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Abstract—This project is intended to serve as an educational 

tool for children in middle school to learn basic circuit 
functionality through drawing. The project will be implemented 
by using a computer vision algorithm to identify components on a 
hand drawn circuit, feed the identified circuit into a circuit 
simulator, and display the analyzed circuit, all of which will be 
done through a mobile application. This system hopes to serve as 
a fun and safe way for children to learn about circuits through the 
appeal of drawing and without the risks of electrical components.  
 

Index Terms— Circuits, DC Analysis, Computer Vision, 
Simulation 

I. INTRODUCTION 
LECTRICAL circuits are expensive and potentially dangerous 

to experiment with. Not all students have the resources 
available to them to learn about circuits at a young age. To 
purchase the bare minimum components to create a simple 
circuit (breadboard, wires, resistors, power supply) people must 
spend at least forty dollars, which is a luxury that everyone 
cannot afford. Furthermore, improper education can lead to 
dangerous situations. If a student unknowingly causes a short 
circuit or improperly uses a component like a multimeter, they 
can harm themselves and their equipment. 

When learning about circuits, students typically first learn 
about the different symbols designating various electronic 
components. Learning to draw circuits and using the proper 
symbols are imperative steps in the process of mastering 
circuits. Young students are also often fond of drawing and 
recent studies show that drawing serves as one of the most 
effective ways to retain knowledge[3].  

Our application hopes to solve the issues of a lack of 
accessibility and safety when learning about circuits and 
capitalize upon young students’ fondness of drawing. We are 
creating an application in which users can take a picture of a 
schematic they draw, upload the picture, and then receive a 
simulated version of the circuit they drew with voltages and 
currents labeled.  

This application is primarily targeted towards middle school 
students. Students at this age are old enough to learn the basics 
of circuits, have access to mobile applications, and still indulge 
in drawing through school. Currently, there are no technologies 
that allow a user to upload a drawn circuit and have it analyzed. 
In addition, all circuit simulators online are accessed through 
web applications, thus less accessible to our primary use group. 
Furthermore, there are no applications that accomplish the 
intended goals of this project.  

II. USE-CASE REQUIREMENTS 
The use case requirements for our application encompass 

many factors of our application, with a focus on accuracy and 
usability. The use case requirements are as follows: 

  
1. The computer vision algorithm must have an 

individual component detection accuracy of 90% 
 

To ensure a good user experience for our application, being 
able to properly identify components is required. Users should 
not have to constantly take pictures of their circuits to get 
components to be identified properly. 

 
2. The computer vision algorithm must have a circuit 

detection accuracy of 90% 
 

We want to not only ensure each component is detected with 
an accuracy of 90%; we also want to ensure that all circuits are 
detected with a 90% accuracy. We will achieve this by using an 
algorithm to provide users with the five circuits our computer 
vision algorithm has the highest confidence in. Users will then 
be able to select which amongst these five circuits is the correct 
circuit that they drew. 

 
3. The circuit simulator must simulate circuits with 

100% accuracy 
 

Our circuit simulator must have perfect accuracy, otherwise 
the application cannot be used as an educational tool. Given an 
input circuit, our simulator must output the circuit with the 
correct voltages/currents at each node/component. 
 

4. The application's user interface must receive an 
average rating of 80% 

 

We will conduct user testing of our application on the target 
group of middle school students and provide them with a survey 
to record their feedback after testing. The survey questions must 
all have an average score of at least 8/10. 

 
5. The application must be free to the user 

 

To ensure that most children can use our application, we need 
to make it free. This app was created so that children can learn 
about circuits without having to spend money on components, 
therefore we must make it free. 
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Fig. 1.  System Architecture Block Diagram 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
Our project is split up into three main parts: the computer 

vision system, the circuit simulator, and the frontend 
application. A block diagram of our application’s high level 
functionality is shown in Fig. 1 above. 

The user will first draw a circuit diagram for the circuit that 
they want simulated on a piece of paper. They will have to draw 
the circuit with dots at the ends of the components’ terminals 
and with the components oriented horizontally or vertically. 
The application will have a built-in feature in which the user 
can either take a picture or select a picture from their camera 
roll to upload. Users will use this feature to upload the image of 
the circuit they drew to our application. 

Once the user has uploaded their circuit image, it will get sent 
to our computer vision algorithm for processing. The computer 
vision algorithm will first perform preprocessing on the input 
image to remove noise and make nodes easier to detect. Once 
the image has been preprocessed, a circle detection algorithm is 
used to detect the nodes at the ends of each component. The 
algorithm will then detect all the components between nodes 
and create subimages of each component in the circuit.  

