
18-500 Design Project Report: Team A4: DigiBraille 10/13/2023 1

Abstract— We are designing a solenoid/stepper motor driven

system controlled by a Raspberry Pi capable of embossing braille that
can be directly accessed from a smartphone. Our device will connect
to a web-app that allows users to input text or product instructions to
print. It is >3x cheaper than the average commercial embosser and can
be accessed with a phone unlike commercial embossers.

Index Terms— Braille, Cache, CSV, Database, Python, Raspberry Pi,
Solenoid, Web Scraping

I. INTRODUCTION
EARLY 1 million Americans suffer from serious vision loss
and blindness [9]. Due to limited amenities for disabled
people, those who suffer from vision loss can lose their

ability to lead independent lives much faster than their peers.
Simple tasks for sighted people, such as reading a recipe or
jotting down a quick note can become a complex undertaking
for a visually impaired person, even with the aid of existing
technologies.

Current technologies that provide blind people this access
include braille printers, electronic braille readers, and braille
writing slates. However, these technologies are also limited.
Braille printers are very expensive, with costs ranging from
$1500-$5000 [1]. In addition, assistive technologies are much
more accessible through phones than computers [2]. However,
braille printers can only be accessed through a computer.
Electronic braille readers provide portable access to users and
can be easily accessed through the phone. However, these
devices can only display a limited number of characters and can
cost up to $15,000 [3], which limits the user to where they can
take the written information (for example, a user may not want
to risk spilling something on their expensive device while
reading a recipe or carry it with them in the store while reading
a grocery list). Braille writing slates overcome the limitations
of cost, but also display a limited amount of braille and can take
a very long time to fill out.

To address these shortcomings, we propose a device that will
take user input from a web-app that can be directly accessed
from the phone and send it wirelessly to a custom braille printer
to deliver an embossed braille sheet to the user. A key
component of our project is accessibility from the phone, which
is a very fast and usable interface for visually impaired people.
From reading recipes for packaged food to quickly jotting down
a grocery list, it is important to give blind people quick access
to information at their fingertips in their preferred format for
information.

II. USE-CASE REQUIREMENTS
Our device is intended for blind users who can read braille

and require easy access to printed braille for everyday use.
Thus, our requirements include fast delivery of braille, accuracy
in embossing and translation of braille, completeness of
information presented to the user, and an accessible
interface. The device must produce results at a comparable
speed to state-of-the-art devices and must have similar levels of
accuracy. The information presented to the user must be
complete, and the interface must be accessible to the user,
which includes learning and everyday use of the device.

Our speed requirement is driven by the need to provide our
users with fast, convenient access to printed braille. We are not
attempting to re-invent braille printers, but rather provide users
with a more convenient way of accessing braille than existing
technologies (i.e., braille writing slates or electronic braille
readers). As a result, we require our device to work faster than
the time it takes to use a braille writing slate. From user
interviews, we have determined that it takes a user about 15
minutes to write 3 lines of braille on a braille writing slate. We
require the braille printing process of our device to take at most
10 minutes. We also require our device to be accurate, which
includes correctly translating recipes to a braille format and
taking the encoded braille format and embossing it with
standard braille specs to ensure readability. We require 95%
accuracy in translation because there are some differences in
braille between users that don't impact readability (ex:
contracted vs uncontracted). Our accuracy requirements also
include 100% readability of braille. We require 95%
completeness of web-scraping, as we do not expect our
algorithm to produce results 100% of the time due to the vast
number of potential recipes and information available on the
web.

Our final requirement is accessibility, which encompasses
ease of use with the UI and braille embosser. We require our
web-app to be able to interface with existing accessibility
features on phones and that it takes no more than 1 second to
display results. The braille printer itself will have tactile cues to
guide the user. We will implement raised edges to guide the
user’s paper placement. We will also include a speaker that will
inform the user about updates in printing. This includes status
updates every 2 minutes and updates about when printing is
finished. The user should also be able to learn how to use the
device in less than 10 minutes.

