nodes. For 

future improvements, we would definitely want to explore 

increasing the dataset size as each addition to the dataset is 

approximately equal to two milliseconds of added latency. 
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VIII. PROJECT MANAGEMENT 

A. Schedule 

Fig. 8 is the Gantt Chart with the schedule of work as well as 

each team member's weekly tasks. 

B. Team Member Responsibilities 

Each member has taken on one of the main three subsystems 

of the project. 

• Stephen Dai: Computer Vision 

• Devan Grover: Circuit Simulator 

• Jaden D’Abreo: iPhone Application 

In addition to the ownership of their respective subsystems, 

Jaden and Devan created the bridging files and integration that 

allowed the computer vision code and circuit simulator to work 

seamlessly with the application. Each member was also in 

charge of the testing for each of their respective subsystems. 

C. Bill of Materials and Budget 

All necessary materials will be items the user must have 

themselves. These materials consist of an iPhone or iPad, a 

writing utensil, and paper.  

D. Risk Management 

We initially met issues when dealing with components that 

act differently based on their orientation. We initially wanted to 

use ORB’s rBRIEF descriptors because they are rotationally 

invariant – this meant that our algorithm would not have issues 

detecting components if they were in different orientations. We 

realized however, that by doing so we were unable to detect the 

direction of voltage and current sources. As a result, we had to 

use BRIEF descriptors – even though this meant having to take 

images in different directions for our dataset, we were able to 

achieve a higher accuracy for voltage sources and current 

sources.  

Furthermore, we initially had issues being behind schedule 

due to the infrastructure change of our project from a web 

application to an iOS application. Initially, we developed our 

code in Python and created an initial version of a web app. We 

realized that an application would be better because it would be 

more accessible to users and easier to use. As a result, we had 

to change our codebase from Python to Swift, Objective-C++, 

and C++. To mitigate the risk from this switch, we all did work 

over Fall and Thanksgiving breaks to catch up.  

There were lots of integration issues that we encountered 

when trying to build the C++ code for iOS. Since we started this 

step of integration early, we were able to spend lots of time on 

this issue and get it fixed before we started our final integration 

towards the end of our project. 

Due to there being too many issues when displaying the input 

and final values next to the correct component, we decided to 

modify the UI of the application. Instead of displaying the 

values we opted to add tags at the end of components to refer to 

components in the order top to bottom left to right. Similarly, 

we display final values in a string at the bottom in the bottom 

of the page with values at each node and current through each 

component, matching the tags on the input value page. While 

this negatively affected the usability of the application, it kept 

the application functional.   

IX. ETHICAL ISSUES 

When designing our product, we concluded that there were 

three main ethical concerns that come with our system: public 

health, public safety, and public welfare. As our system is a 

phone application, its use would lead to an increase in screen 

time for our primary user group, a public health concern. One 

common problem with extensive phone usage is digital eye 

strain, where long term damage to the eyes can be caused from 

prolonged phone usage. This is especially concerning for kids 

whose eyes are still developing and are more prone to long term 

damage. Our application is designed to not need extensive use 

because the users do not draw their circuits in the app 

themselves. Only until the user has finished drawing their 

circuit on paper do they then start to interact with our 

application. In addition to this, the runtime for the total pipeline 

of the application should take no longer than 2 minutes, and 

around half this time would the user be interacting with the 

phone application. 

We require access to the camera and photos for the user to 

either take or upload a photo of their circuit drawing. This is a 

potential security and privacy risk for the user as they entrust us 

with their photos, a public safety concern. Privacy and security 

have become a significant aspect of social and global concern. 

Most relevant to our application is how we handle the user’s 

photo. We need to ensure to the user that the image is stored 

securely and the information we gather about the image is 

solely related to generating circuit information and nothing else. 

Our project design targets this area well in two ways. The first 

is that our application operates completely offline and only uses 

local storage. In order for there to be a security breach, the 

user’s phone must actually be hacked, which means they would 

already have access to the user’s photos. The second is 

regarding how we would store photos. As we wanted to keep 

the application lightweight, we do not store any images that the 

user uploads. The phone application stores the file path when 

the user uploads an image, and once they are done with it, either 

analyzing it or replacing it, that image gets wiped from local 

storage. By keeping the application offline and lightweight, we 

mitigate all potential privacy concerns.  