Once the components are detected, ORB will be run on each 
subimage. ORB is an algorithm that generates keypoints and 
descriptors based on the input image. Keypoints are parts of the 
image that ORB determines are distinct. The descriptors are 
extracted from the keypoints and each one is a binary string of 
encoded information about each keypoint. These  

 

 
descriptors can then be used to match features with different 
images. After running ORB, we will use brute force matching 
to match the descriptors with precalculated descriptors from our 
reference dataset stored locally within the application.  

At this point, we have scores associating the component 
subimage with a type of component, like resistor or voltage 
source. We will take the top three most matching component 
types for each sub image and generate every combination of 
circuits that can be made. For each of these circuits, we generate 
another score that considers the individual component scores 
and a likelihood score that prioritizes well-formed over 
malformed circuits, such as the circuit having a power source 
instead of none. The algorithm will output each circuit as a 
netlist for our frontend and circuit simulator to use. 

The five highest scoring circuits will be shown to the user on 
the application’s user interface. The user can then select which 
of the shown circuits was the one that they drew. After selecting 
the circuit, they will enter values for each component 
(resistance, voltage, etc.). The circuit will then be sent to our 
circuit simulator, which will use modified nodal analysis to 
simulate the circuit. Once the circuit has been simulated, it will 
be sent to the frontend where the circuit will be rendered. 
 Users will then be able to see a digital version of the circuit 
that they drew with the voltages and currents annotated. Each 
component will have a labeled current going through it, and 
each node will have a labeled voltage. 
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IV. DESIGN REQUIREMENTS 
A high level description of the design requirements can be seen 
below in Table 1: 

TABLE I.  DESIGN REQUIREMENTS 

Description Requirement 

Minimum iOS Version 8.0 

Minimum Image Size 1920x1080 pixels 

Minimum Component Size 350x200 pixels 

Maximum Application Size 100 Megabytes 

Maximum Number of Components 8 

Supported Components Voltage/Current Sources, 
Resistors, Bulbs, LEDs, Switches 

 
 

We want to make sure that our app is easily accessible to all, 
even if they do not have the newest and best iOS devices. For 
this reason, we hope to achieve a minimum iOS compatibility 
of iOS 8.0. OpenCV can work on all iOS versions including and 
after 8.0, which is why we chose this specific version. This 
allows the application to be compatible with all iPhones since 
the iPhone 6 and with all iPads since the iPad 2. We also want 
to keep the application size low so that users do not have to 
uninstall or delete existing items from their devices to install 
our application. By looking at the size of other applications with 
similar functionality like “Tiny Scanner”, we decided that our 
application would have a maximum size of 100 MB. These 
requirements are all set to increase accessibility to our 
application. 

We also have restrictions on the components to maintain the 
effectiveness of our computer vision algorithm. We currently 
have a limit of eight components maximum per drawn circuit to 
ensure there is adequate spacing between each component and 
to ensure all components can fit on an image while maintaining 
the size requirements. The components must also be drawn 
horizontally and vertically at near-right angles so that we can 
easily detect components between nodes. We also are only 
performing steady-state DC analysis on the following 
components: voltage sources, current sources, resistors, bulbs, 
switches, and LEDs.  

There are also requirements for the picture that users input 
into our application for analysis. The picture must have a 
minimum size of 1920x1080 pixels. All our supported devices 
except for the iPad 2 can take pictures at or above this 
resolution. This constraint is required so that our computer 
vision algorithm can easily identify components and nodes in 
the circuit. Similarly, there is a minimum component size of 
350x200 pixels. This means that users will need to take close-
up pictures of their circuit. Without this constraint, the 
components will be hard to identify. 

V. DESIGN TRADE STUDIES 

A. Offline Application 
When running our application, we decided to implement it 

with no need for internet connection. Due to a large portion of 
our target audience not having access to the devices with an 
internet connection[4] we decided that keeping the app offline 
will strengthen the argument for the accessibility use case and 
extend to a larger audience.   

This means that we will be storing everything locally through 
the user’s device. All that needs to be stored is reference data 
for dataset components. As one of the main benefits of having 
an online application is having access to large amounts of 
storage, we expect that our application will not exceed more 
than 100 MB. Most offline apps are anywhere between 20 to 
100 MB in size, and ones that perform image parsing tend more 
towards the higher end of 100 MB. For example, the offline 
mobile application “Tiny Scanner”, which generates PDFs 
(Portable Document Format) from pictures, has an app size of 
92.5 MB, which does not include document and data storage. 
Because this application generates and stores PDFs, it takes up 
lots of documents and data storage. For our application, we will 
not store images of previously simulated circuits because a user 
can always just reupload an image of the circuit from their 
camera roll. Thus, we consider the 92.5 MB as an appropriate 
benchmark for our application storage. By constraining the 
amount of storage our application will use, we believe keeping 
the application offline will reinforce the goals of our project 
while also functioning the same as an online application. 