Zeynep Ozkaya, Joshna Iyengar, Becky Button

Department of Electrical and Computer Engineering, Carnegie Mellon University

DigiBraille

N

18-500 Design Project Report: Team A4: DigiBraille 10/13/2023 2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Figure 1 outlines our full system block diagram. Our device

has two primary components: an embosser and a web-app. The
braille embosser will be 30x15 cm in area and enclosed in a
laser-cut acrylic encasing. The braille embosser will be
implemented similar to traditional printers using a roller driven
y-axis to move the paper through, and a lead screw attached to
a gantry holding the embossing tool, both axes will be actuated
by stepper motors. The embossing will be accomplished using
four push-pull solenoids. The solenoid arm will move along the
z-axis, and when activated will push on the paper to emboss a
single dot of a braille cell. The solenoids will be attached to a
carriage that moves along the x-axis. Tactile cues will guide the
user as they insert the paper into the braille embosser and
auditory cues will inform the user about status updates as their
paper embosses. The stepper motors and solenoids will both be
controlled with signals sent through an RPi.

On the software side, our web-app will be hosted on the RPi
and allows for wireless access from a smartphone to the braille
embosser. The web-app allows the user to input a chunk of text
or product name for instructions that they want printed on a
physical sheet of braille. The user can input information by
either using an electronic braille reader that is compatible with
their smart phone or through our dictation feature. We included

both options to ensure usability for braille users that may not
have access to electronic braille readers. If the user input is a
product name, this product is searched for in our product
database using hash functions. This database is created through
offline web-scraping on multiple sites, and then is formatted
into a readable format before converting to braille in our back-
end text-to-braille conversion algorithm, which translates the
American English text to contracted North American Braille
Alphabet. If the user enters a chunk of text to print, this text is
directly sent to the text-to-braille algorithm. Once the text is
converted to braille, we will map this braille to the solenoids
and motors to send signals through our RPi. An array of four
binary signals will represent the voltages sent to the solenoids,
which will be controlled by a single N-MOS transistor and a
flyback diode. The RPi will also send motor control signals to
our stepper motors, and the motor driver circuitry will be
integrated into a custom PCB. The user will hit a print button
on the web-app to inform the device that they are ready to print
their selected text box. We incorporated auditory signals
through a speaker, such as status updates every 2 minutes as
printing commences through a buzzer, updates for when
printing has begun, and when printing has ended to provide
feedback to the user throughout the printing process. The user
will receive a portable sheet of braille as the result of our
product.

Figure 1. Full system block-diagram

18-500 Design Project Report: Team A4: DigiBraille 10/13/2023 3

III. DESIGN REQUIREMENTS
Our design requirements are driven by our use-case

requirements: speed, accuracy, accessibility, completeness.
Speed. We require our embosser to take less than 10

minutes to emboss a full sheet of braille. This limit was
determined by the time it takes a blind user to transcribe the
same amount of text on a braille writing slate. To achieve this,
we require a stepper motor that rotates from 15-300 MMS and
push-pull solenoids that acuate at <.5 seconds. The
electromechanical system must emboss a single braille cell in
at most .5 second. On the software side, we require our web-
app respond to button presses <250 ms and to return properly
formatted product instructions in response to user input, which
is comparable to the latency of a Google Search [4]. We
require <3s to convert from American English to North
American Braille based on the time it takes for existing online
translators, and 2ms/braille cell to map output to the solenoids
and stepper motor signals. Once the user selects the “print”
option on our web-app, we require the signal be sent to the
hardware through our RPi in 30 ms. The web-app should
return to next site/text within 1 second of button press given
time of typical web scraping and time before people question
if the site is still loading.

Accuracy. Our accuracy requirement is driven by accuracy
of the solenoid embossing and accuracy of the text-to-braille
conversion algorithm. To ensure successful embossing, we
require at least 6 Newtons of force from solenoids, which was
determined through literature survey [5][6]. Our solenoids
provide 20 N, and the level of this force can be modulated by
varying the amount of voltage we apply. To maintain accuracy,
the solenoids must also be adequately powered. We will be
using 4 12 V solenoids that draw at most 2 amps of current.
Thus, we require a power supply that can supply 12 V and at
least 8 amps of current. We also require our embossing to be
within standard braille specs: the diameters of adjacent dots
must be within 2.3-2.5 mm of each other, the diameter of a
single pin must be between 1.5-1.6 mm, adjacent braille cells in
the same line must be within 6.0-7.0 mm of each other, and
adjacent braille cells in the two different lines must be within
10.0-11.0 mm of each other as demonstrated by Figure 2 [7].
These tolerances will be controlled for through our
programming of stepper motors. We also require accuracy in
our software. The text-to-braille conversion must be 95%
accurate, which is acceptable the same way slight grammatical
differences are acceptable in American English.

