
18-500 Design Project Report: Circuit Simulpaper, 10/13/2023 1

Abstract—This project is intended to serve as an educational

tool for children in middle school to learn basic circuit
functionality through drawing. The project will be implemented
by using a computer vision algorithm to identify components on a
hand drawn circuit, feed the identified circuit into a circuit
simulator, and display the analyzed circuit, all of which will be
done through a mobile application. This system hopes to serve as
a fun and safe way for children to learn about circuits through the
appeal of drawing and without the risks of electrical components.

Index Terms— Circuits, DC Analysis, Computer Vision,
Simulation

I. INTRODUCTION
LECTRICAL circuits are expensive and potentially dangerous

to experiment with. Not all students have the resources
available to them to learn about circuits at a young age. To
purchase the bare minimum components to create a simple
circuit (breadboard, wires, resistors, power supply) people must
spend at least forty dollars, which is a luxury that everyone
cannot afford. Furthermore, improper education can lead to
dangerous situations. If a student unknowingly causes a short
circuit or improperly uses a component like a multimeter, they
can harm themselves and their equipment.

When learning about circuits, students typically first learn
about the different symbols designating various electronic
components. Learning to draw circuits and using the proper
symbols are imperative steps in the process of mastering
circuits. Young students are also often fond of drawing and
recent studies show that drawing serves as one of the most
effective ways to retain knowledge[3].

Our application hopes to solve the issues of a lack of
accessibility and safety when learning about circuits and
capitalize upon young students’ fondness of drawing. We are
creating an application in which users can take a picture of a
schematic they draw, upload the picture, and then receive a
simulated version of the circuit they drew with voltages and
currents labeled.

This application is primarily targeted towards middle school
students. Students at this age are old enough to learn the basics
of circuits, have access to mobile applications, and still indulge
in drawing through school. Currently, there are no technologies
that allow a user to upload a drawn circuit and have it analyzed.
In addition, all circuit simulators online are accessed through
web applications, thus less accessible to our primary use group.
Furthermore, there are no applications that accomplish the
intended goals of this project.

II. USE-CASE REQUIREMENTS
The use case requirements for our application encompass

many factors of our application, with a focus on accuracy and
usability. The use case requirements are as follows:

1. The computer vision algorithm must have an

individual component detection accuracy of 90%

To ensure a good user experience for our application, being
able to properly identify components is required. Users should
not have to constantly take pictures of their circuits to get
components to be identified properly.

2. The computer vision algorithm must have a circuit

detection accuracy of 90%

We want to not only ensure each component is detected with
an accuracy of 90%; we also want to ensure that all circuits are
detected with a 90% accuracy. We will achieve this by using an
algorithm to provide users with the five circuits our computer
vision algorithm has the highest confidence in. Users will then
be able to select which amongst these five circuits is the correct
circuit that they drew.

3. The circuit simulator must simulate circuits with

100% accuracy

Our circuit simulator must have perfect accuracy, otherwise
the application cannot be used as an educational tool. Given an
input circuit, our simulator must output the circuit with the
correct voltages/currents at each node/component.

4. The application's user interface must receive an
average rating of 80%

We will conduct user testing of our application on the target
group of middle school students and provide them with a survey
to record their feedback after testing. The survey questions must
all have an average score of at least 8/10.

5. The application must be free to the user

To ensure that most children can use our application, we need
to make it free. This app was created so that children can learn
about circuits without having to spend money on components,
therefore we must make it free.

Circuit Simulpaper

Authors: Jaden D’Abreo, Stephen Dai, and Devan Grover

Department of Electrical and Computer Engineering, Carnegie Mellon University

E

18-500 Design Project Report: Circuit Simulpaper, 10/13/2023 2

Fig. 1. System Architecture Block Diagram

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Our project is split up into three main parts: the computer

vision system, the circuit simulator, and the frontend
application. A block diagram of our application’s high level
functionality is shown in Fig. 1 above.

The user will first draw a circuit diagram for the circuit that
they want simulated on a piece of paper. They will have to draw
the circuit with dots at the ends of the components’ terminals
and with the components oriented horizontally or vertically.
The application will have a built-in feature in which the user
can either take a picture or select a picture from their camera
roll to upload. Users will use this feature to upload the image of
the circuit they drew to our application.

Once the user has uploaded their circuit image, it will get sent
to our computer vision algorithm for processing. The computer
vision algorithm will first perform preprocessing on the input
image to remove noise and make nodes easier to detect. Once
the image has been preprocessed, a circle detection algorithm is
used to detect the nodes at the ends of each component. The
algorithm will then detect all the components between nodes
and create subimages of each component in the circuit.

Once the components are detected, ORB will be run on each
subimage. ORB is an algorithm that generates keypoints and
descriptors based on the input image. Keypoints are parts of the
image that ORB determines are distinct. The descriptors are
extracted from the keypoints and each one is a binary string of
encoded information about each keypoint. These

descriptors can then be used to match features with different
images. After running ORB, we will use brute force matching
to match the descriptors with precalculated descriptors from our
reference dataset stored locally within the application.