B.  Mobile Application 
For how we want to display our application, we decided to 

implement a mobile application. We needed to decide between 
either a mobile application or a web application and after much 
thought we decided that a mobile application not only aligns 
with our use case of accessibility more. If the project progressed 
with a web application the user would have a much harder time 
uploading their drawing and uploading their picture rather than 
just doing it on their phone. In addition, this application is 
intended to be offline due to accessibility, thus a web 
application would not be possible to implement. Recent 
statistics show that around 71% of 12 year old have phones and 
by age 14 roughly 91% have phones[5]. Furthermore, a different 
study stated that 95% of U.S. teens have access to a smartphone 
at home, while only 88% have access to a computer [1]. This 
comes out to around 2 million people of our target audience. As 
phones are much more of a necessity than laptops around the 
ages of 12-15, we felt like tailoring the application to be used 
on a phone would align more with our goal of making this 
project an accessible approach to help educate all those that are 
interested in circuits. Therefore, we decided that these reasons 
were enough to pursue the mobile application. 

C. Application Stack 
Swift is the most popular framework used for iOS 

applications today - almost all applications nowadays use it. 
Swift is a more modern language and easier to learn when 
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compared to Objective-C, which is why we are using it for our 
frontend. Objective C has traditionally been used to develop 
iOS applications because it has existed for nearly forty years. 
Swift, which is much newer, is also 2.6 times faster than 
Objective-C[8] and has memory and type safety built in. We will 
have to use Objective-C as well because OpenCV is only 
available as an Objective-C library. Therefore, the backend of 
our application will have to use Objective-C. To allow the Swift 
application to interact with the Objective-C application, we will 
need to create a bridging header file to bridge the Swift and 
Objective-C code. 

D. Computer Vision Architecture 
We opted to use a more traditional computer vision 

architecture that does not utilize a neural network. Given that 
we decided on creating a mobile application that does not 
require the internet, we cannot feasibly utilize a neural network 
as such. Loading and using a neural network locally in-app is 
too computationally and storage intensive for a mobile phone, 
especially for older iPhones. Ultimately what we considered is 
how much of a difference there is in terms of accuracy when 
using and not using a neural network. Some research that has 
been previously conducted has achieved a 95% accuracy in 
classifying electrical components using a CNN (Convolutional 
Neural Network)[9], and additional research has been conducted 
to achieve a 90% accuracy using KNN (K Nearest Neighbors) 
without a neural network [10]. Given we are also not using a 
neural network, we use this 90% as a benchmark for our design 
as well. We acknowledge that using a neural network would 
greatly increase the accuracy of classifying individual 
components, but this would come at the expense of integrating 
our mobile application with a backend server that can support 
the neural network. Because the image preprocessing and usage 
of ORB would stay the same, we have left the integration of a 
neural network for work that can be done post-MVP to further 
improve our accuracy goals if desired. 

E. Circuit Segmentation 
In order to be able to detect a circuit, we need to know what 

individual components make up the circuit. To know what the 
individual components are, we need to generate separate 
subimages of each component in the circuit and feed those 
subimages into a classification workflow. The most intuitive 
way to separate components in a circuit is by looking at pairs of 
adjacent nodes in a circuit, because a component is always 
between them. Because we also use nodes in netlists and to 
perform nodal analysis, first detecting the nodes in a circuit is 
the most intuitive first step in our computer vision subsystem. 

We considered two solutions to detecting nodes: Hough line 
transform and Hough circle transform. Hough line transform 
would be used to detect the line parts of components that 
represent their ends, and we could denote the existence and 
location of a node as the point where two lines intersect. For 
Hough circle transform, we would require that every node be 
drawn as a circle, and the transform will just detect every circle 
in the circuit as a node. After testing both implementation ideas, 

we ultimately decided on using Hough circle transform and 
requiring the user to draw nodes as circles. 

From testing with Hough line transform there were two 
fundamental problems. The first problem was that the line 
transform does not perform well with hand drawn lines. Hand 
drawn lines are usually never straight, and the transform 
consistently breaks down one line representing one end of a 
component into multiple connected lines. The other critical 
problem is that there are many lines that intersect in circuits that 
do not represent nodes. For example, the “+” symbol in a 
voltage source is made of two lines that intersect at 90 degree 
angles, which is exactly what we expect for our nodes. Thus, 
using Hough line transform is highly unreliable for us to use  
for node detection. 

We believe that requiring users to draw nodes as circles is 
extra work for the user but has benefits that outweigh the extra 
effort needed. Detecting the nodes is arguably the most 
important step in the circuit detection: if one node is missed, 
that means that an entire component will be missed, rather than 
just one component being classified incorrectly. This means 
that properly detecting the nodes is critical to achieving our 
circuit detection accuracy marks. With the proper image 
preprocessing, node detection is highly reliable with Hough 
circle transform, which will be discussed later. Also, we believe 
that being able to identify where nodes are in a circuit is 
beneficial to the learning of our users. Being able to recognize 
points of shared voltages and know where current diverges is 
incredibly useful in doing elementary circuit analysis. Thus, we 
chose to use Hough circle transform and require users to draw 
filled-in circles for their nodes for increased circuit detection 
accuracy and for their own learning sake. 