 Accessibility. To achieve our accessibility requirements, the
user must be able to acquaint themselves with the device and
web-app in less than 10 minutes, which includes easy to use
interface and consistent feedback to the user. To ensure
accessibility with the UI, we require our hit target buttons to be
at least 44x44 pixels with centers at least 60 pixels apart [8].
The website font should be 16 pixels according to standard
large font practice, and all text should be in the same style. We
will be interfacing with existing accessibility features for the
web-app portion of our project but will implement our own
auditory cues on the braille embosser. We require the buzzer to
alert the user that printing has begun at most 3 seconds after

the user hits print, which is the average time it takes standard
printers to begin printing. We require the speaker to provide
consistent updates as well. The braille embosser system must
be able to be picked up (30x15 cm) and weigh <5 kg. The
embosser must also include tactile cues to help the user input
paper through raised edges around the corner of the printer bed.
These edges will be raised by 1 cm and the paper will fit into
these corners.

Completeness. This design requirement is met by our web-
scraping design. We are implementing a database with results
from web-scraping done offline. This database should web-
scrape from at least 3 websites that compile at least 500k
products total.

IV. DESIGN TRADE STUDIES

A. Solenoid System
The choices made for our solenoid system were informed by

our requirements of speed, accuracy, and limiting cost. The
solenoids are essentially used to provide a linear motion in the
z-direction. Other methods could have also been employed to
provide this motion such as stepper motors. However, stepper
motors are slower than solenoids, and while they provide more
control over motion, we need only a single stroke in the z-
direction, so stepper motors would overcomplicate our system.
Solenoids have a simple control circuit and move very quickly,
which satisfies our need for speed. After deciding to use
solenoids, the next trade-off was deciding how many solenoids
to include. Table 1 demonstrates the calculations we did to
determine the amount of time embossing would take for a given
number of solenoids. The more solenoids we included, the
faster the device would be. However, this is a trade-off between
cost, power management, and size. We calculated the timing for
1-4 solenoids, with 4 fitting best into our user and design needs.
Our results are shown in Figure 3. We also had to decide the
optimal way to emboss. Instead of embossing one cell at a time,
we decided to emboss by line of braille dot, which produces the
least amount of stepper motor motions in the x and y direction.

Figure 2. Braille size specifications

18-500 Design Project Report: Team A4: DigiBraille 10/13/2023 4

B. User Interface
The trade-offs we considered when designing our user-

interface include the choice between a web-app, mobile
application, or text-message service, which frameworks to use
when creating the web-application, and how to design a user-
friendly interface. We first decided to use a web-app instead of
a mobile application because it provides a wider range of
access for users with different types of phones. A text message
service would provide easier access for users. However, it is
very easy to accidentally hit the send button when using a text-
message service, so we opted for a web-app hosted on a RPi
because it has multiple capabilities such as hosting a website.
RPi also has enough GPIO analog pins to interface with our
embosser. It is extremely fast with the 4B model working at
1.5 GHz so it will be able to host our entire database and send
signals quickly. We decided to use Flask for our web app
because it has an easy-to-use library while still being able to
do all the requests we need. To meet our requirement of
accessibility, we wanted to design an interface that would run
most smoothly with accessibility features that are built into
phones. As a result, we ensured that there was limited text on
our user interface to avoid superfluous auditory inputs and had
our entire website fit into a phone screen to prevent
complications from scrolling.

C. Mechanical System
Accuracy, product longevity, and portability requirements

all informed decisions made around the x/y gantry system. We
decided to decouple x and y motion, so that there are 2
different mechanisms controlling motion in each direction. A
benefit of this design choice is that it simplifies the design
process because we can think of these systems in isolation.

The y motion system is a set of idler and driven rollers that
move the paper for each new line of braille.