At this point, we have scores associating the component
subimage with a type of component, like resistor or voltage
source. We will take the top three most matching component
types for each sub image and generate every combination of
circuits that can be made. For each of these circuits, we generate
another score that considers the individual component scores
and a likelihood score that prioritizes well-formed over
malformed circuits, such as the circuit having a power source
instead of none. The algorithm will output each circuit as a
netlist for our frontend and circuit simulator to use.

The five highest scoring circuits will be shown to the user on
the application’s user interface. The user can then select which
of the shown circuits was the one that they drew. After selecting
the circuit, they will enter values for each component
(resistance, voltage, etc.). The circuit will then be sent to our
circuit simulator, which will use modified nodal analysis to
simulate the circuit. Once the circuit has been simulated, it will
be sent to the frontend where the circuit will be rendered.
 Users will then be able to see a digital version of the circuit
that they drew with the voltages and currents annotated. Each
component will have a labeled current going through it, and
each node will have a labeled voltage.

18-500 Design Project Report: Circuit Simulpaper, 10/13/2023 3

IV. DESIGN REQUIREMENTS
A high level description of the design requirements can be seen
below in Table 1:

TABLE I. DESIGN REQUIREMENTS

Description Requirement

Minimum iOS Version 8.0

Minimum Image Size 1920x1080 pixels

Minimum Component Size 350x200 pixels

Maximum Application Size 100 Megabytes

Maximum Number of Components 8

Supported Components Voltage/Current Sources,
Resistors, Bulbs, LEDs, Switches

We want to make sure that our app is easily accessible to all,
even if they do not have the newest and best iOS devices. For
this reason, we hope to achieve a minimum iOS compatibility
of iOS 8.0. OpenCV can work on all iOS versions including and
after 8.0, which is why we chose this specific version. This
allows the application to be compatible with all iPhones since
the iPhone 6 and with all iPads since the iPad 2. We also want
to keep the application size low so that users do not have to
uninstall or delete existing items from their devices to install
our application. By looking at the size of other applications with
similar functionality like “Tiny Scanner”, we decided that our
application would have a maximum size of 100 MB. These
requirements are all set to increase accessibility to our
application.

We also have restrictions on the components to maintain the
effectiveness of our computer vision algorithm. We currently
have a limit of eight components maximum per drawn circuit to
ensure there is adequate spacing between each component and
to ensure all components can fit on an image while maintaining
the size requirements. The components must also be drawn
horizontally and vertically at near-right angles so that we can
easily detect components between nodes. We also are only
performing steady-state DC analysis on the following
components: voltage sources, current sources, resistors, bulbs,
switches, and LEDs.

There are also requirements for the picture that users input
into our application for analysis. The picture must have a
minimum size of 1920x1080 pixels. All our supported devices
except for the iPad 2 can take pictures at or above this
resolution. This constraint is required so that our computer
vision algorithm can easily identify components and nodes in
the circuit. Similarly, there is a minimum component size of
350x200 pixels. This means that users will need to take close-
up pictures of their circuit. Without this constraint, the
components will be hard to identify.

V. DESIGN TRADE STUDIES

A. Offline Application
When running our application, we decided to implement it

with no need for internet connection. Due to a large portion of
our target audience not having access to the devices with an
internet connection[4] we decided that keeping the app offline
will strengthen the argument for the accessibility use case and
extend to a larger audience.

This means that we will be storing everything locally through
the user’s device. All that needs to be stored is reference data
for dataset components. As one of the main benefits of having
an online application is having access to large amounts of
storage, we expect that our application will not exceed more
than 100 MB. Most offline apps are anywhere between 20 to
100 MB in size, and ones that perform image parsing tend more
towards the higher end of 100 MB. For example, the offline
mobile application “Tiny Scanner”, which generates PDFs
(Portable Document Format) from pictures, has an app size of
92.5 MB, which does not include document and data storage.
Because this application generates and stores PDFs, it takes up
lots of documents and data storage. For our application, we will
not store images of previously simulated circuits because a user
can always just reupload an image of the circuit from their
camera roll. Thus, we consider the 92.5 MB as an appropriate
benchmark for our application storage. By constraining the
amount of storage our application will use, we believe keeping
the application offline will reinforce the goals of our project
while also functioning the same as an online application.

B. Mobile Application
For how we want to display our application, we decided to

implement a mobile application. We needed to decide between
either a mobile application or a web application and after much
thought we decided that a mobile application not only aligns
with our use case of accessibility more. If the project progressed
with a web application the user would have a much harder time
uploading their drawing and uploading their picture rather than
just doing it on their phone. In addition, this application is
intended to be offline due to accessibility, thus a web
application would not be possible to implement. Recent
statistics show that around 71% of 12 year old have phones and
by age 14 roughly 91% have phones[5]. Furthermore, a different
study stated that 95% of U.S. teens have access to a smartphone
at home, while only 88% have access to a computer [1]. This
comes out to around 2 million people of our target audience. As
phones are much more of a necessity than laptops around the
ages of 12-15, we felt like tailoring the application to be used
on a phone would align more with our goal of making this
project an accessible approach to help educate all those that are
interested in circuits. Therefore, we decided that these reasons
were enough to pursue the mobile application.

