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1 INTRODUCTION

Vision is oftentimes considered the most important
sense of all senses (Maybe except Nociception — the sense
of pain). Losing the sense of vision can lead to a wide va-
riety of inconveniences. They will lose the ability to detect
colors, depth, and motion visually.

In order to compensate for the loss of one sense, they
frequently use auxiliary tools and technologies, such as
text-to-speech, braille, and accessible apps that speak
when interacting. Similarly, when blind people want to
move from one place to another, they frequently use a
walking stick, which they move the stick side to side to
detect any impending obstacles. Blind who have extra
budgets also adopt guide dogs, which can lead the way
for the blind. Unfortunately, guide dogs are expensive to
buy and care for, and they are not permitted in sensitive
locations such as hospitals or labs. Due to financial and
regulatory reasons, only 2% of the blind have a guide dog
at all times, according to the Caring Eyes Foundation.

Walking sticks also have their own limitations. Ac-
cording to Jeamwatthanachai et al., Walking sticks are too
short to give blind people confidence in indoor navigation,
and they give too little information to the user [2]. The
purpose of the walking sticks is to provide tactile feedback
for the user to let the user create a mental map, but unfor-
tunately, when the blind person is at a indoor environment,
many of the cues are lost: The environment might be too
noisy to determine the texture using a walking stick; ran-
domly placed obstacles might hinder the blind’s ability to
create a mental map; Lack of obstacles that walking stick
can respond will lead to a sense of insecurity for blind, as it
has no cues for location [2]. Such unconfidence is one of the
main reasons that blind people refuse to leave their homes
frequently, which severely damages their work, study, and
their social lives. As such, a blind aid that is able to give
blind people more information than a walking stick in the
indoor setting is needed.

In order to answer the need, our project will be aimed

at indoor obstacle recognition and notification in planar
ground. By using the system we developed in this project,
the user should be able to move inside the Hamerschlag
hallway with minimal guidance or external help such as a
guide dog or volunteers. With the voice command provided
by the system, the user should be able to gather informa-
tion in a room or in the hallway compared to just using a
walking stick.

The project itself was not meant to replace walking
sticks, as tactile feedback was mostly trusted by blind peo-
ple [2], and walking sticks can serve as second layer of
detection if the system misses the obstacle. Instead, it
serves as an extension to the walking stick, by giving the
blind person more information to boost their confidence
in an indoor setting, thus increasing their participation in
work, study, and social events.

2 USE-CASE REQUIREMENTS

We define the scope of our system to work in flat in-
door hallways without dangerous obstacles like cars/scoot-
ers dashing at the blind. The hallway contains no steps
or doors. We also believe that other people will avoid the
blind automatically, so the blind only need to avoid sta-
tionary obstacles by themselves. As such, we will focus on
stationary objects. For convenience, we have organized the
use-case requirement by each of their use case (or product
requirement):

e The product shall detect obstacles accurately

— Our system shall be able to detect large obsta-
cles 5m away with 90-100% accuracy. This in-
cludes both moving and stationary obstacles.

— This is based on past research on object detec-
tion for the blind, which achieved 80% accuracy
in both indoor and outdoor environments [1].

e The product shall identify obstacles accurately

— Being able to identify obstacles can boost users’
confidence in walking and make their social lives
easier [2]. Our system shall be able to identify
a specific subset of interesting obstacles with
greater than 85% accuracy. We include spe-
cific subsets of obstacles to be objects frequently
appearing in an indoor environment, including
desks, chairs, elevators, doors, etc.
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— Derived from past research is able to achieve
80% of accuracy in a variety of environments

[5]-

e The product shall notify the user of obstacles in real-
time

— Our system shall be able to notify obstacles with
500 ms latency. We believe other people will
avoid the blind automatically, so the blind only
needs to avoid stationary obstacles by them-
selves. Based on the 5-meter detection range
and 1-second reaction time of the blind user, the
blind user will have about 2-3 meters of space
left with a walking speed of 1m/s. This is a rea-
sonable reaction space, so we require the latency
to be 500 ms.

— Also the product should be able to notify the
user of the closest obstacle. Since the informa-
tion about an obstacle is dense enough, mention-
ing multiple objects will be overwhelming for the
user, as they will share the same information
processing capability with a non-blind person.

e The product shall have enough battery for 1 hour

— Our system should be able to navigate the blind
for about an hour. In most cases, blind people
will not use the full battery because it’s rare to
have them walking for an hour in indoor hall-
ways. The battery can be recharged once the
blind people reach their destination.

e The product shall be light enough less than 5 pounds

— Our system needs to be light enough so that the
user can comfortably carry it for an hour. We
estimate the weight should be less than 5 pounds
because an empty backpack with a bottle of wa-
ter is about 5 pounds on average.

— In our use case, we consider the public welfare
of blind people. The recognition system can re-
place guide dogs because it’s cheaper and easier
to carry around. So the weight needs to be min-
imized to maximize the utility of this product
and maximize the public welfare.

e The product shall be economical

— Our system should be affordable for blind users.
The user’s smartphone can work as a camera,
sensors, and a processor. Other than the smart-
phone, the system should cost less than $100
dollars. Each guide dog costs about $50,000 an-
nually, so our system can enhance blind people’s
welfare with a limited budget.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION
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Figure 1: Software Implementation Pipeline. Input: Cam-
era and LIDAR picture, Output: Strings inputted to
Speaker controller code

The architecture of the design can be simplified using
2 block diagrams, one hardware, and one software.