We decided to drive movement on the x axis with a
leadscrew connected to a stepper motor. The stepper motors
are ideal for very precise applications because they can rotate
a very precise increment. Each electrical pulse sent to the
stepper motor translates to a consistent rotation about the
shaft, as opposed to a DC motor which drives continuously,
and has inconsistent rotation amounts even for the same input
electrical pulse. Leadscrew driven gantries are also ideal for
high precision applications because they don’t suffer from
mechanical wear as much as other drive systems such as
pulley-based systems that stretch, and they also aren’t
susceptible to slippage. The leadscrew is also ideal because it
is a very durable part, and will be less susceptible to needing
replacement, unlike pulley-based systems which stretch and
become less accurate over time. Smaller pitch threads on
leadscrews enable even smaller controllable movements. With
smaller pitch threads comes higher manufacturing costs, so
there is a tradeoff here with high precision small pitch thread
lead screws costing more than leadscrews with bigger pitch
threads.

D. Back-end Algorithm
Using Python’s internal timers, we found that it would take

about 3.1 pages/sec to web scrape and compare the titles of
each of the products from directionsforme.org, making the
algorithm take an entire day in the worst-case scenario. While
it may be possible to use machine learning to figure out what
category each of these products fall under, the categories don’t
have strict guidelines, so it was hard for us to find recipes that
way. Also, searching through that algorithm would take just as
long as searching through a database that already compiles all
the products in these websites which would only require one
day for web scraping once. Another option would be to just
use our Google Search function but that may be less accurate
for certain suggestions and difficult to web scrape, so we still
have it but as a last resort option. Thinking about speed, a
cache is only worth it if the percentage of hits is large enough
that the average time it takes for a product to be searched is
less than the average time if there was no cache at all. The
cache has an O(n) lookup for N1 products while the database

TABLE I. WORST CASE PRINT TIME FOR FOUR SOLENOIDS

Motion Timing
Solenoid actuation time .5 seconds
Stepper motor MMS 15
Time to move to next dot in a cell .167 seconds
Time to move to next cell .291 seconds
Time to move to next line of dots .359 seconds
Time to move to beginning of line of dots 11.06 seconds
Time to emboss one line of braille 16.6 seconds
Time to emboss full sheet of braille 6.6 minutes

Figure 3. Number of solenoids vs. embossing
time

Figure 4. Mechanical embossing system side view

18-500 Design Project Report: Team A4: DigiBraille 10/13/2023 5

has O(1) lookup with value list O(n) for N2 products. Equation
(1) refers to the comparison of speed between the two data
structures where h is the percent of hits in the cache, f is the
translation speed, and b is the number of buckets in the
database.

𝑛! + (1 − ℎ) (
500000

𝑏 ,𝑓 < (
500000

𝑏 ,𝑓

V. SYSTEM IMPLEMENTATION
Our system is made up of hardware and software

components. Within hardware, our system is split into the
solenoid embossing system and the mechanical plotting system.
Within, software, our implementation is split into the front-end
UI and back-end algorithm for web-scraping and text-to-braille
conversion.

A. Solenoid System
Figure 5 is representative of the control circuit for a single

solenoid. The flyback diode placed in parallel with the
solenoid prevents the sudden voltage spike from massive
changes in inductive load from harming the circuit. The N-
MOS transistor will be used to control the voltage going into
the solenoid. When a binary 0 is sent from the RPI the
transistor will prevent the flow of current through the solenoid
and will allow the flow of current when a binary 1 is sent.
We will have four of these solenoid circuits connected in
parallel to a 12 V power source to realize our electrical
embossing system. The four solenoids will be attached to the
mechanical embossing system by the carriage shown in Figure
6. The arrangement of the solenoids is illustrated in Figure 7,
which is a zoomed in section of a braille page. We will use a
3 mm screw for the embosser head screwed into the tail end of
the solenoid arm. The four solenoids will emboss in parallel
and move in the x-direction. Once they reach the end of a line
of braille dots, they will return to the beginning of the x-axis,
and the y-axis rollers will move the paper up. Signals will be
sent to the solenoids through the RPi.

B. Web-application
The web-application will be implemented in Flask, HTML,

and CSS to allow the user to input product information. The
back end will be written in Python. Figure 8 shows the user
flow of the web-app and Figure 14 shows the mock-up of the
web app design. It is crucial that the web app be designed with
accessibility in mind. Thus, we are designing using the Apple
Accessibility Documentation specifications, which is reflected
in both our user flow and web-app design choices.