C. Application Stack
Swift is the most popular framework used for iOS

applications today - almost all applications nowadays use it.
Swift is a more modern language and easier to learn when

18-500 Design Project Report: Circuit Simulpaper, 10/13/2023 4

compared to Objective-C, which is why we are using it for our
frontend. Objective C has traditionally been used to develop
iOS applications because it has existed for nearly forty years.
Swift, which is much newer, is also 2.6 times faster than
Objective-C[8] and has memory and type safety built in. We will
have to use Objective-C as well because OpenCV is only
available as an Objective-C library. Therefore, the backend of
our application will have to use Objective-C. To allow the Swift
application to interact with the Objective-C application, we will
need to create a bridging header file to bridge the Swift and
Objective-C code.

D. Computer Vision Architecture
We opted to use a more traditional computer vision

architecture that does not utilize a neural network. Given that
we decided on creating a mobile application that does not
require the internet, we cannot feasibly utilize a neural network
as such. Loading and using a neural network locally in-app is
too computationally and storage intensive for a mobile phone,
especially for older iPhones. Ultimately what we considered is
how much of a difference there is in terms of accuracy when
using and not using a neural network. Some research that has
been previously conducted has achieved a 95% accuracy in
classifying electrical components using a CNN (Convolutional
Neural Network)[9], and additional research has been conducted
to achieve a 90% accuracy using KNN (K Nearest Neighbors)
without a neural network [10]. Given we are also not using a
neural network, we use this 90% as a benchmark for our design
as well. We acknowledge that using a neural network would
greatly increase the accuracy of classifying individual
components, but this would come at the expense of integrating
our mobile application with a backend server that can support
the neural network. Because the image preprocessing and usage
of ORB would stay the same, we have left the integration of a
neural network for work that can be done post-MVP to further
improve our accuracy goals if desired.

E. Circuit Segmentation
In order to be able to detect a circuit, we need to know what

individual components make up the circuit. To know what the
individual components are, we need to generate separate
subimages of each component in the circuit and feed those
subimages into a classification workflow. The most intuitive
way to separate components in a circuit is by looking at pairs of
adjacent nodes in a circuit, because a component is always
between them. Because we also use nodes in netlists and to
perform nodal analysis, first detecting the nodes in a circuit is
the most intuitive first step in our computer vision subsystem.

We considered two solutions to detecting nodes: Hough line
transform and Hough circle transform. Hough line transform
would be used to detect the line parts of components that
represent their ends, and we could denote the existence and
location of a node as the point where two lines intersect. For
Hough circle transform, we would require that every node be
drawn as a circle, and the transform will just detect every circle
in the circuit as a node. After testing both implementation ideas,

we ultimately decided on using Hough circle transform and
requiring the user to draw nodes as circles.

From testing with Hough line transform there were two
fundamental problems. The first problem was that the line
transform does not perform well with hand drawn lines. Hand
drawn lines are usually never straight, and the transform
consistently breaks down one line representing one end of a
component into multiple connected lines. The other critical
problem is that there are many lines that intersect in circuits that
do not represent nodes. For example, the “+” symbol in a
voltage source is made of two lines that intersect at 90 degree
angles, which is exactly what we expect for our nodes. Thus,
using Hough line transform is highly unreliable for us to use
for node detection.

We believe that requiring users to draw nodes as circles is
extra work for the user but has benefits that outweigh the extra
effort needed. Detecting the nodes is arguably the most
important step in the circuit detection: if one node is missed,
that means that an entire component will be missed, rather than
just one component being classified incorrectly. This means
that properly detecting the nodes is critical to achieving our
circuit detection accuracy marks. With the proper image
preprocessing, node detection is highly reliable with Hough
circle transform, which will be discussed later. Also, we believe
that being able to identify where nodes are in a circuit is
beneficial to the learning of our users. Being able to recognize
points of shared voltages and know where current diverges is
incredibly useful in doing elementary circuit analysis. Thus, we
chose to use Hough circle transform and require users to draw
filled-in circles for their nodes for increased circuit detection
accuracy and for their own learning sake.

F. Feature Detection Algorithm
We primarily considered two feature detection algorithms,

ORB and SIFT, and ultimately decided on using ORB. For
feature detection, ORB uses the FAST algorithm, which
identifies pixels that have a high gradient and arranges them in
a circular pattern. SIFT uses a DoG (difference of Gaussian)
pyramid to search for scale-space extrema, which is an
expensive compute process. We chose ORB because it is
rotation-invariant and more lightweight than SIFT, which we
describe below.