F. Feature Detection Algorithm 
We primarily considered two feature detection algorithms, 

ORB and SIFT, and ultimately decided on using ORB. For 
feature detection, ORB uses the FAST algorithm, which 
identifies pixels that have a high gradient and arranges them in 
a circular pattern. SIFT uses a DoG (difference of Gaussian) 
pyramid to search for scale-space extrema, which is an 
expensive compute process. We chose ORB because it is 
rotation-invariant and more lightweight than SIFT, which we 
describe below. 

What is desirable about both feature detection algorithms is 
that they are scale-invariant. This means that features that are 
the same but differently sized still get classified as similar 
features. This is important because users will likely draw 
components that aren’t all the same size as each other or the 
components in our dataset. But, only ORB is inherently 
rotation-invariant. Without rotation invariance, if you took the 
same image and rotated it, features would be detected 
differently. Rotation invariance is important for our work 
because while we require components to be either horizontally  
or vertically aligned, some may be drawn with slight offsets in 
angle. Fig. 2. contrasts the number of matched features with  
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Fig. 2. Difference of number of matched features when running ORB & SIFT 
on an image and a copy of the image rotated by various degrees 

 

ORB and SIFT when comparing an image with its rotated self, 
with ORB clearly performing better across all degrees of 
rotation. SIFT does actually perform better given in-plane 
rotation but given that our image features are purely two-
dimensional and the image of the circuit is always taken face-
on, this is unimportant for our use case. The other key 
difference is that ORB is more lightweight. SIFT is more 
computationally intensive because it must construct DoG 
pyramids and calculate gradient histograms. Additionally, SIFT 
descriptors are larger than ORB’s BRIEF descriptors. SIFT 
descriptors are 128-dimensional floating-point vectors, 
spanning 512 bytes each. On the other hand, BRIEF descriptors 
are only binary strings that are 32 bytes each. Shown in Table 
2 is a size comparison between SIFT and BRIEF descriptors run 
on a dataset of component subimages. Although the number of 
descriptors generated from ORB is five times that of SIFT, 
because of how large each SIFT descriptor is, the average 
number of bytes for one component is 3.5 times less with ORB. 
Because we are making an iPhone application and storing the 
dataset locally (in-app), we want a less computationally 
intensive algorithm and to minimize allocation of the user’s 
storage, hence ORB is our feature detection algorithm of 
choice.  

TABLE 2.  COMPARISON OF STORAGE USAGE WITH ORB AND SIFT 

Algorithm # of 
Components 

Avg. # of 
Descriptors 

Avg Bytes per 
Component 

Total 
Bytes 

SIFT 13 55 28681 372864 

ORB 14 289 9401 131616 

G. Image Preprocessing  
Before feeding images into our computer vision algorithms, 

we want to perform preprocessing to better isolate the user’s 
drawing and get rid of unintended features like shadows and 
light marks on the paper. Upon receiving the user’s image, we 
decided on first performing thresholding and median blurring. 
Thresholding is useful because it generates a binary image, and 
we can set the threshold to isolate the darker markings that 
would come from concentrated amounts of pencil lead or ink 
and ignore the effects of light shadows and accidental markings. 
Because the first step in our circuit detection is detecting where 

each node is and nodes are filled-in circles, thresholding will 
best isolate these nodes.  

After thresholding, we decided on using median blurring 
over other blurring algorithms such as Gaussian blurring and 
bilateral blurring. Median blurring is most effective after 
thresholding for our use because it is the best in removing salt-
and-pepper noise and details. After we perform thresholding, it 
is likely not only the filled-in nodes are left, but some darker 
pen/pencil spots from the components as well. Because we want 
to isolate the nodes, median blurring sees the thin parts of the 
drawing that correspond to the components as noise (the 
pepper) and removes them. Additionally, sometimes 
thresholding will create white spots in the filled-in circles 
because the darkness of the circle is not uniform. Median 
blurring will fill in these white spots (the salt) because it sees it 
as noise, creating filled in circles. This way there is no 
possibility of a circular white spot in the node to also get 
detected as a circle/node. 

Gaussian blurring and bilateral blurring are similar, and both 
use Gaussian distributions to remove noise, and bilateral 
blurring uses two separate distributions instead of one. They 
both produce more of a motion blur and retain features of an 
image better compared to median blurring, which we don’t 
want for the image preprocessing for node detection. But, we 
do want this effect before doing edge detection on individual 
component subimages, which is separate from the node 
detection. For this, we chose bilateral blurring. We use bilateral 
blurring because unlike Gaussian blurring, it keeps edges sharp 
while blurring the rest of the image, which is exactly what we 
want to perform edge detection. We use Canny edge detection 
instead of thresholding before feature detection because while 
both generate binary images, thresholding will more likely 
eliminate entire parts of component drawings if the pen/pencil 
lead is too thin and light. Additionally, we care more about the 
outline of the component as features, so edge detection is the 
most appropriate for detecting individual components. 