Figure 5. Solenoid control Circuit Figure 6. Solenoid carriage

(1)

Figure 8. Web-app user flow diagram

Figure 7. Embossing mechanism

18-500 Design Project Report: Team A4: DigiBraille 10/13/2023 6

C. Back-end Software

Every time a user presses print, the Python program uses the

Python library Flask to interpret the user’s request. If the user
fills out the print field, the backend runs the translation
function in translation.py which uses dictionaries and
conditions to map American English characters to braille
characters (Figure 9) then braille characters to solenoid
instructions (Figure 10). The contracted translation has a lot of
special conditions including but not limited to handling
parentheses, special characters that are represented by more
than 1 characters, capital letters separately vs. in a row,
numbers separately vs. in a row, and contractions that are in
words vs. by themselves. If the user fills out the product
search field with a link, the backend runs web scraping of the
site in websearch.py using the python library Beautiful Soup
and sends that American English text to translation.py for
translation. If the user fills out the product search field with a
product, the backend looks for it in the cache, then the
database, then web scrapes the first page in google results as a
last case scenario. The cache implementation (Figure 11) is a
python program that contains a list of the 100 most recent
searches with their American English directions and solenoid
instructions.

The database implementation (Figure 12) is also a python
program but is a dictionary that maps keywords to products
but not their solenoid instructions because of the memory-
speed efficiency tradeoff, so if the product is found in the
second step in the database, it also goes through translation.py.
The database is created from web scraping 3 with product
directions: directionsforme.org, backofthebox.com, and
harrietsblindkitchen. The frontend file webapp.py then uses
requests to post back to the user for confirmation and send a
buzzer sound output after

confirmation when the backend begins to send signals to the
embosser. This website is hosted on a RPI with the Python file
raspberry_handler.py. The binary signals for the embosser’s
solenoids and stepper motors are connected to the raspberry
pi’s GPIO pins and signals are sent to these pins with this
handler file for each 4-solenoid system at a time after the
translation has been completed. These files can be viewed and
downloaded from our GitHub: https://github.com/joshna-
ii/digibraille.

D. Mechanical System
The mechanical system is depicted in figure 13. We have an

embosser that is connected to a gantry on the X axis. This
gantry is driven by a lead screw. The Nema 17 stepper motors
we are using have a step angle of 1.8 degrees, which when
coupled with a 8mm pitch lead screw, can be controllable to
.01mm per step of the stepper motor, which will meet the
specifications described by Figure 2. The Y axis is driven by
a roller, which has tension against it from idler rollers on the
opposing side. There is another set of rollers acting against the
push down from the solenoids further down the Y axis of the
system. This is placed such that tension can be maintained
between the paper and the embosser so that the braille is
embossed correctly.

The Y axis roller system that moves the paper down for
each line of braille conserves space in the width direction. The
system can print on sheets of paper that are longer than 11
inches and takes up less space than a system where there are
constraints on printable areas in the Y direction.

The enclosure of the system will have different textures to
ensure that the user knows how to put the paper in. The
enclosure will have a slotted opening for the paper which will
make it simple for the user to load the paper. We have decided

Figure 9. Contracted braille translation

Figure 10. Braille to solenoid translation diagram

Figure 10. Cache diagram

Figure 12. Database diagram

Figure 11. Cache diagram

https://backofthebox.com/

18-500 Design Project Report: Team A4: DigiBraille 10/13/2023 7

that after the braille has been embossed that the paper will
come out the same side it was loaded in, to ensure that the user
knows where the printed braille is.

E. Integration
We will integrate the software and hardware components by

using a RPi, which will be able to host the website the user
interacts with to send in text, which will be parsed and
interpreted as a series of stepper motor and solenoid
commands. These hardware components will be easily
controlled via the GPIO of the RPi. We will be designing a
PCB to plug into the GPIO, and connect the buzzer, solenoids,
and Stepper Motors. The mechanical parts will be fitted into
an acrylic enclosure and fastened with M3 screws.

