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Abstract— A system aiming to leverage the efficient
programmable hardware of an FPGA to accelerate N-
Body simulations. N-body simulations play a pivotal
role in astrophysics, molecular dynamics, and a wide
range of scientific fields. The report highlights the limi-
tations of traditional CPU and GPU-based approaches,
emphasizing the pressing need for more efficient so-
lutions. By leveraging FPGAs, the project aims to
achieve substantial speedup and simultaneously reduce
power consumption, making it a cost-effective solution.
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1 INTRODUCTION

N-body simulations are fundamental tools in the realm
of computational physics, used to model the interactions
between multiple particles or bodies within a dynamic sys-
tem. These simulations play a crucial role in understand-
ing various complex phenomena, including gravitational
forces among celestial bodies in astrophysics, the behavior
of molecules in molecular dynamics, and even the dynam-
ics of particles in simulations of fluid flow[1]. The primary
challenge in N-body simulations lies in the computation of
the gravitational forces or other interactions between each
pair of particles, which scales quadratically with the num-
ber of particles, making it a computationally intensive task.

Traditional approaches to N-body simulations often in-
volve the use of Central Processing Units (CPUs) or Graph-
ics Processing Units (GPUs). While these methods are
valuable, they often face limitations in terms of speed and
power efficiency, particularly when dealing with simulations
that involve a large number of particles that have very
irregular computation patterns. To address these limita-
tions, this paper proposes a pragmatic solution: leveraging
FPGAs to enhance the performance of N-body simulations.

FPGAs are reconfigurable hardware devices that offer
the potential to significantly enhance the performance of
N-body simulations while simultaneously addressing power
consumption concerns. The driving motivation behind this
project stems from the practical need to advance computa-
tional physics. Our central goal is to run 2D N-Body sim-
ulations involving a substantial 10,000 particles, striv-
ing to attain a 10x speedup compared to optimized CPU-
based methods.

Our project aims to incorporate FPGA acceleration into
computational physics, with a focus on practical appli-
cations. This approach is intended to improve computa-

tional efficiency, particularly for graduate students and re-
searchers with limited resources. By doing so, we aim to
facilitate the simulation of systems involving a substantial
number of interacting particles, which is often a costly and
resource-intensive task. This practical development seeks
to support the scientific community, especially in fields like
celestial mechanics and molecular dynamics [1], by offering
a more cost-effective solution for conducting research with-
out the need for excessive claims or resource investments.
By providing a solution that is more power efficient than
its GPU counterparts, we also aim to reduce our negative
impact on the environment as well.

2 USE-CASE REQUIREMENTS

In framing our use case for the FPGA-based N Body
simulation system, we’ve established a multifaceted set of
objectives that align with our goals. Our primary aim is
to achieve a substantial speedup for a large enough sim-
ulation size compared to traditional CPU-based simula-
tions, thereby significantly improving computational effi-
ciency and reducing research time. Moreover, it is impor-
tant that our results are as accurate as we advertise. Not
only would it be unethical of us to falsely advertise a prod-
uct, given that N-Body simulations could have use cases in
scenarios like determining if an asteroid is going to collide
with the planet or drug discovery in molecular dynamics[1],
the onus is on us to ensure that we deliver our promised
accuracy as our users could be relying on us in very serious
use cases. So, we aim to achieve a 10x speedup for a
10000 particle 2D simulation with an accuracy of
90-95% (Note that our accuracy requirement is sufficient
for our use case[2]). These requirements are explored fur-
ther in our Design Requirements section.

Incorporating public health, safety, and welfare con-
siderations, our FPGA system will prioritize user safety
through robust safety measures. Potential hazards and
risks associated with FPGA technology, including over-
heating concerns, were considered, ensuring a secure re-
search environment. Beyond safety, our approach empha-
sizes accessibility. The user-friendly design, including a dis-
play interface, is developed with sensitivity to diverse back-
grounds, promoting a collaborative and globally accessible
research environment.