The software pipeline explains how is the output cre-
ated from pictures of the real world. From the input picture
captured using a visible-light camera and LIDAR, the pro-
cessing pipeline will create a glb formatted mesh file that
can be fed into the neural network called Gibson Goggle
(a perceptual and physics Simulator developed at Stanford
University), which will spit out a 3D image encoded with
depth information. Afterward, the 3D image will be sent
to the object recognition and navigation algorithm, where
features of the environment will be detected. At the end,
the features will be analyzed by the postprocessing algo-
rithm developed by ourselves, and output a voiced warning
based on the information provided.

Backpack

LIDAR

LIDAR Image
\:tl Computing Module H Speaker System ’
Visual Image’
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Figure 2: Hardware Implementation Block Diagram

The Hardware block diagram describes all electrical
parts that can be used to perform to meet such require-
ments. We used lidar and camera as the input sensor,
which the data will be sent to the computing module,
which is local to the user to process data on time. Then
the speaker system will receive the voice command from
the computing module and eventually play the voice. Since
the project is mobile, a battery back is used to support the
power.
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4 DESIGN REQUIREMENTS

With the architecture and principles of operation in
mind, we then translate the use-case requirements to design
requirements from the perspective of engineers:

e Sensors Detection Range
Since we need to detect moving objects within 5 me-
ters, e.g. a running kid with roughly 3m/s speed, we
need to account for the 500ms latency and at least
1 second reaction time for the blind user. By the
equation

d=5m+3m/s-(1s+500ms) =9.5m (1)
the detection range needs to be at least 9.5 meters,
about 10 meters.

e Camera

For the camera, assume the camera’s zoom lens was
set to 5)0mm and the center-to-center pixel spacing is
3.89 nm, which is very common for camera lens[6],
then we can get that we need 3214 pixels if each ob-
ject constitutes exactly one pixel based on our calcu-
lation.For the deep learning model we are using, the
input channel needs at least 16*16 pixels as input
data, so the camera needs at least about 0.8 million
pixels[6]. The frame per second needs to be at least
20 fps because the model needs at least 10 pictures
in the 500ms latency period based on our estimation
of the model[8].

e Processor

We prioritize the user’s safety, so we use a local com-
puting machine such that the computation can be
carried out in a reliable and fast way. The compu-
tation can’t be hosted on the cloud to reduce cost,
because cloud computing may not be reliable enough
to ensure the integrity of data transmission and real-
time data processing.

By inspecting representative YOLO (Deep learning
object detection) models, We estimate that most of
them need to run on GPU with a minimum of 8GB
memory requirement. NVIDIA GPU with CUDA
support should be ideal[11]. A model with a desirable
mAP (mean Average Precision) > 50% often requires
more than 500 Billion FLOPS[S].

e Model

Based on the use case, we need to achieve a 90% accu-
racy model with less than 500ms latency. The model
needs to recognize common indoor objects such as el-
evators, desks, etc. The model also needs to recognize
moving obstacles. One choice is YOLOv3-spp model.
It can achieve 60.6% mAP though it requires > 100
Billion FLOPS. Another choice is a smaller YOLO
model such as TinyYOLO with a lower mAP of 23%
but it only requires only one fourth of computation
power than YOLOv3-spp|8].

e Battery
We will use a 4000 mAH lithium battery power bank.
The use-case requires the battery to power the system
for about an hour. Based on the common processor
and sensor’s spec, we estimate that the average power
consumption is about 20W with regular voltage of 5V.

I = PJU = 20W/5V = 4000mA (2)

Based on the calculation, the battery needs to out-
put 4000mA for one hour, so we think the 4000mAH
battery should be enough.

e Speaker
For the speaker, it should be loud enough so the blind
can clearly hear. Also it needs to be relatively low
cost, less than $20. It also needs to be lightweight,
less than 0.51b. This is to give more mass quotas to
the battery bank and the microcomputer.

e Tripod Head

For the stand or the tripod head that will hold the
sensors, we require it to be strong and lightweight.
Since the entire system needs to be less than 5 pounds
in use-case, we expect the stand to weight less than
2 pounds and the material should be strong enough
to hold 2 pounds, which is an upper-bound estimate
of the sensors’ weight.

5 DESIGN TRADE STUDIES

To satisfy our use case requirements, we have researched
on four different software design algorithms and respective
hardware components available to us online and considered
on the advantages and disadvantages of them. The four
designs are very different in terms of implementation and
how they solve the same object recognition problem. [Ta-
ble 1] So instead of putting them on the same metrics, the
tradeoffs of the designs are more analyzed in a pair-wise
manner where the difficulties of implementation, whether
we can accommodate these algorithms to fit our use case, or
whether the technique is too powerful and would lead to a
waste of computing power in our use case is discussed. The
software algorithms are VISUAL SLAM, LIDAR SLAM,
YOLO, EDGE DETECTION respectively.

Before the in-depth discussion about the pros and cons
of each algorithm, a " Too Long, Didn’t Read” table of the
summary is included to give an overview of different algo-
rithms. Based on the TLDR table, we will choose to im-
plement YOLO v3 SPP as our main focus, and then Edge
Detection as a backup for reliability. Then we will explore
other models if time allows.

5.1 Visual SLAM
5.1.1 What is Visual SLAM

Visual SLAM is the technology/process of determining
the object’s relation with its surroundings while mapping
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Table 1: Tradeoff Summary Table

Complexity Detection Preprocessing Overall

Visual SLAM -4 3 -1 -2
LIDAR SLAM -4 3.5 -1 -1.5
YOLO v3 SPP -2 2 0 0
YOLO v7 -3 2 0 -1
Edge Detection -1 1 0 0

Side Note: Relative rating per column, the higher the better

its environment at the same time with the camera being
the only sensor.