VI. TEST, VERIFICATION AND VALIDATION

A. Tests for Back-end
The success of our back-end component is defined by its

ability to produce accurate and complete results for our user.
We will test output of text to braille conversion on 100+ scripts
of text with output from Duxbury Braille Translation software
to ensure 95% accuracy as defined in our requirements. We
will also test our web-scraping results on 100+ different
products to ensure completeness of our web-scraped database.

B. Tests for Web-application
We will test the web-application through user-studies and

Apple’s Accessibility Inspector Tool. We will conduct user
studies to test the web application at each point in the process
which includes testing the user’s ability to input into the site,
the site’s ability to interact with the back end with user input,
and the end-to-end performance of the site. We will augment
our user tests with Apple’ Accessibility Inspector Tool for
debugging, which will allow us to test the web-app’s
performance against built in accessibility features. We will test
the latency of the web-application by timing how long it takes
the site to display a result in response to user input. As
described in sections II and III, speed and accessibility are
crucial requirements for this device, so we will be specifically
testing for speed and ease of navigation through the site. We

will use Python internal timers to test how long it takes for
each function to run for 100 get requests including but not
limited to the cache extraction algorithm, database extraction
algorithm, contracted braille translation, uncontracted braille
translation, and post requests. We will also run unit testing for
accuracy on each of these individual functions, manually
testing with the 100 most popular product searches on each of
the 3 websites we will be web scraping from.

C. Tests for Hardware User-Interface
We will also be conducting user tests to measure the

accessibility of the hardware component of our project. We
will primarily be testing the ability of our tactile and auditory
cues to guide the user. We will measure the amount of time it
takes a user to input a sheet of paper into our embossing
device to quantify the success of our tactile cues against the
amount of time it would take a sighted user to input paper in
the same manner. We will also test the accuracy of our
auditory cues by measuring the time stamps for each status
update and ensuring that they are accurate to the state of the
system. These user tests will also include testing for
readability of the printed braille output.

D. Tests for Speed
We will be testing the speed of the system by timing the

worst-case scenario printing time of a full sheet and ensuring
that this time is less than 10 minutes, as set by our user-
requirements.

E. Tests for Electromechanical System
Our electromechanical system tests are driven by our speed
and accuracy requirements. We will test our physical circuit
implementation by first running simulations in LT Spice to
ensure that the solenoid control circuit is properly handling the
input voltage from our microcontroller. We will also test the
control of a single solenoid using this circuit on a breadboard
before we design and fabricate our PCB. We will also test the
embossing capabilities of a single solenoid using our control
circuit without connecting it to the x/y gantry and work up to
testing the embossing capabilities of four solenoids in parallel.
We will also test the print area of the mechanical embossing
system, how fast we can move the mechanical printer while
still producing readable braille to specifications. We will also
test the tension on the y axis, test the placement of the paper,
test the movement of the rollers, and test the movement of the
x-gantry by giving different commands through the RPi.

F. Integration Tests
To test the integration of our hardware and software
components, we will first test our RPi output to make sure it is
properly displaying the correct binary voltage values to send
to solenoids, and the position sent to the stepper motors. For
integration between front-end and back-end, we will
consistently ensure the data being sent is accurate as we add
more components to our software. For backend integration
testing, we plan to use the black box method to test inputs and
outputs for each individual function then each combination of
functions starting from the middle outwards. For backend-
hardware integration testing, we plan to test signals received

Figure 13. Mechanical design for embosser

18-500 Design Project Report: Team A4: DigiBraille 10/13/2023 8

from the Raspberry Pi’s GPIO pins given different 100 manual
string inputs to the backend from length 0 to 100 characters.
After ensuring the RPi output is correct, we will be able to
connect our hardware and software components.

VII. PROJECT MANAGEMENT

A. Schedule
Our schedule (Figure 15) is broken down into sections of

team deadlines, hardware, front-end software, and back-end
software. Briefly, our schedule is broken up into building the
web-app front-end, developing braille translation and web-
scraping algorithms, designing and implementing the solenoid
embossing system, and designing and implementing the x/y
embosser gantry. We accounted for fall break in our slack time
and have left appropriate time for integration of the three main
components of our project.

B. Team Member Responsibilities
Our project has been divided into two primary components:

hardware and software. Each team member has a set of
responsibilities that fits into these two sections.