In addition, our commitment extends to environmental
sustainability by minimizing power consumption, aligning
with environmental goals for responsible high-performance
computing. Simultaneously, economic factors play a crucial
role in ensuring affordability and accessibility, particularly
for students and researchers with limited resources, foster-
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ing economic inclusivity within the research community.
This approach blends speed, safety, inclusivity, environ-
mental responsibility, and economics to create a compre-
hensive N Body simulation solution.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

We implemented our solution with a straightforward
architecture. We have a host computer sending the ini-
tial simulation conditions (positions of the particles, their
mass, and velocity) to our acceleration hardware. The ac-
celeration piece of hardware that we plan to use is the Xil-
inx UltraScale+ Ultra96v2 development board. This board
also has an ARM core integrated into facilitating the run-
ning of C++ and a flexible FPGA fabric for accelerated
kernels. We plan to have the entire simulation run on the
FPGA (using its programmable logic resources including
LUTs, Flip Flops, DSPs, and on-chip BRAM) with the re-
sults being displayed on a web app where the user can also
download them.

Our high-level approach is to have the FPGA’s ARM
core manage the launching of the simulation kernels, includ-
ing transferring the particle data to and from the FPGA
fabric and FPGAmemory. We would transfer data between
our host computer and FPGA by securely copying (scp) the
files to/from the ARM core. The output files would have a
resultant position and velocity of the particles at each time
step. Once the specified number of iterations for the simu-
lation has completed, this will be sent back to the user, as
mentioned above, and also be sent to a web server hosting
a graphical display as a visual reference. Note that the user
also has the option of sending data to the web server live
during a simulation so they can view their results in real-
time. This would help our user gain an intuition of whether
or not their simulation is going as expected without having
to wait for ours to see their final results. Figure 1 shows a
block diagram representing this.

The main algorithm for our simulation can be split into
four discrete steps where our optimizations will take place.
These steps consist of arithmetic computation such as mul-
tiplication, addition, dot products, etc., and will also com-
prise data transfer between some data structures that store
physical information.

We wrote our code in C++ and used the Vitis develop-
ment platform to synthesize our logic. Doing so allows us
to take advantage of the FPGA’s performant infrastructure
while still maintaining the ease and familiarity of writing
code for a CPU. This allowed us to focus primarily on the
actual algorithm and optimization of our design instead of
logic description details.

(a)

(b)

Figure 1: System Description (a) overall system (b) inside
FPGA

Figure 2: Data flow diagram describing all pairs algorithm

Figure 3: All pairs algorithm code
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Fig. ?? above describes the all-pairs algorithm which
we will be parallelizing. As we can see the algorithm runs
in O(N2) because the outermost loop loops through all the
particles 1...N , and the inner loop also goes through all the
particles and determines which particles are nearby to the
particles i ∈ 1...N . This is after all the nearby particles
have been determined we then calculate the force on par-
ticle i and then update the position of the particle. After
this is done for all the particles 1...N then we increase our
time by 1.

4 DESIGN REQUIREMENTS

4.1 Speedup

The 10x speedup for 10000 particles is achieved by op-
timizing the computational aspects of the simulation. This
is our most important requirement as this is the speedup
our physicists need in order to make our product viable
for them. The motivation behind our speedup goal was to
see what was theoretically the maximum speedup we could
achieve on an FPGA. The fabric clock on an FPGA runs
at around 200MHz[3] which is about 15x slower than an
i7-9700 3.0GHz[4] (this is the CPU we are running our ref-
erence calculations on). But we have seen that the Cache/-
DRAM on the FPGA is significantly faster than the CPU.
The memory is somewhere near 10x-100x faster. If we take
both of these factors into consideration then we can see a
theoretically viable and achievable speedup is around 10x.

4.2 Simulation Scale

The system should support simulations with a minimum
of 10,000 particles in a 2D environment. The scale should
be suitable for molecular and astronomical simulations, en-
suring meaningful results[5].

This also perfectly fits our hardware resources, on our
FPGA we have 70K LUTS which should be able to sup-
port data transfer and calculation of around 10000 particles
[3]. This number does remain flexible though in case fur-
ther testing reveals to us that we might be more hardware-
bound.

We are very happy with our achieved speedup of 40x
because it will be able to cut down the simulation time for
a 10k particle simulation that might have taken 20 hours,
for example, to merely half an hour. This speedup is crucial
in stratifying our use case which is first and foremost being
able to help the under-resourced physicists out there. This
also helps us achieve our other environmental and collab-
orative goals that to achieve this 40x speedup as only an
FPGA will be needed and no extra components, this will
help cut down costs and global waste and will encourage
more cross-platform partnerships within academia.