Most Visual SLAM uses point cloud algorithm which
compares the position of points in successive photo frames
and uses the relative distance change across all the point
groups (same point position change across different frames)
to calculate (through geometry and deep learning algo-
rithms) the distance of the data point in relation to the
camera. The object will then be extracted based on the
distance calculated and a 3D map will be generated based
on the location of the object.

In an 2013 research paper on 3D mapping from visual
SLAM,[3] it demonstrates how they achieve 3D mapping
with feature extraction and point cloud algorithm: wuse
feature extraction which forms a point cloud, mapping of
points at different image frame to calculate the 3D posi-
tions which is then optimized and accumulated to form
the 3D map they want. They have feature extraction —
descriptor (feature points) — match of points — transfor-
mation validation with point cloud they get from distance
measurement to compose a graph.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 1, JANUARY 2012 3

Fig. 3. Schematic
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Figure 3: Visual SLAM Architecture

5.1.2 Pros and Cons of Visual SLAM

Recall that the goal of the software system for our
project is to recognize close-by objects in real time, Visual
SLAM implementation will surely satisfy this requirement.

Our design is that we will use Camera (currently we
have Intel RealSense Lidar Camera L515 at hand) to cap-
ture visual image which will send picture streams to our
“computer” (currently we have Nvidia Jetson Xavier NX)
which will run our SLAM model (based on Gibson model)

to produce a 3D image. The 3D image will then be pro-
cessed (maybe compressed) to run object avoidance/navi-
gation algorithms developed by us.

The Intel RealSense Lidar Camera L515 supports both
camera and lidar measurements and has a rgb resolution
of 1920 x 1080 with 30 fps rgb frame rate.[6] These would
satisfy our use case since in our experimentation with the
camera, the clarity of videos being shot is good with unrec-
ognizable delay in frames. By looking at the architecture
design of the camera, the frames taken by cameras will be
sent to drivers/USB ports, then to RealSenseld library and
then to user applications which we can communicate with
our computing device via APIs. Gibson’s Goggle Model
can be a helpful module to simplify the API callings [10]:
It is an open-source CV model that uses a visual sensor
(camera) to output real-time 3D images. We will use it for
training/testing data generation and for easier visual slam
3D map generation.

Figure 4: Gibson Goggle Outputs

Compared to the latter model choices we have, Visual
SLAM provides us with the most amount of information
and better accuracy: constructing a 3D map will allow us
to know not only the distance from the object but also the
angle and the shape of the object which can be helpful for
us to do more detail analysis like object identification (if
the object presents a threat to our client or not) or more
detail information giving (not just in front of you, but also
identify obstacles to the left of our client).

However, the Visual SLAM does have many limitations
and disadvantages such that we would not put this as our
primary /secondary design implementation for this project:

1. Visual SLAM is hard to implement: a typical Visual
SLAM system requires thousands of lines of code for its
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core model and subsequent training to tune its parameters.
As shown in figure 4 and 5, open source models tend to be
trained on a specific indoor environment such that their
parameters are tuned to produce accurate result in their
settings. Even if we choose to develop our own Visual
SLAM based on their model, it could be tricky to tune
their parameter because our use case (indoor hallway set-
tings) are different from theirs in terms of objects available
and people movement.

2. Visual SLAM is an overkill for our purpose: a typical
Visual SLAM model as mentioned before will produce a
3D map of the environment in the end and requires several
rounds of data collection under the same environment. We
do not need a 3D map in order for us to detect objects and
give navigation help to blind persons. Whatever behind or
to the side of the client may not matter if we just want to
go straight.

3. This is a common technical challenge for any visual-
based object recognition algorithm: Visual SLAM is im-
pacted by the quality of the image. There are many sce-
narios where even from human’s perspective would be dif-
ferent to judge the distance. For example, if there is a
strong light source in the environment, the surrounding
area of the light source would be dim and more difficult
for object recognition algorithm to recognize objects (this
is common in indoor settings where we have sunlight shines
through windows.). We saw in our testing video shots that
under strong sunlight, objects will reflect sunlight and lead
to difficulties in distinguishing objects.

5.2 Lidar SLAM

5.2.1 What is LIDAR SLAM

Similar to Visual SLAM, Lidar SLAM’s goal is also to
generate a 3D map of its surroundings.[4] Different from
Visual SLAM, the Lidar is now the sensor and only source
of input. Lidar sensors can generate dense data clouds
where points in 3D space represent the surface of objects.
With the surface of objects generated and the distance
to the surfaces known, the algorithm will then be able to
generate a 3D map of our surroundings which consist of all
the surfaces we identified.

An example of how Lidar SLAM is trained can be found
in the image below:

Figure 5: Sample Lidar SLAM Test Map

As shown in the image, the red points are points in
which they use Lidar to collect data points for its sur-
rounding and the lighter lines denote the boundary /objects
detected by the Lidar.

For our project, similarly to the visual SLAM, the re-
sulting 3D map will be processed (maybe some data pro-
cessing algorithm to reduce the size of map for better band-
width and latency). Then it will be sent to our object
recognition /navigation algorithms which result will be sent
to the speaker to give out directions.