H. Value Detection 
Rather than having users write down the values for each 

component next to the component, we elected to have users type 
the values onto the application itself. Although there are many 
libraries available for text detection, it would be hard for the 
computer vision algorithm to figure out which value 
corresponds to which component. This can lead to dissatisfied 
users because they may have to constantly redraw and take 
pictures of their circuit until it gets properly identified. Once we 
reach our MVP, we are considering adding the ability for users 
to write component values if they please. 

VI. SYSTEM IMPLEMENTATION 
We can separate our implementation into three separate 

subsystems: the computer vision system, the circuit simulator 
system, and the mobile application. We can further separate the 
computer vision system into three separate workflows: parsing 
the user image, performing individual component detection, 
and generating netlist data structures. 
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Fig. 3. Node Detection Pipeline 

A. User Image Parsing 
Before running feature detection algorithms on individual 

images of components, we must generate the subimages of the 
individual components from the user’s original image. This 
process is shown in Fig. 3. Once the user uploads the image of 
their drawing, we load it as grayscale to perform basic 
thresholding. Thresholding is a simple method of image 
segmentation that will create binary images from a grayscale 
image. After thresholding, our binary image is entirely white 
except for the drawing itself, which is black.  

Next, we apply a median blur to the binary image. Median 
blurring is most effective in removing noise from images. The 
first reason why we do this is because the blurring will remove 
lighter pen/pencil markers from the image that corresponds to 
the components themselves. This will allow us to isolate only 
the filled-in nodes that the user has drawn. Also, the blurring 
makes the nodes themselves more filled-in and distinct. Likely 
from the thresholding the less-filled in parts of the node will be 
removed, leaving a black circle with spots of white. The 
blurring will fill in this circle, which will remove all the 
possibly smaller, white circles that could be accidentally 
identified with Hough Circle Transform. 

Now that we have an image with just black circles 
representing nodes, we use Hough Circle Transform to identify 
the location of each circle with x and y pixel coordinates. We 
know that a component must be between each pair of 
neighboring nodes, thus we have the coordinates that represent 
the far ends of the component, and we can use them to extract  

 

 
subimages of each component. The subimages are taken from 

the original grayscale image.  

B. Individual Component Detection 
Before doing feature detection, we first apply Bilateral 

blurring to the grayscale subimages. This will make the 
subimages more naturally blurred while preserving the general 
edges of the drawing. We then perform Canny edge detection, 
which will isolate the edges of the drawing and black-out 
everything else. For feature detection we use the ORB 
algorithm. This will generate FAST keypoints and BRIEF 
descriptors. The descriptors are generated from the keypoints as 
binary feature vectors that represent all the important features 
in the subimage. 

Using these BRIEF descriptors we can perform brute-force 
matching with BRIEF descriptors we have stored in the 
application’s data storage. These stored descriptors have 
associated component names with them, such as “resistor”, or 
“voltage source”. We perform the brute-force matching with 
Hamming distance to quantify the accuracy of each match of 
features; the lower the distance, the better the match. Taking an 
average of the distances across all matches, we now have a 
score we can use to quantify the similarity between a subimage 
and a dataset image. Doing this with each subimage and each 
set of BRIEF descriptors in storage, we can rank what the best 
component match is for each subimage. See Fig. 4 on the next 
page as an example of the Canny edge detection and classifying 
the best match for subimages. 
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Fig. 4. Canny Edge Detection and Component Classification 
 

C. Netlist Generation 
From parsing the user image and detecting individual  

components, we now have identified nodes and the component 
types that represent edges between each node. From this, we 
want to generate a netlist to represent the circuit so that the 
frontend of the mobile application and the circuit simulator can 
easily reconstruct the circuit. A netlist is similar to a list of 
edges, which we already have, so this reconstruction is easy. 
We assign nodes an index and construct an edge that entails the 
component type and which nodes are the tail and the head. The 
only edge case is regarding wires. In a netlist, nodes that are 
only connected by wires are the same node. The fix for this is 
simple because we can just case on when the component 
between two nodes is a wire. An example circuit and 
corresponding netlist is shown in Fig. 5. 