Lastly, a misapplication of our project is students using it to 

do their homework for them, a public welfare concern. Cheating 

seriously affects public welfare, especially for engineers, as 

cheating means that students do not properly learn material and 

fundamentals that they will need to apply in the real world. The 

classic example we hear is if you would use a bridge built by an 

engineer that cheated in school. An important design choice that 

we made to combat this is that when we display the calculated 

current and voltage values, we only display what they are, and 

not any of the work that shows the calculations done to get those 

values. Because students almost always need to show work for 

them to get credit on their assignments, they will need to 

calculate the values themselves and then they can check their 

answers, which is fine because they did the work anyways. 
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X. RELATED WORK 

There are numerous online circuit simulators such as 

LTSpice. But all these simulators require building the circuit in 

the application itself and are not free of cost to users. Regarding 

the computer vision aspect, there exists research that was 

conducted to contrast the use of SIFT and ORB with drawn 

electrical components[7], but these components were digitally 

and not hand drawn, and they only classified individual 

components and not entire circuits. Research has been 

conducted to reconstruct full circuits from drawn circuits[6], but 

this uses digitally drawn circuits by providing an online GUI, 

and it also uses a CNN. Neither of these tools are available to 

the public. 

XI. SUMMARY 

The Circuit Simulpaper system is designed to allow a 

younger audience to learn basic circuit functionality through an 

iPhone application coupled with drawing.  It serves as an 

educational tool that can be accessible for all. The system 

requires three items, items that most households already 

contain, to produce a desired circuit analysis. Foreseeable 

challenges include circuit detection accuracy, integration 

between the phone application and the computer vision aspect, 

and user testing. We are confident that through our thorough 

design and integration plans we will be able to overcome all 

challenges and provide a high-quality educational tool.  

Over the course of this project, we encountered many issues 

with each separate subsystem that we were able to help mitigate 

by changing aspects of our design. We initially started to create 

a Python web application to house our project, but after a month 

we realized that this was not ideal. Creating a phone app would 

make our app easier to use and have a wide audience of middle 

schoolers. We also encountered issues with our computer vision 

algorithm not being able to detect the direction of components 

– with our initial classification algorithm using rBRIEF 

descriptors, we had a correct direction classification accuracy 

of ~50%. To mitigate this issue and properly detect the direction 

of voltage and current sources, we switched our computer 

vision algorithm to use BRIEF descriptors. 

We also encountered issues with the phone application due 

to none of our group members not having any prior experience 

with Swift or Objective-C++. There was a learning curve that 

we had to initially overcome to start development. This learning 

curve was hard to initially overcome because we changed our 

application’s structure from a web application to an iOS 

application in October, so we had to learn iOS app development 

very quickly to stay on schedule. 

Integration was also much harder than we initially expected, 

and we are very thankful that we tried to initially integrate the 

simulator with the application very early on. This allowed us to 

setup the infrastructure needed to run C++ code on our iOS 

application, which helped when importing the computer vision 

code later on in the integration process. 

 Trying to create a project with many new languages and 

technologies that we had never used before (CV, Swift, 

Objective-C++, C++) was a very had process because we had 

to learn the new languages and technologies while actively 

working on the project. Requiring us to do this did allow us to 

learn at a very high rate, which was extremely gratifying. 

GLOSSARY OF ACRONYMS 

BRIEF - Binary Robust Independent Elementary Features 

CNN - Convolutional Neural Network 

DC - Direct Current 

FAST - Features from Accelerated Segment Test 

GUI - Graphical User Interface 

I-V - current-Voltage 

LED - Light Emitting Diode 

MB - Megabytes 

ms - Milliseconds 

ORB - Oriented FAST and Rotated BRIEF 

rBRIEF - Rotation-invariant Binary Robust Independent 

Elementary Features 

SI - International System of Units 

SIFT - Scale-Invariant Feature Transform 

SPICE – Simulation Program with Integrated Circuit 

Emphasis 

UI - User Interface 

YML - YAML (programing language) 
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 Fig. 8. Gantt Chart Schedule 