5.2.2 Pros and Cons of LIDAR SLAM

Unlike visual SLAM where we need to calculate the
distance from the image/3D map, Lidar SLAM can get
a more accurate distance measure with high consistency.
It would not be impacted by the shaking of camera when
our client walk which is a common technical challenge for
other vision-based algorithms. As our use case is to detect
obstacles/objects in our way, Lidar detection is sufficient
for distance measuring (in terms of it can detect objects’
distance accurately within its detection range) and further
processing to give instructions.

However, similar to the Visual SLAM approach, Lidar
SLAM has disadvantages which contain some of the same
disadvantages that any SLAM has when applied to our
project which are:

1. Lidar is impacted by the brightness of the environ-
ment quite heavily: in our testing of the Lidar available in
Intel RealSense 515 Sensor, it can detect as far as about 9
meters in dark room but only about 4-5 meters in bright
room (room with strong sunshine). The worst detection
range is less than what we have in the design requirement
which is ”at least 9.5m”.

2. Like visual SLAM, Lidar SLAM is an overkill for
our purpose and hard to implement: we do not need a 3D
map to satisfy our use case and it would be hard for us
to implement a Lidar SLAM from scratch in 6 weeks. We
have thoughts about only using the Lidar-computed dis-
tance graph like the one below, but the tricky part is that
we would then need to implement an object recognition
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algorithm from the distance graph. Despite that the de-
tection range is short for our use case, having Lidar to get
the distance of the objects seem to take an extra step since
we can get if there is obstacle in one step in Yolo which is
based on vision.

Figure 6: Lidar Data Sample

5.3 Yolo

The model we choose to use is YOLO s3 SPP. The de-
tails of it are further discussed in System Implementation.
YOLO is a real-time object detection model that can be
used to detect obstacles such as desks and identify objects
such as elevators, doors, etc.

Compared to SLAM, YOLO is smaller and easier to
implement. It doesn’t involve localizing the user and mem-
orizing a map of past trajectories. As a result, its accuracy
(mAP) might not be as good as SLAM because the de-
tection is not continuous. However, based on our use case
where we only need to detect stationary obstacles, we think
this tradeoff is acceptable.

Compared to edge detection models, YOLO has addi-
tional capabilities to recognize objects. This is important
for blind users because based on our research, it is helpful
to point out important objects to the blind as well as detect
obstacles. These objects can serve as Visual Landmarks
to boost confidence in walking. [2] However, it is not the
focus of our project, and we will only point out important
landmarks such as a large desk in the hallway, an elevator
on the left, etc.

The details of the YOLO algorithm will be omitted as it
will be thoroughly discussed in the system implementation
section to avoid repetition.

5.4 Edge Detection
5.4.1 What is Edge Detection Algorithm

Edge detection algorithms are image processing tech-
niques that used to sharpen the edges of objects shown in
pictures where edges are defined to be lines of points that
shows discontinuity in brightness/color within the image.
After an ideal edge detection algorithm is run on an im-
age, the contour lines of objects shown in the image will

be shown whereas other more detailed feature will be ob-
scured.

5.4.2 Pros and Cons of Edge Detection Algorithm

Edge detection is the secondary approach we plan to
go for our project (after the Yolo approach).

A popular edge detection algorithm implementation
that is available online is the OpenCV implementa-
tion.[9] To incorporate the edge detection algorithm in our
model, the workflow will go as follows: the camera will
pipeline images to the edge detection algorithm which de-
tect the edges of objects. The result of contour line pictures
will then be processed for object recognition (a script by
us to recognize object from edges). The object recognition
result will then be sent to a navigation instruction compu-
tation algorithm for instruction generation and speaker to
speak out the instruction.

There are many advantages of this approach:

1. The work we need to do in training/tuning the al-
gorithm is less compared to the SLAM approach: edge
detection in openCV already contains multiple edge detec-
tion algorithms that we could test our model on. We do
not have to test our model in videos in order to generate a
SLAM, images would suffice for edge detection testing.

2. We are more controllable about what object we want
to recognize: all other approaches will detect all objects
that are in the image frame. This would lead to excess
calculations and waste of battery life and computing power
which have constrained in design requirement session (we
do not need to call out a painting on the wall as a potential
source of danger for example). We could specify on things
we want to detect in this approach: human, tables, chairs,
doors covers all the objects that pose a potential danger to
a blind person in most safe flat indoor hallway settings we
identified in our use case requirements.

However, incorporating the edge detection algorithm
to our use case can be time-consuming: We would have
to implement an object recognition algorithm from edge
detection which can take lots of time to ensure 90-100%
detection accuracy in our requirements. Edge detection
method is prone to noise in image where detected edge can
include minor details that affect accuracy. For example, in
the image shown below, with the focus of the image drawn
close to the viewer, the detail of flower and the hair of the
girl is detected as edges. Thus we decide to implement the
Yolo approach first before attempting the edge detection
algorithm.
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Figure 7: Edge Detection Sample

6 SYSTEM IMPLEMENTATION

The system can be divided into several subsystems as
follows:

6.1 Sensors

This is the sensor we will be using. The camera has 2
million pixels and 30fps. The lidar can detect 9-meter range
with 25-centimeter depth accuracy. We will be mainly us-
ing the camera for the YOLO model and edge detection
model. The Lidar sensor is for SLAM model which we had
explored in design tradeoff analysis part.

Figure 8: Intel Realsense 515 Sensor

6.2 Electrical Parts

Figure 9: Electrical Parts

Figure 10: Electrical Parts

For the electrical part, the speaker, battery, sensors,

and processor will be connected as indicated in Figure 2:
Hardware Implementation Block Diagram.
The speaker and battery we bought are listed here. This
part doesn’t involve many complexities because we are sim-
ply connecting the parts. Our design choice for the elec-
trical part is based on the 1-hour battery life use case re-
quirement.