What is desirable about both feature detection algorithms is
that they are scale-invariant. This means that features that are
the same but differently sized still get classified as similar
features. This is important because users will likely draw
components that aren’t all the same size as each other or the
components in our dataset. But, only ORB is inherently
rotation-invariant. Without rotation invariance, if you took the
same image and rotated it, features would be detected
differently. Rotation invariance is important for our work
because while we require components to be either horizontally
or vertically aligned, some may be drawn with slight offsets in
angle. Fig. 2. contrasts the number of matched features with

18-500 Design Project Report: Circuit Simulpaper, 10/13/2023 5

Fig. 2. Difference of number of matched features when running ORB & SIFT
on an image and a copy of the image rotated by various degrees

ORB and SIFT when comparing an image with its rotated self,
with ORB clearly performing better across all degrees of
rotation. SIFT does actually perform better given in-plane
rotation but given that our image features are purely two-
dimensional and the image of the circuit is always taken face-
on, this is unimportant for our use case. The other key
difference is that ORB is more lightweight. SIFT is more
computationally intensive because it must construct DoG
pyramids and calculate gradient histograms. Additionally, SIFT
descriptors are larger than ORB’s BRIEF descriptors. SIFT
descriptors are 128-dimensional floating-point vectors,
spanning 512 bytes each. On the other hand, BRIEF descriptors
are only binary strings that are 32 bytes each. Shown in Table
2 is a size comparison between SIFT and BRIEF descriptors run
on a dataset of component subimages. Although the number of
descriptors generated from ORB is five times that of SIFT,
because of how large each SIFT descriptor is, the average
number of bytes for one component is 3.5 times less with ORB.
Because we are making an iPhone application and storing the
dataset locally (in-app), we want a less computationally
intensive algorithm and to minimize allocation of the user’s
storage, hence ORB is our feature detection algorithm of
choice.

TABLE 2. COMPARISON OF STORAGE USAGE WITH ORB AND SIFT

Algorithm # of
Components

Avg. # of
Descriptors

Avg Bytes per
Component

Total
Bytes

SIFT 13 55 28681 372864

ORB 14 289 9401 131616

G. Image Preprocessing
Before feeding images into our computer vision algorithms,

we want to perform preprocessing to better isolate the user’s
drawing and get rid of unintended features like shadows and
light marks on the paper. Upon receiving the user’s image, we
decided on first performing thresholding and median blurring.
Thresholding is useful because it generates a binary image, and
we can set the threshold to isolate the darker markings that
would come from concentrated amounts of pencil lead or ink
and ignore the effects of light shadows and accidental markings.
Because the first step in our circuit detection is detecting where

each node is and nodes are filled-in circles, thresholding will
best isolate these nodes.

After thresholding, we decided on using median blurring
over other blurring algorithms such as Gaussian blurring and
bilateral blurring. Median blurring is most effective after
thresholding for our use because it is the best in removing salt-
and-pepper noise and details. After we perform thresholding, it
is likely not only the filled-in nodes are left, but some darker
pen/pencil spots from the components as well. Because we want
to isolate the nodes, median blurring sees the thin parts of the
drawing that correspond to the components as noise (the
pepper) and removes them. Additionally, sometimes
thresholding will create white spots in the filled-in circles
because the darkness of the circle is not uniform. Median
blurring will fill in these white spots (the salt) because it sees it
as noise, creating filled in circles. This way there is no
possibility of a circular white spot in the node to also get
detected as a circle/node.

Gaussian blurring and bilateral blurring are similar, and both
use Gaussian distributions to remove noise, and bilateral
blurring uses two separate distributions instead of one. They
both produce more of a motion blur and retain features of an
image better compared to median blurring, which we don’t
want for the image preprocessing for node detection. But, we
do want this effect before doing edge detection on individual
component subimages, which is separate from the node
detection. For this, we chose bilateral blurring. We use bilateral
blurring because unlike Gaussian blurring, it keeps edges sharp
while blurring the rest of the image, which is exactly what we
want to perform edge detection. We use Canny edge detection
instead of thresholding before feature detection because while
both generate binary images, thresholding will more likely
eliminate entire parts of component drawings if the pen/pencil
lead is too thin and light. Additionally, we care more about the
outline of the component as features, so edge detection is the
most appropriate for detecting individual components.

H. Value Detection
Rather than having users write down the values for each

component next to the component, we elected to have users type
the values onto the application itself. Although there are many
libraries available for text detection, it would be hard for the
computer vision algorithm to figure out which value
corresponds to which component. This can lead to dissatisfied
users because they may have to constantly redraw and take
pictures of their circuit until it gets properly identified. Once we
reach our MVP, we are considering adding the ability for users
to write component values if they please.

VI. SYSTEM IMPLEMENTATION
We can separate our implementation into three separate

subsystems: the computer vision system, the circuit simulator
system, and the mobile application. We can further separate the
computer vision system into three separate workflows: parsing
the user image, performing individual component detection,
and generating netlist data structures.

