
Team A5 – Follow Me
Jeffery Cao, George Chang, Ging Luo Figures (and tables)

can be worth
“a thousand words”!Add your 12 slides after this slide… [remember, 12 min talk + 3 min Q/A]

See https://gsuite.google.com/learning-center/products/slides/get-started/ for how to import slides

Make sure to cover: (refer to the Final Presentation Guidance):
• Use Case / Application and Primary (Quantitative) Requirements (i.e. a reminder from prior presentations)
• Solution Approach – a reminder (include updates from Design Review presentation if changed)

○ E.g. block diagram(s), flow chart(s), schematic(s)
• System Implementation – your complete solution

○ E.g., pictures, screenshots, video (make sure that there is CMU access to play any media)
• Testing, Verification and Validation – with quantitative metrics and target values to compare with experiment

○ What tests did you run ? How many tests ? What were the results ?
○ Graphs, tables, quantitative results (compare with the metric targets & ultimately use-case requirements)

• Project Management – tasks, division of labor, and schedule
• Lessons Learned

Consider that this slide already works as a introduction slide so use your first slide wisely (i.e. feel free to delete guidance text)

https://gsuite.google.com/learning-center/products/slides/get-started/o

Use case requirement
A blind person would benefit from a product which can give them more detail of the surroundings,

thus boost their confidence, according to a paper in the British Journal of Visual Impairment.

● The product shall identify the closest obstacle accurately

● The product shall notify the user of obstacles in real-time

● The product shall have enough battery

● The product shall be light enough

● The product shall be economical

Solution Approach

A portable auditory warning system that uses camera and LIDAR to detect
obstacle in front.

Solution Demo

https://docs.google.com/file/d/1J5NBPVCnnPlhLeToMiv3qZSXZZYQl0kV/preview

Hardware Testing: Battery
Design Req: Battery should be above critical voltage of 9.8V for at least one hour

One Hour
Line

Procedure: Running FollowMe,
connected battery watch through USB

Outcome: Battery dropped below 9.8
around 8200second (2.5hr)

8185 sec

Battery Watch: Tradeoff Analysis
Best
Better
Good

Arduino Voltage
Comparator Circuit

Dedicated i2c
maker’s Battery
Gauge

Ease of Development Code Arduino
Plug Pins

Built the analog
circuit, solder it

Plug and Use

Ease of Data
Collection

Built-in UART
Conn.

External Voltmeter
record by hand

Built-in I2C
Connection

Cost and Availability 4$ Free from 220
Lab

8$

Support of 12V, 2.5A Uses Voltage
Divider

Op-Amp support
high voltage

Only <200mA
hard cap

Hardware Testing: Latency

Design Requirements: Maximum latency from camera intake to end of neural model is
less than 500ms

Maximum
Latency

84.2ms

Average
Latency

62ms

Using Python time library
to record latency while
operating

Software Testing: Accuracy
Metric: Precision curve, Recall curve

Results:

1. Model precision is 0.76, recall is 0.7

2. Real-world Testing in Techspark: Combined
Accuracy 0.85

Visualization:

Good: Person

Medium: Door, Chair, Desk, Table

Bad: Window

Pretrained Self-trained

Tradeoff Analysis: Recognize Objects

Semantic Segmentation: Pixel-by-pixel object detection
Eg: Meta’s SAM (Segment Anything Model)

Inference Speed Accuracy

Hough Transform CPU Memory Intensive Bad for complex objects

Segmentation ~10s Too Detailed

FRCNN 500ms 0.9

YOLO 200ms 0.76

Non-DL approach: Hough Transform

Transform image space to Hough parameter space

Tradeoff Analysis: Object Detection Architecture

FRCNN: Two-stage detector:

Propose Region of Interest; For each region, recognize.

YOLO: Single-stage detector (The one we choose)

Recognize extracted features directly. (right).
FRCNN

YOLO

Loss Function:
Cross-entropy loss vs Focal loss
Class-imbalanced Dataset (80% vs 20%)

FRCNN YOLO

Software Testing: Latency

To improve the latency of the system, we have implemented
our scripts with the following strategy:

1. Use numpy functions to speed up distance calculation

=> Depth Calculation Script < 7.2 ms

2. Use multiprocessing/thread to spreadout speaker time
cost.

=> Reach a per picture latency < 500 ms

3. Use logging to track time spent for each process.

=> Picture gathering + object label generation < 200ms

=> All of above + distance calculation + speaker start
announcing < 500ms

Other Testing
Voice Weight

Requiremen
t

The voice prompt shall have no overlap The core component shall
weight less than 5 lb

Procedure Spectral Graph to visually assess abnormal voice
behavior; manually decide voice overlap

Put the whole setup on the scale
and read its reading.

Verification No overlap of audio 2lb 13.7oz, less than 5lb

Validation The product can notify the user clear enough The prodduct is light enough for
user to wear

Schedule Examination