6.3 Mechanical Parts

Figure 11: Mechanical Parts

For the mechanical parts, we will use the tripod head
as shown above to hold the sensors and the speaker. The
body of the tripod head will be inserted into the frontback.
The tripod head shown here looks larger than it really is
and we ensure its weight is less than 2 pounds. In this way,
we have considered the welfare of blind people of waling
with ease and comfort.

The reason why we want to use a frontpack instead
other ways to connect the recognition system to the blind is
its simplicity. Compared to a drone or a guide dog, it’s eas-
ier to carry and cheaper to purchase and maintain. Com-
pared to a backpack, the tripod head ensures the view sight
won’t be blocked.

6.4 Data Preprocessing

In our system, data preprocessing is broken down into
2 steps.

The first step is the control pipeline of the sensors. We
will not utilize full fps of the sensors because 30 frame-per-
second is both an overkill and a threat to our computational
power. So we will sample only 10 fps and transmit the im-
ages into a raw data folder on NVIDIA Jetson. Then,
python codes will truncate the image into squares for ease
of the model. We may also want to filter out malformed
images such as overexposure at this step.

Then, the input data can be converted to 3D simulated
point cloud by utilizing Gibson Goggle Network as shown
below. The conversion to simulation environment might
not be needed for classical object detection model such as
YOLO though it might improve the stability and conver-
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gence of training by eliminating non-ideal factors of real-
world settings.

33 path = rospack.get_path('gibson-ros’)

34 assets_file_dir = os.path.dirname(assets._ file_ )
35

36 class Goggle:

37 def __init_ (self):

38 #self.rgb = None

39 rospy.init_node (" gibson-goggle')

41 self.image_pub = rospy.Publisher("/gibson_ros/camera_goggle/rgh/inage”, Image, queue_size=10)

42 self.depth_pub = rospy.Publisher("/gibson_ros/camera_goggle/depth/image”, Image, queue_size=10)

91 goggle_img = (recon.data.clamp(e, 1).cpu().numpy()[@].transpose(1, 2, @) * 255).astype(np.uint8)
92 goggle_msg = self.bridge.cv2_to_imgnsg(goggle_img, encoding="rgbs")
93 self.image_pub.publish(goggle_msg)

106  goggle = Goggle()

107 goggle.run()

Figure 12: Gibson Goggle Code

6.5 Object Detection Model
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Figure 13: YOLO Architecture

The model we will implement is YOLO v3 SPP. We
will primarily focus on implementing the object detec-
tion model first, and then further exploring edge detection
models and SLAM. So this section will mainly talk about
YOLO models, since other potential candidates are dis-
cussed in design tradeoff section.

The model we choose is YOLO v3 SPP. Compared to
normal YOLO v3, it has a high mAP due to the feature
selection of its spatial pyramid pooling layer. There are
many variants of YOLO model, and the latest one is YOLO
v8 released by Ultralytics. However, although YOLO v3
seems a little bit archaic, the progresses YOLO made is
mainly on resolution and recognizing small objects. In
terms of mAP (mean average precision), YOLO v3 SPP
is comparable to latest v8. Also, according to our use
case, the objects and obstacles in hallways are mainly large
objects like desks and elevators. So the special focus on
detecting small objects is not only hardly useful but also
computationally expensive. Finally, I'm more familiar with
the classic architecture of object detection using anchors
and bounding boxes (state-of-art YOLOs use anchor-free
technology). Therefore, we chose to use YOLO v3 SPP
model to fulfill the task.

s Conv.loyers
Tx1xs 331024
4 gon P SN0

3x3x1024
3x3x102452

rs  Conv. Layers
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Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1 x 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224 x 224 input image) and then double the resolution for detection.

Figure 14: YOLO Backbone - Convolution Layers

Object detection models like YOLO can be divided into
a backbone, a neck and a head. Darknet-53 is a convolu-
tional neural network that acts as a backbone for YOLOv3.
It made some advancements such as using residual layers
(skip connections) to avoid the issue of vanishing gradient.
The backbone will extract high-level features and feed to
the neck.

The neck is an FPN (Feature Pyramid Network), as
shown in figure 9. It has multiple layers of downsampling
to combine and mix features in various dimensions. It can
anchor features to bounding boxes at different scale so it
can detect objects in varying sizes.

Then, the features will be passed to the head (as shown
in figure 9), which is another convolution layer that can
predict the label and location of the object. It will draw
bounding boxes with regression and predict labels with
classification. Then, after training, the head can output
the most accurate/confident detected objects with NMS
(Non-Naximum Suppression) algorithm [7].

6.6 Instructions Control Pipeline

In this subsystem, the input is the label and location of
detected objects identified by YOLO model. The goal of
the subsystem is to drive the speaker to output auditory
signals.

Based on our research, it is helpful to point out impor-
tant objects to the blind as well as detect obstacles. These
objects can serve as Visual Landmarks to boost confidence
in walking [2]. However, it is not the focus of our project,
and we will only point out important landmarks such as
a large desk in the hallway, an elevator on the left, etc.
This can be easily achieved with labelled objects from the
output of YOLO.

Since our use case focuses on the scope with only sta-
tionary obstacles, we can directly estimate the distance of
the obstacle based on the depth map of the lidar.