18-500 Design Project Report: Circuit Simulpaper, 10/13/2023 6

Fig. 3. Node Detection Pipeline

A. User Image Parsing
Before running feature detection algorithms on individual

images of components, we must generate the subimages of the
individual components from the user’s original image. This
process is shown in Fig. 3. Once the user uploads the image of
their drawing, we load it as grayscale to perform basic
thresholding. Thresholding is a simple method of image
segmentation that will create binary images from a grayscale
image. After thresholding, our binary image is entirely white
except for the drawing itself, which is black.

Next, we apply a median blur to the binary image. Median
blurring is most effective in removing noise from images. The
first reason why we do this is because the blurring will remove
lighter pen/pencil markers from the image that corresponds to
the components themselves. This will allow us to isolate only
the filled-in nodes that the user has drawn. Also, the blurring
makes the nodes themselves more filled-in and distinct. Likely
from the thresholding the less-filled in parts of the node will be
removed, leaving a black circle with spots of white. The
blurring will fill in this circle, which will remove all the
possibly smaller, white circles that could be accidentally
identified with Hough Circle Transform.

Now that we have an image with just black circles
representing nodes, we use Hough Circle Transform to identify
the location of each circle with x and y pixel coordinates. We
know that a component must be between each pair of
neighboring nodes, thus we have the coordinates that represent
the far ends of the component, and we can use them to extract

subimages of each component. The subimages are taken from

the original grayscale image.

B. Individual Component Detection
Before doing feature detection, we first apply Bilateral

blurring to the grayscale subimages. This will make the
subimages more naturally blurred while preserving the general
edges of the drawing. We then perform Canny edge detection,
which will isolate the edges of the drawing and black-out
everything else. For feature detection we use the ORB
algorithm. This will generate FAST keypoints and BRIEF
descriptors. The descriptors are generated from the keypoints as
binary feature vectors that represent all the important features
in the subimage.

Using these BRIEF descriptors we can perform brute-force
matching with BRIEF descriptors we have stored in the
application’s data storage. These stored descriptors have
associated component names with them, such as “resistor”, or
“voltage source”. We perform the brute-force matching with
Hamming distance to quantify the accuracy of each match of
features; the lower the distance, the better the match. Taking an
average of the distances across all matches, we now have a
score we can use to quantify the similarity between a subimage
and a dataset image. Doing this with each subimage and each
set of BRIEF descriptors in storage, we can rank what the best
component match is for each subimage. See Fig. 4 on the next
page as an example of the Canny edge detection and classifying
the best match for subimages.

18-500 Design Project Report: Circuit Simulpaper, 10/13/2023 7

Fig. 4. Canny Edge Detection and Component Classification

C. Netlist Generation
From parsing the user image and detecting individual

components, we now have identified nodes and the component
types that represent edges between each node. From this, we
want to generate a netlist to represent the circuit so that the
frontend of the mobile application and the circuit simulator can
easily reconstruct the circuit. A netlist is similar to a list of
edges, which we already have, so this reconstruction is easy.
We assign nodes an index and construct an edge that entails the
component type and which nodes are the tail and the head. The
only edge case is regarding wires. In a netlist, nodes that are
only connected by wires are the same node. The fix for this is
simple because we can just case on when the component
between two nodes is a wire. An example circuit and
corresponding netlist is shown in Fig. 5.

Because we want to generate the five most matching circuits,
we must generate potential circuits and scores associated with
each circuit. For each individual component, we consider the

Fig. 5. Sample Circuit and Generated Netlist

three best component types, and then generate every
combination of these components. Because our maximum
supported component limit is eight, the maximum number of
combinations we generate would be 38 = 6561 different circuits.
One of the five most matching circuits that we output to the user
will be the circuit with the best matching component type for
each component. For each other circuit, we compute a score that
factors in the scores for each individual component, as well as
a likelihood score:

𝑠𝑐𝑜𝑟𝑒 = ∑(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠)

+ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑠𝑐𝑜𝑟𝑒

The likelihood score is a simple metric that is intended to skew
towards well-formed over malformed circuits. For example, a
circuit generated that has no power source will have a larger
(worse) likelihood score, as well as for a circuit with all power
sources and no loads. Well-formed circuits will have smaller
likelihood scores. The weight of the likelihood score will be
determined through testing. Utilizing a weighted summation of
the component distances where the number of matched features
corresponds to the weight is also being considered and will be
tested.

D. Dataset
Our dataset is not a collection of images of individual

components, but rather a text document where each line
corresponds to an image’s BRIEF descriptors and classification
for the component. Because the BRIEF descriptors are what we
care about from the image, we can immensely save on the
application’s file data. As mentioned previously, BRIEF
descriptors are 32-byte binary string representations of features
in an image.

18-500 Design Project Report: Circuit Simulpaper, 10/13/2023 8

For each component type (voltage and current sources,
resistors, wires, bulbs, switches, and LEDs), we will have five
sets of reference descriptors (five images for each component).
Important to note is that to account for the polarity/orientation
of voltage and current sources and LEDs, we will have separate
classifications for their directions. This means our dataset will
span the equivalent of 50 total images of components. Using an
average of 9401 bytes per component from Table 2, the text file
will be around 500 KB large.