Joshna is working on the frontend-backend communication,
software algorithms for translating English text to uncontracted
braille characters to solenoid instructions, database creation by
web scraping multiple websites with lots of product directions,
database and cache extraction algorithms, google search
algorithm, communication with the raspberry pi and sending
signals, hosting the website on the raspberry pi, unit testing for
each of the above steps, and integration testing between
frontend/backend and backend/embosser.

Zeynep is responsible for the creation of the web-application
and the design of the solenoid embossing system. Zeynep has
taken courses on electromagnets and has an interest in working
with solenoids. She is also interested in gaining experience with
front-end development.

Becky is responsible for designing and manufacturing the
X/Y gantry system and designing and assembling the custom
PCB that connects the buzzer, solenoids and the stepper motors
to the GPIO on the RPi and power.

Each member is responsible for testing their individual
components. Integration testing will be performed as a team.
C. Bill of Materials and Budget

See Table 2 for our bill of materials and budget. We have
managed to keep the cost low by laser printing some of our parts
in TechSpark, using the RPi available to us through the ECE
Department, and testing our circuits with available components
in the ECE department. We expect our custom PCBs and
mechanical embossing system to dominate most of our budget.

D. Risk Mitigation Plans
We will continue to add to the database to improve speed if

enough products can’t be found. We will reconcile similar
products from different websites together if the database returns
too many search results to fit on one page. If the database
extraction algorithm isn’t accurate, we will compare products
to google search engine’s results to find more accurate results.
In the absolute worst-case scenario, we will use the google

search function and web scrape and print those pages. If the
cache doesn’t get 25% hits, then we will increase the cache size
until it does but if it continues to get limited hits then we will
decrease it for speed. If the contracted braille translation isn’t
accurate, we will either only include most common and simple
contractions, revert to uncontracted braille which should not be
a problem, or use existing websites for certain translations. If
the raspberry pi is unable to host the website, then we will use
a Carnegie Mellon University computer to do so or just use
local hosting for the purpose of the project. If the time delay
between sending out instructions to the solenoid and stepper
motor system isn’t long enough or is extremely irregular, we
will have the motors send a signal back to the RPi software
every time it moves for the software to keep track of when and
where to send the next signal.

VIII. RELATED WORK
The most similar work are commercial braille embossers

such as Index Braille’s embossers which operate at a speed of
140 cps but range from around $1800 to $5000 and this is the
industry standard. While our embosser isn’t as fast, it is
significantly cheaper and can be controlled via a mobile device,
unlike these other printers. Additionally, these embossers need
to be connected to a laptop while our embossers can be accessed
from both laptops and phones, which we found visually
impaired people tend to use everyday compared to a laptop
which they may use once in a few months based on user
interviews. While many visually impaired people use dictation
software to read out text to them and therefore don’t want to
spend the money on an expensive braille embosser, we also
found in these user interviews that there are many people who
want to be able to read things in braille on demand and this is
even a service that some accessibility libraries such as LAMP
provides. Our embosser would allow people to receive this
service whenever they need it and for a much cheaper cost.
Another competitor are Braille eReaders, which use a similar
solenoid system to act as the actual braille dots and can be
recalibrated by downloading a new book to be read. However,
this calibration typically requires a sighted person to help with
while our product can be used by anyone. Also, it has a similar
price range to industry standard braille embossers which is
much more expensive than our embosser. Additionally, there
are places where a person may not want to bring an electronic
device such as a kitchen or bathroom in case of spillages and
since our embosser prints on actual paper, this would not be a
problem.

IX. SUMMARY
Our low-cost phone-controlled braille embosser will enable

more information to be easily accessible through braille. Our
device streamlines the process for getting directions for
products, while also leaving the possibility for inputting other
information. The device has been designed with high speed,
accuracy, and user requirements in mind such that the device is
usable by our intended audience. Our device is able to
overcome challenges posed by traditional embossing systems

18-500 Design Project Report: Team A4: DigiBraille 10/13/2023 9

that need a computer to run through the use of a RPi which
enables web connected GPIO. While there are many
components necessary to creating this system, we have created
an implementation plan to give us plenty of time to integrate the
components of our design and test them. Additionally, we have
many alternative solutions in case certain parts don’t integrate
the way we expect.

