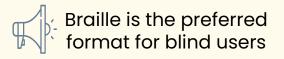


Becky Button Joshna Iyengar Zeynep Ozkaya

A4: Digibraille

Х


A braille printer directly accessible from your phone!

X

Problem Statement

Current technologies for blind people do not allow for easily accessible printed braille for simple everyday use.

Braille writing slates have character limits

Computers not easily accessible

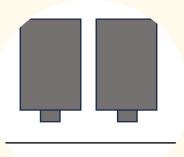
Electronic braille readers and printers are expensive

Electronic braille readers and printers are not portable

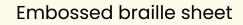
Can't connect to an embosser from a phone

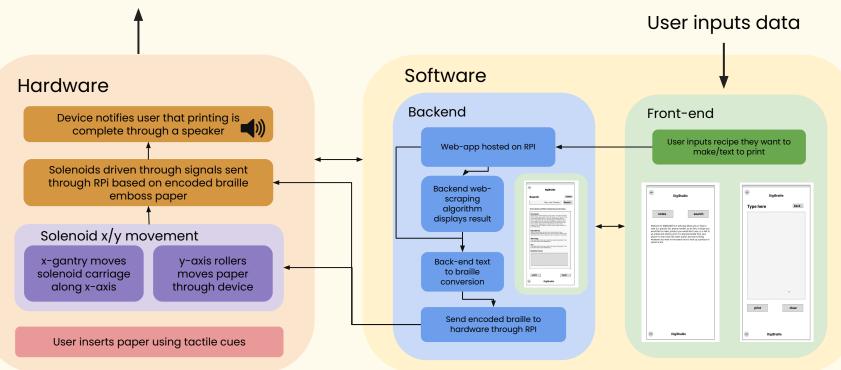
Quantitative Design Requirements

User Requirement	Design Requirement
Speed	 Embossing an 8.5" x 11" sheet of braille (768 char) should take less than 16 mins to print out 1 second latency
Accessibility	 User should learn to use device in <10 min
Accuracy	 Embossed braille should be 100% readable by printing to spec'd out tolerances 95% accurate when translating to braille.
Completeness	 Web-scraping algorithm must produce a result 95% of the time. Web-scraping should produce results in <.5 sec



Solution Approach


Web Interface accessible from a phone x-gantry system with rollers to move paper Braille cells will be embossed using solenoids An embossing system designed with accessibility and long term use in mind.



• • • • • • • •

• • • • • • • •

System Block Diagram

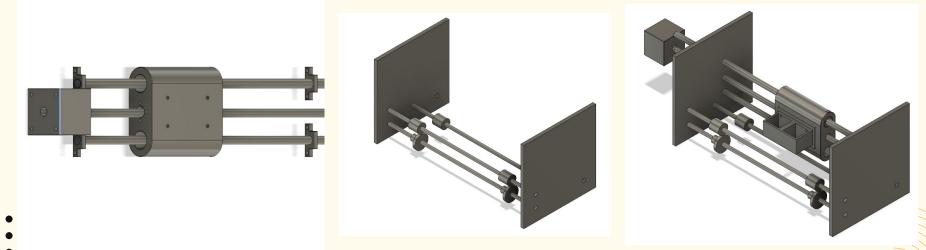
• • • • • • • •

Software Implementation

Web-app using Flask hosted on RPi takes user input

2 Web-scraping to find entered product recipe using BeautifulSoup and 10 sites that have product data bases ³ Text is parsed and processed to follow contracted braille format and grammatical rules

Parsed contracted braille input is interpreted as a combination of positions on stepper motors and solenoid activations 4


Output signal sent to hardware using RPi

ę

Beautifuloup

Mechanical Implementation

X-Gantry

Lead screw driven Modular solenoid attachment to make system easily iterable

Y-Axis

Printer style Y movement

Overall

 $\times \times \times \times \times \times$

Decoupled X/Y movement Easy paper registration points

- 2 solenoid embossing system based on timing requirements and braille specs
- Solenoids will emboss to tolerances defined by spec'd out tolerances
- Stepper motors will receive signals to move x/y system based on spec'd out measurements
- Solenoids will be activated by binary voltage signal

Solenoid Circuit	Solenoid Circuit Braille Cell Specs					
solenoid	Solenoid top-view	# of Solenoids	Time/sheet			
		1	29 minutes			
		2	11 minutes			
		3	11 minutes			

Implementation Plan

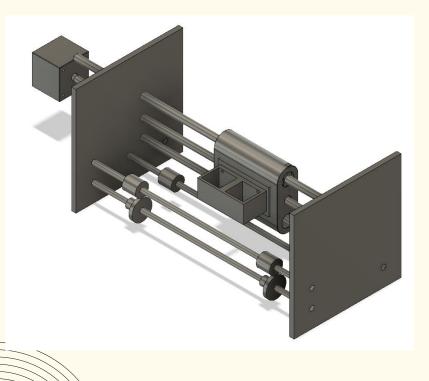
	Materials	Design
Hardware	 12V Solenoids Flyback diode Resistors Mosfet Stepper motor Lead screw 12V power supply 	PCBRPi
Software	 Python Beautiful Soup (web-scraping from select websites such as directionsforme.org) Flask (front-end) 	 Web-application

Testing, Verification, Validation


Requirement	Testing Plan	Mitigation
Speed	 Time worst case scenario printing times (full sheet of braille) Time how long it takes to connect to printer, search for directions, print a sheet of braille, etc. 	 Add 2 more solenoids as a separate system to increase number of cells embossed/sec Ensure proper sourcing of x/y gantry parts
Accessibility	 User test the product and website using accessibility features available on phone Debug using Apple's Accessibility Debugger 	Read accessibility documentation and conduct extensive user testing
Accuracy	 Test output of text to braille conversion on 100+ scripts of text with output from Duxbury Braille Translation software User testing for readability of printed braille 	 Ensure proper sourcing of x/y gantry parts Modularize design such that embosser system can be redesigned as needed
Completeness	 Test web-scraping algorithm on 100+ different products 	 Generate database based on webscraping

Project Management

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Background research														
Build basic framework for website														
Design solenoid system														
Design x/y gantry														
Develop algorithm for braille translation														
Test solenoid system														
Design and fabricate PCBs and enclosure														
Develop frontend														
Integrate hardware and software components														
Slack	1													



•••••

Digibraille: A smart web connected braille embosser system that can easily print grocery lists and product information right from the user's phone!