We will use five reference images for each component type
to account for variation in drawings and orientations of the
components (horizontal and vertical). Because ORB can
account for orientation, drawn components that aren’t perfectly
vertical or horizontal will still have similarly detected features.

E. Circuit Simulator
We will be using modified nodal analysis to solve and

simulate circuits[2]. The simulator will take in a netlist as input
and generate matrices that will be used to solve a system of
equations describing the circuit. Modified nodal analysis tries
to solve the equation

𝐴𝑥 = 𝑧
in which A describes the connections and conductance of the
elements of the circuit, x describes the unknown values that we
are trying to solve, and z describes the current and voltage
sources. The A matrix is of size (𝑣 + 𝑛)(𝑣 + 𝑛), where v is the
number of voltage sources and n is the number of nodes. It is
constructed of four smaller matrices

𝐴 = ;𝐺 𝐵
𝐶 𝐷@	

The G matrix details the conductance of the circuit elements,
the B and C matrices detail the connections of the voltage
sources, and the D matrix will always be a zero matrix if the
circuit only contains independent voltage sources. The
simulator will generate the required matrices and solve the
equation above for the x matrix, which contains the unknown
voltages and currents. Once these are determined, they will be
added to the netlist and sent to the frontend for rendering.
Although modified nodal analysis generates a larger system of
equations than other algorithms such as traditional nodal
analysis or mesh analysis, modified nodal analysis is easier to
implement algorithmically on a computer system.

F. Mobile Application
The mobile application will be written in Swift. The home

screen consists of an application description and two tips to help
the user upload their circuit correctly. From here there is a skip
button that leads to an upload page where the user will upload
their drawing. From there a wrapper must be created to bridge
the C++ code with the Swift code. In doing so, the Swift
codebase will have access to all the functions from the C++
code and will be able to run the computer vision code. However,
the image that was sent through the app will have to be parsed
and converted with Swift’s “UIImage” class. When the
computer vision algorithms finish, five netlists will be
generated.

Based on these netlists, we will craft and display circuits. For
this we will utilize reference images stored in the application’s
file data for each component and connect them with lines for
proper wiring and circles for distinction of nodes. Each circuit
will be displayed on a swipeable page. In addition to the five
pages corresponding to each circuit option, there will be a sixth
swipeable page that will allow the user to reupload their circuit
if none of the five displayed circuits match the circuit the user
intended to create.

Once the user selects their circuit, they will then be able to
input all the values of each component drawn. This includes
resistor values, voltage values for voltage sources, knee voltage
for LEDs, etc. The user will be able to input either the raw
numbers for values or shortened ones. For example, “10000”
and “10k” will both be parsed as the quantity ten thousand.
After the user is satisfied with the values they have inputted,
they will be given an option to “Analyze” the circuit through a
button directly below the display. Once the user has clicked
“Analyze”, the contents of the completed circuit will be sent to
the circuit simulator via another Swift-C++ wrapper, and the
data of the circuit analysis will be overlayed on top of the circuit
diagram. At any point the user can refresh the app and go back
to the home page to start the process over.

VII. TEST, VERIFICATION AND VALIDATION
Each subsystem of the project will undergo testing all

throughout development. These subsystems include individual
component detection, full circuit detection, circuit simulation
testing, and accessibility testing. We plan to have a test group
of seven children between the ages of 12 and 14 to conduct
many of our tests. These tests are designed to reinforce all our
use case requirements as well as improve the overall quality of
the entire system.

A. Unit Testing for Individual Component Testing
To test for individual components, we plan to have the test

group each draw every component six times. These components
include voltage and current sources, resistors, wires, bulbs,
switches, and LEDs. Each of the component drawings will be
rotated to test both the vertical and horizontal orientations. To
ensure we hit our accuracy goals, we will also test with other
varying factors, pictures with poor lighting and components
drawn on lined paper. These tests will be conducted to
determine the best diameter of each pixel neighborhood and
sigma values for the bilateral blurring, as well as the upper and
lower threshold limits for the Canny edge detection. Success is
indicated by the best match for each component image being
correct 90% of the time.

B. Unit Testing for Circuit Detection Accuracy
To test the circuit detection functionality, we plan to have the

test group draw four different circuits each. In addition to this,
each of the group members will draw ten circuits. These circuit
images can be used for all the testing mentioned below.

The first circuit detection unit test is regarding the node
detection. We take the raw images of each circuit and feed it
into our preprocessing algorithms and see if nodes can be

18-500 Design Project Report: Circuit Simulpaper, 10/13/2023 9

correctly identified. This testing will be used to determine the
best thresholding value, aperture linear size for median
blurring, as well as the parameters for Hough circles (minimum
distance between circles, min/max circle radius, and min/max
thresholds for edge detection). We measure success by
manually inspecting that each of the intended (and only the
intended) nodes were identified.