The control code will also provide basic road informa-
tion for the user such as how far is the nearest intersection.
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Since our object detection model won’t directly point out
intersections, the control needs to figure out the location
of intersections based on the depth map. An alternative
approach is to train an edge detection model in addition
to the object detection model that focuses on detecting in-
tersections. But the details are still in plan and we may
choose to cut down this road info feature in the end.

7 TEST & VALIDATION

7.1 Hardware: Camera

To meet the design requirement of a camera, we will
test its behavior on various lighting conditions: Sunny day,
Overcast day, and Fluorescent Light (Which simulates an
isolated hallway or a hallway at night). With those three
lighting conditions, we then test the Average Noise of the
picture, using Scipy’s sigma function to estimate the noise
value. We expect a noise value of less than 10. With a
noise value > 10, it will be rather difficult for the pipeline
to process.

7.2 Hardware: Computing Module

To test the power usage and computing power of the
computing module, we will then evaluate the following met-
rics with our implementations of YOLO algorithm under
10W, 15W, and 20W of power. For each algorithm, we will
insert timing functions inside the image fetching functions
of the pipeline to time the average time (in seconds) to
fetch one frame, and that value will be multiplied by the
wattage (resulting Joule) used by the computing module.
Ideally, we want a value less to 2J, which corresponds to a
10-frame-per-second image fetch rate at 20W.

7.3 Hardware: Battery Pack

We will perform integration testing for the battery
bank, which the battery bank will be connected to the com-
puting module. Then, the module will operate with 20W
of power running the YOLO detection model. Then, we
time its time of operation until the system dies out. We
are expecting an operation time greater than one hour (60
minutes)

7.4 Software: Object Detection Methods

Depend on the algorithm we had implemented will con-
duct different testings to determine the object detection
accuracy of each algorithm.

7.4.1 Edge Detection

For edge detection algorithm, we will use a marked set of
30 pictures taken in the main hallways of the Hamerschlag
Hall’s first floor to serve as the oracles of the testing. Then,
we will feed the image to the system, and read its output.
The accuracy of the detection will be determined by the

percent of object matches between the algorithm’s output
and the oracle. (We are not looking for pixel-to-pixel cor-
respondence of the two set of pictures, but will only test
on logical). We are looking for a accuracy of greater than
90%.

7.4.2 YOLO, SLAM

For other advanced algorithms, other than the detec-
tion measurement stated in the Edge Detection section of
the measurement, we will also test the object identification.
With the same 30 pictures taken in the main hallways, we
label the interested location with a name, such as ”Chair”
or "Garbage Bin”. Then the same picture will be sent
to the YOLO algorithm, which the system will not only
spit out an identification but also a classification. As such,
we can compare the detection similarly using the testing
method in the Edge Detection section, and for the identifi-
cation section, we will manually compare the classification
of the YOLO model and the oracle, which the classification
should be close enough. When two words are not exactly
synonyms (Synonyms include: Pavement vs Sidewalk), a
wordnet WUP sematic distance of greater than 0.5 should
be considered good (Identical words are scored 1.0).

For SLAM models, we also need to test the distance ac-
curacy of the algorithm. In this case, our oracle also needs
to include distance information by either tape measure or
iOS’s Measure App. We are looking for the accuracy of
20% of oracle or 1 meter, whenever is smaller.

7.5 Software: Text-to-speech

For the text-to-speech system, we want to make sure
that every output string to the module will get processed.
In order to test the TTS system, we will test on all target
objects the algorithm is trained to detect, and make sure
100% of the object names can be correctly pronounced.
Additionally, we will test a select sample of full voice warn-
ings, calculate the play time and number of syllables, and
verify the talking speed is less than 25 syllables per second,
which is the maximum speed a blind can comprehend.

7.6 System: Latency

For the latency, we will include timers at the image in-
take stage and the voice output stage. Then, we will take
in multiple images with a detectable feature, which due to
the previous section the system will be able to detect it.
Then, we will time the time used from the image being fed
into the pipeline to the time when the TTS system stopped
playing the warning notification. The algorithm we will use
will be the SLAM model, which is the heaviest algorithm
that is expected to cost the most time. Testing will be
marked successful after the maximum processing speed of
all example images is less than 500ms.
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7.7 System: Weight and Cost

We measure the weight by a scale, which includes every
component we will use for this project. The test is passed
if the overall mass is less than 5 pounds.

7.8 System: User acceptance

We will conduct two rounds of user acceptance. First,
one of our team members will be blindfolded, and move
from one side of the baker hall to the other side of the
baker hall with protection from other teammates. If there
are urgent need for help, other teammates will help, and the
first phase of the test is passed only if 0 help is needed to
navigate around the baker hall hallway. The second phase
will be tested by a blind user with a walking stick. The test
participant will navigate from one end of the Hamerschlag
hallway to the other end. Then the test participant will
score the project on a Likert scale from 1 to 5, The project
will be a success if the scale is greater than 3.

8 PROJECT MANAGEMENT

8.1 Schedule
The schedule is shown in Fig. 16.

8.2 Team Member Responsibilities

As we have three people in the team for this project, we
will split the work between three of us evenly as shown in
the schedule chart mentioned in section A. As a summary,
the responsibilities for three of us respectively are:

Jeffery Cao: All hardware-related tasks - Making sure
video taken by the camera can be received by our Yolo al-
gorithm in Nvidia Javier NX correctly and on time and
implement the speaker which deliver the final navigation
instructions.