GLOSSARY OF ACRONYMS
CSV – Comma separated values
GPIO – General Purpose Input Output
MMS – Millimeters per second
PCB – Printed Circuit Board
RPi – Raspberry Pi
ECE – Electrical and Computer Engineering

REFERENCES

[1] Lise. “The Smartphone: A Revolution for Blind and Visually Impaired
People!” Inclusive City Maker, 5 July 2022,
www.inclusivecitymaker.com/the-smartphone-a-revolution-for-the-
blind-and-visually-impaired/.

[2] “Braille Printers.” The American Foundation for the Blind,
www.afb.org/blindness-and-low-vision/using-technology/assistive-
technology-products/braille-printers. Accessed 12 Oct. 2023.

[3] “Refreshable Braille Displays.” The American Foundation for the Blind,
www.afb.org/node/16207/refreshable-braille-displays. Accessed 12 Oct.
2023.

[4] Research at Google,
static.googleusercontent.com/media/research.google.com/en/pubs/.
Accessed 12 Oct. 2023.

[5] “Low Cost Braille Embosser: Manualzz.” Manualzz.Com,
manualzz.com/doc/24178544/low-cost-braille-embosser. Accessed 12
Oct. 2023.

[6] Low Cost, Compact Braille Printing Head for Use in a Handheld Braille
..., repository.library.northeastern.edu/files/neu:1672/fulltext.pdf.
Accessed 13 Oct. 2023.

[7] “Size and Spacing of Braille Characters.” Size and Spacing of Braille
Characters | Braille Authority of North America,
brailleauthority.org/size-and-spacing-braille-characters. Accessed 12
Oct. 2023.

[8] “Human Interface Guidelines.” Apple Developer Documentation,
developer.apple.com/design/human-interface-guidelines/. Accessed 12
Oct. 2023.

[9] “Prevalence Estimates Vision Loss and Blindness.” Centers for Disease
Control and Prevention, Centers for Disease Control and Prevention, 31
Oct. 2022, www.cdc.gov/visionhealth/vehss/estimates/vision-loss-
prevalence.html#:~:text=Approximately%206%20million%20American
s%20have,as%20nursing%20homes%20or%20prisons.

18-500 Design Project Report: Team A4: DigiBraille 10/13/2023 10

TABLE II. BILL OF MATERIALS

Description Model # Manufacturer Quantity Cost @ Total

DC 12V 2A Solenoid 1199703 Harfington 4 $7.18 $28.72

M3-8 Screw 36-9906-ND Keystone Electronics 25 $0.148 $3.70

M3x12mm Grub Screw JDJM007 Abbot Store 50 $0.11 $5.50
Nema 17 Stepper
Motor

17HE15-
1504S Stepper Online 1 $8.99 $8.99

Linear Slide and Mount L526C34617Z CNC Yeah 1 $17.99 $17.99

Linear Bearing LM8UU Edoneery 1 $11.99 $11.99
X-axis nema 17 w
leadscrew and coupler

MY-17LS16-
1504E-310J MybotOnline 1 $28.99 $28.99

8mm Linear Rails FG008 Feyrix 4 $5.70 $22.80

Idler Rollers U-0846.5-10 Preamer 6 $2.08 $12.48

Drive Rollers 2471K16 McMaster Carr 2 $32.19 $64.38

Stepper Motor Drivers A4988 HiLetGo 2 $2.04 $4.08

Raspberry Pi 4 GB 4B Element14 1 $0.0 $0.0

Custom PCB - FlashPCB 1 $0.0 $0.0

M6 x 20mm - Ideate VAR $0.0 $0.0

M3x 20mm - Ideate VAR $0.0 $0.0

12 V 12 A Power
Supply

BOBHWMP8
H5 ALITOV 1 $26.99 $26.99

Custom 3D Printed
Parts - TechSpark 1 $0.0 $0.0

Lasercut Acrylic 3mm - TechsSpark VAR VAR VAR

 $236.61

18-500 Design Project Report: Team A4: DigiBraille 10/13/2023 11

Fi
gu

re
 1

4.
 W

eb
-a

pp
 w

ire
fr

am
e

18-500 Design Project Report: Team A4: DigiBraille 10/13/2023 12

Fi
gu

re
 1

5.
 S

ch
ed

ul
e