The second unit test is for the creation of the component
subimages. Given coordinates of detected nodes, we must
determine what are appropriately sized bounding boxes to
encompass a component in between each pair of neighboring
nodes. Success is measured by manually inspecting the
generated subimages, ensuring they encompass the main
features of the component and don’t include extra features, such
as the nodes or other components.

The third unit test is constructing the five best circuits given
a list of components and what edges they correspond to. Here
we need to ensure that polarity of components is properly
handled, and circuit scores are computed accurately. This test
will also be used to tweak the likelihood score weight when
calculating circuit scores. We compare the generated netlists
from this test with what we expect as the means of measuring
success.

The integration testing for this circuit detection subsystem
requires connecting all three of these components. Because
there is a gap in this subsystem where the individual component
detection system is used, we can manually create the list of
components from the subimage generation to isolate the
integration testing of this subsystem.

C. Unit Testing for Full Circuit Detection
This testing is as simple as connecting the full circuit

detection subsystem with the individual component detection
subsystem. We can use the same images from the full circuit
testing for this. Success here means that for 90% of the input
images, one of the five output netlists corresponds to the circuit
in the input image.

D. Circuit Simulator Testing
The plan to test the circuit simulator is to cross reference

results with a different circuit simulator online, LTspice. We
will write a script that generates SPICE netlists with
components we support and input these into both simulators.
The accuracy goal for this subsystem is 100%, thus we plan on
the output of both simulators to be the same every time.

E. Circuit Simulator Testing
The test group will be given the phone application and will

be given a series of tasks to complete. These will include
navigation through the home page to the upload page, going
back to previous pages, and uploading a picture. In addition to
this, Once doing this, we plan to give each member a survey of
questions to rate their experience with the UI/UX on a scale of
1-10. These questions will include:

• “How easy was it to upload your circuits?”
• “How clear were the schematics of all the circuits

displayed?”

• “How easy was it to input values for your circuit?”
• “How useful were the tips on the home screen when

drawing your circuit?”
• “How easy was it to recognize what you needed to

redraw with your circuit if it wasn’t an option?”

The result of the survey will help with future developments
as it allows us to understand either what is missing from the app
or what has been a success amongst the test group thus far. In
addition to this, we will perform unit tests on the application to
make sure all subsystems are working properly. Our first unit
will be verifying that the image sent from the user is uploaded
to the application correctly. The iOS application is planned to
temporarily store the user’s image; thus, we can manually check
that the image is not altered and up to standards for the circuit
simulator.

Secondly, we plan to feed netlists into the application to test
the functionality of displaying circuits given a netlist. We plan
to test fifteen for three sets of recommended circuits as well as
another five for the final page. We plan to draw these circuits
and create the netlists accordingly. Lastly, we are going to test
the value input functionality. This will be done by inputting the
values on the selected circuits and verifying the netlists being
generated are correct. We will draw full circuits, with values, as
well as the netlists that correspond and will cross reference with
the output of the iOS application.

F. Circuit Simulator Testing
The first test would be the image upload functionality. To do

this we plan on uploading circuits through the application and
verifying that the computer vision algorithm both receives and
reads the image. We will measure success manually by the
output of the algorithm. The second test would be the netlist
parsing to create circuit UI. Once a user uploads a circuit five
netlists are created that the iOS application must parse and
display. This will also be manually tested by cross referencing
the netlists and the circuits displayed on the application. Finally,
we must test that the values created from the circuit simulators
are parsed correctly and displayed in the right location on the
application interface. We will cross reference with the values
that are resulted from the circuit simulator to make sure the
values are placed accordingly to the diagram.

VIII. PROJECT MANAGEMENT

A. Schedule
Fig. 6 is the Gantt Chart with the schedule of work as well as

each team member's weekly tasks.

B. Team Member Responsibilities
Each member has taken on one of the main three subsystems

of the project.
• Stephen Dai: Computer Vision
• Devan Grover: Circuit Simulator
• Jaden D’Abreo: iPhone Application

All the members have worked together to design the
architecture of the system; however, Jaden will be mostly in
charge of testing and integrating towards the end of the project.

18-500 Design Project Report: Circuit Simulpaper, 10/13/2023 10

C. Bill of Materials and Budget
All necessary materials will be items the user must have

themselves. These materials consist of an iPhone with iOS 8.0+,
a writing utensil, and paper.

D. Risk Mitigation Plans
If we are struggling to reach our 90% individual component

detection accuracy, a simple risk mitigation is just increasing
the size of the dataset. Even if we doubled our original dataset
size, it would still be only around 1 MB of data. Increasing the
size of the dataset provides more options to find stronger
matches between images, which can never hurt the component
detection accuracy assuming that the additions to the dataset are
properly classified. A related idea is that we can tailor each
user’s application to their individual drawing abilities by going
through a form of calibration. If a user draws an individual
component and classifies it, we can use it in the dataset. If we
were using a neural network, this would be susceptible to
adversarial machine learning because users could purposely add
improper classifications to the dataset. Because the dataset is
local to the user with our application, they would only be
affecting their own accuracy. For this, we would need to add
the option to recalibrate and remove the previous calibration’s
data in case the user accidentally misclassified components.
This idea will likely be implemented post-MVP unless we
struggle reaching the 90% detection mark.