4.3 Accuracy

From our research into the use cases of the N-Body
simulations, we foresee a 90-95% accuracy in our results

being sufficient[2]. It is important to define this metric as
various implementations of this algorithm tend to lose pre-
cision over time. This was also particularly relevant when
we were working with fixed point types leading us to choose
between the tradeoff of precision vs speedup.

5 DESIGN TRADE STUDIES

For our project, we had to make several considerations
and decisions when approaching our problem: Accelerat-
ing N-Body simulations in an efficient and cost-effective
manner. We first had to choose our acceleration platform,
our FPGA, then our simulation algorithm and finally our
hardware acceleration approaches.

5.1 Hardware Platform

As mentioned above and in our introduction, versions
of the N-Body simulation already exist on CPUs, GPUs
and other platforms. When choosing our platform we had
to carefully evaluate the costs and benefits of each of them,
how they can cope with our workload, their efficiency and
accessibility. The four main platforms we considered were
a CPU, GPU, ASICs, and FPGA. Below are the pros and
cons of each that we considered.

5.1.1 CPU with Multithreading

A comparatively straightforward approach to this prob-
lem would be to use a CPU to conduct our simulation. Two
of us have already tried this approach in the course 15-418:
Parallel Computer Architecture and Programming. The in-
tuitive way to parallelize this simulation is to do so on the
axis of each particle during the compute force section of our
simulation. This would not be the most efficient on a CPU
given that we are dealing with around ten thousand parti-
cles at a time and most standard CPUs allow 8-16 threads
(with supercomputers using 128). Additionally, thread syn-
chronization and communication costs would be very high
given that we would have many shared data structures.
Additionally, CPU kernels would also spend time context
switching between different applications and processes that
are running devoting less time to our simulations and mak-
ing running them all the more expensive.

5.1.2 GPU

GPUs solve the above mentioned problem of CPUs be-
ing hardware bound by the available concurrency on the
platform as each block on a GPU can spawn up to 1024
threads making this very scalable for our use case. How-
ever, our computation can be very irregular, for example,
particles that are grouped together would have to per-
form larger resultant force computations as compared to
sparsely located ones. This would again lead to several
overhead communication costs between threads and GPU
blocks which significantly hurts our performance. More-
over, the memory architecture of a GPU would force us to
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Figure 4: Integrated Block Diagram

use its global memory instead of its shared block memory
given that all blocks need to have access to the particle in-
formation. Reading/Writing data in the global memory of
a GPU is also very expensive. Lastly, a GPU is not very
power efficient, an average GPU has a TDP of 300W[6].
Even though some fast implementations of our problem
have been designed on GPUs, their adverse effects on the
environment with their power consumption make us want
to work on a more sustainable platform.

5.1.3 ASIC

ASIC is an efficient approach, however, given the time
constraints that we are presented with, we would be able
to design and fabricate a chip. Our design would also have
to be produced at scale for this to be worthwhile, making
this not ideal for a prototype system.

5.1.4 Why an FPGA?

Given the above constraints with other platforms, we
chose the FPGA as our target platform. FPGAs allow
us to take advantage of customizable hardware to exploit
parallelism in conducting our N-Body Simulation. FPGAs
also offer high flexibility in their memory architecture with
BRAM allowing us to take advantage of memory reuse
without the costly high latency trips of DRAM. We have
also found well-documented work available for accelerating
code on FPGAs including papers[7] that have tried our N-
Body simulations on cloud FPGAs. FPGA kernels would
also not have to deal with as much overhead as a CPU
kernel as the former would be focusing solely on our com-
putation. Lastly, compared to options like ASIC they are
also relatively cheaper and is also more power efficient than

GPUs (our FPGA has a TDP of only 24W[3]) as mentioned
in our design requirements.