George Chang: Part of software-related tasks which
includes: 1. Implementing script to give instructions based
on object detection result; 2. Implement Edge Detection
Script if we choose the edge detection approach; 3. Help
make sure data transmitted between Camera to Javier,
Javier to Speaker is correct and within time bound re-
quirement, develop mitigation plans if it fails. 4. Team
Schedule and Team Management

Ging Luo: Part of software-related tasks which in-
cludes: 1. Implement Yolo-based object recognition algo-
rithm; 2. Help on developing object detection script.

8.3 Bill of Materials and Budget

The materials needed for our project is listed in Table
1. We have made sure that the total cost is less than $600
budget limitation.

8.4 Risk Mitigation Plans

The major risks for our project are two-fold: first is
about YOLO system and second is about the mechanical
part.

Regarding the Yolo system, there are chances that the
Yolo system may not actually be able to detect object that
are 9 meters away (which is required by our use case re-
quirement) in a dim setting or calling the Yolo algorithm
costs lots of time to run for our use case and hardware de-
sign such that we will miss the latency requirement. When
such cases take place, we will mitigate by replacing the
Yolo system with an edge detection system as mentioned
in section 5.4. As edge detection system is local and resis-
tant to brightness, it can unblock us from the limitations
of the Yolo system.

Regarding the mechanical part, it is possible that the
way we place camera is uncomfortable from users’ personal
experience and may need to adjust the design. If this hap-
pen, we can replace the tripod head with strips attachment
or place the camera in the back with a support of a back-
pack. We will then tested on these mechanical designs and
find the best way that could be more user-friendly yet not
reducing too much video quality and detection accuracy.

9 RELATED WORK

During research, our team found out there aren’t a lot
of technologies that are ready for full blindness, as many of
them are aimed at the legal blind, which are people who can
see but are not clear enough. Most of the time, fully blind
people still rely on traditional techniques such as regular
walking sticks guide dogs. In this section, some example
project that is similar to our project will be explained.

9.1 WeWalk Smart Cane

WeWalk smart cane is a tool with similar factors to
a regular walking stick, which the device will use ultra-
sonic to scan the obstacles and report back obstacles using
a phone app. The app will also store frequently visited
places such as restaurants, cafes, and shops. WeWalk is
also connected to the public transportation system, where
the app can find bus stations which can be then informed
to the user.

In general, although it is a blind aid, the stick itself
serves more like a control remote to the phone app, where
the phone app will do all of the heavy lifting such as navi-
gation, searching, and bus-finding. The ultrasonic obstacle
finder only works under a limited range, and will only pro-
vide a boolean feedback using the vibration of the walking
stick.

In the end, it is dramatically different from our project.
Our project has a fixed scope so we can concentrate on good
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Table 2: Bill of materials

Description Model # Manufacturer = Quantity Cost @  Total
Jetson Xavier NX 812674024318 NVIDIA 1 $0 $0
RealSense L515 LIDAR 82638L515G1PRQ Intel 1 $0 $0
Talentcell Rechargeable 12V 6000mAh  YB1206000-USB Talentcell 1 $39.99 $39.99
USB Mini Speaker H002 HONKYOB 1 $12.99 $12.99
Tripod Head Stand 14043CM18INCH  QISHI YUHUA 1 $34.98 $34.98

$87.96

quality navigation only in a hallway setting, where WeWalk
acts more like a phone controller for its phone app. The
walking stick itself only provides limited object detection,
and its detection is only limited to low obstacles, which a
walking stick can do equally well. Additionally, due to the
time constraint of the project, we did not build a dedicated
PCB nor plan to minimize our form factor to fit inside a
walking stick.

9.2 CU Boulder — CAIRO LAB: Seat Lo-
cater and Object Finder

The research project developed at the University of
Colorado Boulder and Collaborative Artificial Intelligence
and Robotics (CAIRO) Lab provided blind aid from an-
other point of view, which the aid will act as a walking
stick and uses a camera to understand the environment,
find a seat, and even read off cereal packages. This system
uses a sophisticated computer vision algorithm to map the
surrounding, detect the target of interest, and gives a score
of confidence which will be used to determine the best seat
or where is the cereal box the user want to buy.

One big downside of this project is that the comput-
ing power needed to use the AI model developed at the
institute requires a full-fledged laptop, instead of a micro-
computer that can be stored anywhere. Additionally, the
research team was not able to combine all of its functional-
ity into a convenient package, so technically, three different
AT model is used for three different scenarios: Navigation,
Seatfinder, and Boxfinder. Although this shows the versa-
tility of its algorithm and hardware design, the question of
integrability still remains.

Lastly, it is too dramatically different from our project.
Our project utilized a microcomputer that have a weaker
computing power compared to a full-fledged, expensive lap-
top, which allows for a long operation time with battery
installed. Additionally, we only have one use case topic,
where that project has multiple use case topics and needs
to be changed manually. In the end, it is more similar to
a research demo than a full engineering system that is able
to provide end-to-end capability.

9.3 UltraCane

UltraCane is one of the oldest blind aid technologies.
It uses ultrasonic to scan the environment in front of the
user and vibrate based on distance. The device is relatively
simple as it has no other capabilities and no phone apps.

Because of its limited technology, it was not able to
have a far range greater than 4 meters. Additionally, it
has no object identification capability, and the user will
have a hard time understanding what the obstacle is and
changing its route.

This system is simpler than our project and has a
smaller effective range. With only ultrasonic sensors, the
information the stick receives is limited. On the other hand,
UltrasCane did not cost much for the components, and a
simple micro-controller is suffice to manipulate the ultra-
sonic distance data.