In the case where we struggle to have one of the five
displayed circuits be correct, a simple boost can be to increase
the number of displayed circuits. Another more critical issue
that affects the circuit detection is if nodes can’t be identified
properly. This issue can be handled in testing by experimenting
with different values used in the image preprocessing
algorithms, as well as changing the type of preprocessing
algorithm (ex: different blurring).

If the circuit simulator we create is unable to work, we can
use an existing tool like SPICE. The newest version of SPICE
uses C, which we can package into our iOS application. SPICE
is an open-source circuit simulator that uses the same netlist
format that we are planning on using in our own circuit
simulator. Therefore, if our circuit simulator does not work, we
only must change the actual simulation logic to use SPICE - no
change will have to be made to the computer vision algorithm
or frontend to account for the new simulation library.

IX. RELATED WORK
There are numerous online circuit simulators such as LTSpice.
But all these simulators require building the circuit in the
application itself and are not free of cost to users. Regarding the
computer vision aspect, there exists research that was
conducted to contrast the use of SIFT and ORB with drawn
electrical components[7], but these components were digitally
and not hand drawn, and they only classified individual
components and not entire circuits. Research has been
conducted to reconstruct full circuits from drawn circuits[6], but
this uses digitally drawn circuits by providing an online GUI,

and it also uses a CNN (convolutional neural network). Neither
of these tools are available to the public.

X. SUMMARY
The Circuit Simulpaper system is designed to allow a

younger audience to learn basic circuit functionality through an
iPhone application coupled with drawing. It serves as an
educational tool that can be accessible for all. The system
requires three items, items that most households already
contain, to produce a desired circuit analysis. Foreseeable
challenges include circuit detection accuracy, integration
between the phone application and the computer vision aspect,
and user testing. We are confident that through our thorough
design and integration plans that we will be able to overcome
all challenges and provide a high-quality educational tool.

GLOSSARY OF ACRONYMS
BRIEF - Binary Robust Independent Elementary Features
FAST - Features from Accelerated Segment Test
LED - Light emitting diode
ORB - Oriented FAST and Rotated BRIEF
SIFT - Scale-Invariant Feature Transform

REFERENCES
[1] Anderson, M. (2018, May 31). Teens, Social Media and Technology

2018. Pew Research Center: Internet, Science & Tech.
https://www.pewresearch.org/internet/2018/05/31/teens-social-media
technology-2018/

[2] Cheever, E. (n.d.). Analysis of Circuits. Analysis of circuits.
https://lpsa.swarthmore.edu/Systems/Electrical/mna/MNA1.html

[3] Heideman, P. D., Flores, K. A., Sevier, L. M., & Trouton, K. E. (2017).
Effectiveness and adoption of a drawing-to-learn study tool for recall
and problem solving: Minute sketches with folded lists. CBE life
sciences education. https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5459246/

[4] Mejía, D. (2023, April 13). Four out of five households with children
owned tablets. Census.gov. https://www.census.gov/library/stories/
2023/04/tablets-more-common-in-households-with-children.html#:~
:text=The%20share%20jumped%20to%2075,17%20years%20old%20%
E2%80%94%20owned%20tablets

[5] Miller, C. (2023, March 13). When should you get your kid a phone?.
Child Mind Institute. https://childmind.org/article/when-should-you-get-
your-kid-a-phone/

[6] Keerthi Priya, A., Gaganashree, N., Hemalatha, K. N., Chembeti, J. S.,
Kavitha, T. (2022). AI-based online hand drawn engineering symbol
classification and recognition. Lecture Notes in Networks and Systems,
195–204. https://doi.org/10.1007/978-981-16-8512-5_22

[7] Pavithra, S., Shreyashwini, N. K., Bhavana, H. S., Nikhitha, G., &
Kavitha, T. (2023). Hand-drawn electronic component recognition using
Orb. Procedia Computer Science, 218, 504–513.
https://doi.org/10.1016/j.procs.2023.01.032

[8] Swift. A powerful open language that lets everyone build amazing apps.
Apple. (n.d.). https://www.apple.com/in/swift/

[9] Haiyan Wang,Tianhong Pan, efei,Anhui and Jiangsu.(2020) “Hand-
drawn electronic component recognition using deep learning
algorithm”China, Int J:Computer Application in Technology

[10] Dewangan, A. and A. Dhole,(2018) “KNN based hand drawn electrical
circuit recognition” International Journal for Research in Applied
Science & Engineering Technology:p. 1111-1115.

18-500 Design Project Report: Circuit Simulpaper, 10/13/2023 11

 Fig. 6. Gantt Chart Schedule