Because we want to generate the five most matching circuits, 
we must generate potential circuits and scores associated with 
each circuit. For each individual component, we consider the 

Fig. 5. Sample Circuit and Generated Netlist 

  
three best component types, and then generate every 
combination of these components. Because our maximum 
supported component limit is eight, the maximum number of 
combinations we generate would be 38 = 6561 different circuits. 
One of the five most matching circuits that we output to the user 
will be the circuit with the best matching component type for 
each component. For each other circuit, we compute a score that 
factors in the scores for each individual component, as well as 
a likelihood score: 

 
𝑠𝑐𝑜𝑟𝑒 = ∑(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠)

+ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑠𝑐𝑜𝑟𝑒 
 

The likelihood score is a simple metric that is intended to skew 
towards well-formed over malformed circuits. For example, a 
circuit generated that has no power source will have a larger 
(worse) likelihood score, as well as for a circuit with all power 
sources and no loads. Well-formed circuits will have smaller 
likelihood scores. The weight of the likelihood score will be 
determined through testing. Utilizing a weighted summation of 
the component distances where the number of matched features 
corresponds to the weight is also being considered and will be 
tested. 

D. Dataset 
Our dataset is not a collection of images of individual 

components, but rather a text document where each line 
corresponds to an image’s BRIEF descriptors and classification 
for the component. Because the BRIEF descriptors are what we 
care about from the image, we can immensely save on the 
application’s file data. As mentioned previously, BRIEF 
descriptors are 32-byte binary string representations of features 
in an image. 
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For each component type (voltage and current sources, 
resistors, wires, bulbs, switches, and LEDs), we will have five 
sets of reference descriptors (five images for each component). 
Important to note is that to account for the polarity/orientation 
of voltage and current sources and LEDs, we will have separate 
classifications for their directions. This means our dataset will 
span the equivalent of 50 total images of components. Using an 
average of 9401 bytes per component from Table 2, the text file 
will be around 500 KB large. 

We will use five reference images for each component type 
to account for variation in drawings and orientations of the 
components (horizontal and vertical). Because ORB can 
account for orientation, drawn components that aren’t perfectly 
vertical or horizontal will still have similarly detected features. 

E. Circuit Simulator 
We will be using modified nodal analysis to solve and 

simulate circuits[2]. The simulator will take in a netlist as input 
and generate matrices that will be used to solve a system of 
equations describing the circuit. Modified nodal analysis tries 
to solve the equation  

𝐴𝑥 = 𝑧 
in which A describes the connections and conductance of the 
elements of the circuit, x describes the unknown values that we 
are trying to solve, and z describes the current and voltage 
sources. The A matrix is of size (𝑣 + 𝑛)(𝑣 + 𝑛), where v is the 
number of voltage sources and n is the number of nodes. It is 
constructed of four smaller matrices  
 

𝐴 = ;𝐺 𝐵
𝐶 𝐷@	 

 

The G matrix details the conductance of the circuit elements, 
the B and C matrices detail the connections of the voltage 
sources, and the D matrix will always be a zero matrix if the 
circuit only contains independent voltage sources. The 
simulator will generate the required matrices and solve the 
equation above for the x matrix, which contains the unknown 
voltages and currents. Once these are determined, they will be 
added to the netlist and sent to the frontend for rendering. 
Although modified nodal analysis generates a larger system of 
equations than other algorithms such as traditional nodal 
analysis or mesh analysis, modified nodal analysis is easier to 
implement algorithmically on a computer system. 

F. Mobile Application 
The mobile application will be written in Swift. The home 

screen consists of an application description and two tips to help 
the user upload their circuit correctly. From here there is a skip 
button that leads to an upload page where the user will upload 
their drawing. From there a wrapper must be created to bridge 
the C++ code with the Swift code. In doing so, the Swift 
codebase will have access to all the functions from the C++ 
code and will be able to run the computer vision code. However, 
the image that was sent through the app will have to be parsed 
and converted with Swift’s “UIImage” class. When the 
computer vision algorithms finish, five netlists will be 
generated.  

Based on these netlists, we will craft and display circuits. For 
this we will utilize reference images stored in the application’s 
file data for each component and connect them with lines for 
proper wiring and circles for distinction of nodes. Each circuit 
will be displayed on a swipeable page. In addition to the five 
pages corresponding to each circuit option, there will be a sixth 
swipeable page that will allow the user to reupload their circuit 
if none of the five displayed circuits match the circuit the user 
intended to create.  

Once the user selects their circuit, they will then be able to 
input all the values of each component drawn. This includes 
resistor values, voltage values for voltage sources, knee voltage 
for LEDs, etc. The user will be able to input either the raw 
numbers for values or shortened ones. For example, “10000” 
and “10k” will both be parsed as the quantity ten thousand.  
After the user is satisfied with the values they have inputted, 
they will be given an option to “Analyze” the circuit through a 
button directly below the display. Once the user has clicked 
“Analyze”, the contents of the completed circuit will be sent to 
the circuit simulator via another Swift-C++ wrapper, and the 
data of the circuit analysis will be overlayed on top of the circuit 
diagram. At any point the user can refresh the app and go back 
to the home page to start the process over. 