10 SUMMARY

Overall, the project is very challenging. In order to
meet the design requirement use-case requirement, our
team has to tackle the challenges of training the neural
networks, reaching the appropriate accuracy, managing
the power consumption and battery life, and solving many
edge cases discussed above such as different lighting con-
ditions. Additionally, our team also has to find the sweet
spot between ”giving too much information” and ”giving
too little information”, as only giving just the right amount
of information will help the blind.

Losing the sense of sight is already a challenging obsta-
cle blind people have to overcome. As blind aid technologies
are still vastly overlooked, our project will not only serve
as a convenient tool for the blind to use when traveling
indoors, but it will also serve as one of the first steps of ac-
cessible technology developments. Our project will help by
helping blind students who are moving between classrooms,
warning obstacles for blind workers, notifying elevators for
blind veterans, and many other scenarios involving indoor
blind safety.
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Glossary of Acronyms

e LIDAR — Light Detection and Ranging
e SLAM — Simultaneous Localization and Mapping

e YOLO — ”You Only Look Once”, is the name of the

neural network object detection algorithm

References

[1]

[10]

[11]

Kedar Potdar et al. “A Convolutional Neural Net-
work based Live Object Recognition System as Blind
Aid”. In: ArXiv (Nov. 2018).

Watthanasak Jeamwatthanachai et al. “Indoor nav-
igation by blind people: Behaviors and challenges in
unfamiliar spaces and buildings”. In: British Journal
of Visual Impairment 37.3 (Feb. 2020).

Hyunggi Chang. “Visual SLAM RoadMap”. In: ().
URL: https://github. com/ changh95/visual -
slam-roadmap.

Kenny Chen. “Direct Lidar Odometry”. In: (). URL:
https://github.com/vectr-ucla/direct_lidar_
odometry.

Jain Anuj Kumar Nitin. “A Deep Learning Based
Model to Assist Blind People in Their Navigation”.
In: Journal of Information Technology Education: In-
novations in Practice 21 (2022).

Alan Marcus. “How to calculate the size of object in
pixels, knowing the camera properties and distance?”
In: (). URL: https://photo.stackexchange . com/
questions/90059/how-to-calculate-the-size-
of -—object - in- pixels - knowing - the - camera -
properties-ande.

Manika Nagpal. “What is YOLOv3 Architecture
?” In: (). URL: https: //www . projectpro . io/
article/yolov3-architecture/836#: ~: text=
YOLOv3 % 20Architecture % 20Explained & text =
YOLOv3%20uses’%20a%20convolutional’20neural ,
features),20from%20the’20input’%20image..

Joseph Redmon and Ali Farhadi. “YOLOv3: An In-
cremental Improvement”. In: CoRR abs/1804.02767
(2018). arXiv: 1804 .02767. URL: http://arxiv.
org/abs/1804.02767.

OpenCV Team. “Edge Detection Using OpenCV”.
In: (). URL: https : //learnopencv . com/ edge -
detection-using-opencv/.

Stanford Gibson Team. “Gibson Environment Home
Page”. In: (). URL: http://gibsonenv. stanford.
edu.

Ultralytics. “Ultralytics YOLO Frequently Asked
Questions (FAQ)”. In: (). URL: https : //docs .
ultralytics.com/help/FAQ/.



Page 13 of 12

FollowMe, Oct 10th

layeadg
ol

<

“Io1[Ie0 pagordop se weISeIp ¥o0[q WI9YSAS aures o1} Jo uorsioa afed-[[NJ Y :GT oInSIq

uonebineN

S0UEPIOAY
1928[00

abew| gg

uoissaldwon

pue

316609 uosql
IPPeO a0 Buissaooidald

pnojo juiod

a|npo|\ bunndwo)

ovain
wol4

Blawe)
wol4



Page 14 of 12

FollowMe, Oct 10th

JIRYD) 13Uy 9T 231

Jed [eaiueydajy 1on43suod pue udisaqg [asempaieH]

Bunsay wajsfs jeury [a1emyos]

Supisa) uondazag 28p3 Joj e3eq afew Jayzen [aaemajos]
Sunsay uoinueday 133lqo 10} e1EQ OIPIA J3YIED [212MIy0S]
2)1eJ 3234400 uondalaq asp3 Ajuap pue 3sa) [aiemyjos]
1dLos uonneandwo? uonanaIsu| Juawajdw| [a1emipos]
|3PO uo1333312q 23p3 Juswa|dw [a1emiyos]

a)jed 1024400 uoiusoday 123lqo AJuuap pue 3sa) [asemyjos]
322[q0 ojoA Idw [24emy0s]
Jaxeads uo 3sa) [asempaieH]
J9yeads juswsajdw| [arempiey]
waysAs uonusodray 123lqQ 01 esawe) ajesodiodu| [asempieH]

S132d-622Q 6220 -£33Q 330 - 9T AON SZAON-GLAON| 8LAON-ZL AON| LLAON-SAON ¥ AON -6Z 320 82320 -TT 10 L2320 -51 0 auwen yseL
owaq jeuly Buingsuey puoisa|iw waishs| yeaad |led

L]

L\

1\

I

2d100p "Suip
afi0an
aSi09n

Suig

Kisyaf
Kiayaf
Kiaya[
aausissy

}aam Sunppayd auolsajiN
skepijoH

Naam | < ajes ke

JoaM | ueys ssa| el Aew

}33M 3U3 UIYIIM pU3 Pue JielS
sxaam pazedw) Kepijoy
510|002 Jo uonejuasaday

uey) Buen