VII. TEST, VERIFICATION AND VALIDATION 
Each subsystem of the project will undergo testing all 

throughout development. These subsystems include individual 
component detection, full circuit detection, circuit simulation 
testing, and accessibility testing. We plan to have a test group 
of seven children between the ages of 12 and 14 to conduct 
many of our tests. These tests are designed to reinforce all our 
use case requirements as well as improve the overall quality of 
the entire system. 

A. Unit Testing for Individual Component Testing 
To test for individual components, we plan to have the test 

group each draw every component six times. These components 
include voltage and current sources, resistors, wires, bulbs, 
switches, and LEDs. Each of the component drawings will be 
rotated to test both the vertical and horizontal orientations. To 
ensure we hit our accuracy goals, we will also test with other 
varying factors, pictures with poor lighting and components 
drawn on lined paper. These tests will be conducted to 
determine the best diameter of each pixel neighborhood and 
sigma values for the bilateral blurring, as well as the upper and 
lower threshold limits for the Canny edge detection. Success is 
indicated by the best match for each component image being 
correct 90% of the time. 

B. Unit Testing for Circuit Detection Accuracy 
To test the circuit detection functionality, we plan to have the 

test group draw four different circuits each. In addition to this, 
each of the group members will draw ten circuits. These circuit 
images can be used for all the testing mentioned below. 

The first circuit detection unit test is regarding the node 
detection. We take the raw images of each circuit and feed it 
into our preprocessing algorithms and see if nodes can be 
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correctly identified. This testing will be used to determine the 
best thresholding value, aperture linear size for median 
blurring, as well as the parameters for Hough circles (minimum 
distance between circles, min/max circle radius, and min/max 
thresholds for edge detection). We measure success by 
manually inspecting that each of the intended (and only the 
intended) nodes were identified. 

The second unit test is for the creation of the component 
subimages. Given coordinates of detected nodes, we must 
determine what are appropriately sized bounding boxes to 
encompass a component in between each pair of neighboring 
nodes. Success is measured by manually inspecting the 
generated subimages, ensuring they encompass the main 
features of the component and don’t include extra features, such 
as the nodes or other components. 

The third unit test is constructing the five best circuits given 
a list of components and what edges they correspond to. Here 
we need to ensure that polarity of components is properly 
handled, and circuit scores are computed accurately. This test 
will also be used to tweak the likelihood score weight when 
calculating circuit scores. We compare the generated netlists 
from this test with what we expect as the means of measuring 
success. 

The integration testing for this circuit detection subsystem 
requires connecting all three of these components. Because 
there is a gap in this subsystem where the individual component 
detection system is used, we can manually create the list of 
components from the subimage generation to isolate the 
integration testing of this subsystem. 

C. Unit Testing for Full Circuit Detection 
This testing is as simple as connecting the full circuit 

detection subsystem with the individual component detection 
subsystem. We can use the same images from the full circuit 
testing for this. Success here means that for 90% of the input 
images, one of the five output netlists corresponds to the circuit 
in the input image. 

D. Circuit Simulator Testing 
The plan to test the circuit simulator is to cross reference 

results with a different circuit simulator online, LTspice. We 
will write a script that generates SPICE netlists with 
components we support and input these into both simulators. 
The accuracy goal for this subsystem is 100%, thus we plan on 
the output of both simulators to be the same every time. 

E.  Circuit Simulator Testing 
The test group will be given the phone application and will 

be given a series of tasks to complete.  These will include 
navigation through the home page to the upload page, going 
back to previous pages, and uploading a picture. In addition to 
this, Once doing this, we plan to give each member a survey of 
questions to rate their experience with the UI/UX on a scale of 
1-10. These questions will include: 

 
• “How easy was it to upload your circuits?” 
• “How clear were the schematics of all the circuits 

displayed?” 

• “How easy was it to input values for your circuit?” 
• “How useful were the tips on the home screen when 

drawing your circuit?” 
• “How easy was it to recognize what you needed to 

redraw with your circuit if it wasn’t an option?” 
 

The result of the survey will help with future developments 
as it allows us to understand either what is missing from the app 
or what has been a success amongst the test group thus far. In 
addition to this, we will perform unit tests on the application to 
make sure all subsystems are working properly. Our first unit 
will be verifying that the image sent from the user is uploaded 
to the application correctly. The iOS application is planned to 
temporarily store the user’s image; thus, we can manually check 
that the image is not altered and up to standards for the circuit 
simulator.  

Secondly, we plan to feed netlists into the application to test 
the functionality of displaying circuits given a netlist. We plan 
to test fifteen for three sets of recommended circuits as well as 
another five for the final page. We plan to draw these circuits 
and create the netlists accordingly. Lastly, we are going to test 
the value input functionality. This will be done by inputting the 
values on the selected circuits and verifying the netlists being 
generated are correct. We will draw full circuits, with values, as 
well as the netlists that correspond and will cross reference with 
the output of the iOS application. 

F. Circuit Simulator Testing 
The first test would be the image upload functionality. To do 

this we plan on uploading circuits through the application and 
verifying that the computer vision algorithm both receives and 
reads the image. We will measure success manually by the 
output of the algorithm. The second test would be the netlist 
parsing to create circuit UI. Once a user uploads a circuit five 
netlists are created that the iOS application must parse and 
display. This will also be manually tested by cross referencing 
the netlists and the circuits displayed on the application. Finally, 
we must test that the values created from the circuit simulators 
are parsed correctly and displayed in the right location on the 
application interface. We will cross reference with the values 
that are resulted from the circuit simulator to make sure the 
values are placed accordingly to the diagram.  

VIII. PROJECT MANAGEMENT 

A. Schedule 
Fig. 6 is the Gantt Chart with the schedule of work as well as 

each team member's weekly tasks. 

B. Team Member Responsibilities 
Each member has taken on one of the main three subsystems 

of the project. 
• Stephen Dai: Computer Vision 
• Devan Grover: Circuit Simulator 
• Jaden D’Abreo: iPhone Application 

All the members have worked together to design the 
architecture of the system; however, Jaden will be mostly in 
charge of testing and integrating towards the end of the project. 
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C. Bill of Materials and Budget 
All necessary materials will be items the user must have 

themselves. These materials consist of an iPhone with iOS 8.0+, 
a writing utensil, and paper.  

D. Risk Mitigation Plans 
If we are struggling to reach our 90% individual component 

detection accuracy, a simple risk mitigation is just increasing 
the size of the dataset. Even if we doubled our original dataset 
size, it would still be only around 1 MB of data. Increasing the 
size of the dataset provides more options to find stronger 
matches between images, which can never hurt the component 
detection accuracy assuming that the additions to the dataset are 
properly classified. A related idea is that we can tailor each 
user’s application to their individual drawing abilities by going 
through a form of calibration. If a user draws an individual 
component and classifies it, we can use it in the dataset. If we 
were using a neural network, this would be susceptible to 
adversarial machine learning because users could purposely add 
improper classifications to the dataset. Because the dataset is 
local to the user with our application, they would only be 
affecting their own accuracy. For this, we would need to add 
the option to recalibrate and remove the previous calibration’s 
data in case the user accidentally misclassified components. 
This idea will likely be implemented post-MVP unless we 
struggle reaching the 90% detection mark. 

In the case where we struggle to have one of the five 
displayed circuits be correct, a simple boost can be to increase 
the number of displayed circuits. Another more critical issue 
that affects the circuit detection is if nodes can’t be identified 
properly. This issue can be handled in testing by experimenting 
with different values used in the image preprocessing 
algorithms, as well as changing the type of preprocessing 
algorithm (ex: different blurring). 

If the circuit simulator we create is unable to work, we can 
use an existing tool like SPICE. The newest version of SPICE 
uses C, which we can package into our iOS application. SPICE 
is an open-source circuit simulator that uses the same netlist 
format that we are planning on using in our own circuit 
simulator. Therefore, if our circuit simulator does not work, we 
only must change the actual simulation logic to use SPICE - no 
change will have to be made to the computer vision algorithm 
or frontend to account for the new simulation library. 

IX. RELATED WORK 
There are numerous online circuit simulators such as LTSpice. 
But all these simulators require building the circuit in the 
application itself and are not free of cost to users. Regarding the 
computer vision aspect, there exists research that was 
conducted to contrast the use of SIFT and ORB with drawn 
electrical components[7], but these components were digitally 
and not hand drawn, and they only classified individual 
components and not entire circuits. Research has been 
conducted to reconstruct full circuits from drawn circuits[6], but 
this uses digitally drawn circuits by providing an online GUI, 

and it also uses a CNN (convolutional neural network). Neither 
of these tools are available to the public. 

X. SUMMARY 
The Circuit Simulpaper system is designed to allow a 

younger audience to learn basic circuit functionality through an 
iPhone application coupled with drawing.  It serves as an 
educational tool that can be accessible for all. The system 
requires three items, items that most households already 
contain, to produce a desired circuit analysis. Foreseeable 
challenges include circuit detection accuracy, integration 
between the phone application and the computer vision aspect, 
and user testing. We are confident that through our thorough 
design and integration plans that we will be able to overcome 
all challenges and provide a high-quality educational tool.  

GLOSSARY OF ACRONYMS 
BRIEF - Binary Robust Independent Elementary Features 
FAST - Features from Accelerated Segment Test 
LED - Light emitting diode 
ORB - Oriented FAST and Rotated BRIEF 
SIFT - Scale-Invariant Feature Transform 
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 Fig. 6. Gantt Chart Schedule 