5.2 Hardware Acceleration Approach

5.2.1 HLS vs. HDL

After choosing the FPGA as our platform, we needed
to decide how we were going to write our kernel code.
This could have either been done using a Hardware De-
scription Language (HDL) like SystemVerilog, or using a
more programmer-friendly language like C++ in conjunc-
tion with High-Level Synthesis. The first consideration we
had was that our initial CPU implementation was already
written in C++, so choosing C++ with HLS would mean
that we could spend more time optimizing a familiar and
approachable algorithm instead of spending time getting
an initial implementation setup and running. Additionally,
HLS also offers several tools to facilitate parallelism, such
as pipelining and unrolling Pragmas on Vitis HLS, and the
compiler also is able to infer and parallelize independent
sections of our code which programming in SystemVerilog
would not allow.

5.2.2 Fixed-Point vs Floating Point Numbers

In our initial design, we did intend to use fixed point
type numbers instead of floating points as they would take
up less hardware. However, after implementing a version
of our code with this data type, we found that we were able
to gain a significant speedup but this was not entirely accu-
rate. Given that several steps of our computation include
really large/small numbers like the gravitational constant
G, we found that our fixed point version was zeroing out
a majority of our compute force computation leading to us
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falsely achieving a speedup. For this reason, we pivoted
back to using single precision floating point types which
offer an actual accuracy metric

5.3 N-Body Simulation Algorithms

After finalizing our hardware platform and acceleration
approach, we had to choose the algorithm that we would
run our simulations with. There are several proposed al-
gorithms to run N-Body simulations, the two most widely
accepted ones are the Barne’s Hut and All Pairs algorithms.
Their tradeoffs have been discussed below

5.3.1 Barne’s Hut Algorithm

The Barne’s Hut algorithm[8] has an O(NLogN) time
complexity where N is the number of particles. Here at
each time step, a particle can find its nearby particles to
compute its resultant force and velocity vectors using a data
structure called a quad tree. This data structure, as seen
in the figure 5, splits the simulation space into quadrants
where each node represents one quadrant and continues to
recursively do so until each leaf has only 1 particle or has
child nodes that split it further. Traversing this to find
nearby particles is considerably more efficient (O(LogN)
vs O(N))[9]. However, implementing this in HLS would be
quite complex and reading/updating this data structure
would be quite expensive on an FPGA.

Figure 5: Barne’s Algorithm with Quad Trees[9]

5.3.2 All Pairs Approach

This approach is slightly less sophisticated and is the
fundamental approach when performing the N-body sim-
ulation, at each time step, each particle loops over every
other particle to find out if it is nearby and then compute
its interactive forces. This approach has a higher time com-
plexity of O(N2). However, this is a lot easier to parallelize
given its comparative independence in force computations
and update phases. It is also easier to store into memory on
an FPGA making this a more widely used algorithm in ac-
celerating N-Body simulations in platforms such as FPGA
and GPU. Hence, given its comparative ease to optimize,
we chose the All Pairs approach.

6 SYSTEM IMPLEMENTATION

As mentioned in the architecture section, our hardware
platform will be the Xilinx Ultra96-V2 development board.
A user can interface with this board to send/receive data
from it via WIFI, by copying input and result files to/from
the board via scp and ssh. The graphical visualization tool
will be hosted on a web server that will receive live data
from the FPGA.

With respect to our actual optimizations, we have men-
tioned our plan below.

6.1 Loop Unrolling

Loop unrolling is a critical optimization technique em-
ployed in parallel computing to improve the execution
speed of iterative loops within algorithms. In the N-Body
simulation, loop unrolling involves unwrapping a loop, es-
sentially transforming a series of repetitive iterations into
a sequence of independent and parallelized operations. In-
stead of processing a single element or body per iteration,
loop unrolling allows for the simultaneous handling of mul-
tiple elements within a single iteration, making more effi-
cient use of the hardware’s capabilities and increasing com-
putational throughput.

The ”all pairs” algorithm has nested loops for pairwise
interactions. By unrolling these loops, we can effectively
perform multiple pairwise interactions within a single iter-
ation, reducing the overhead of loop control and enabling
the utilization of vectorized instructions or parallel hard-
ware. This optimization technique aims to significantly ac-
celerate the simulation by decreasing the number of loop
iterations and improving the overall runtime efficiency.

Figure 6: Rolled vs Unrolled loop [10]
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6.2 Pipelining

Pipelining is another optimization technique that aims
to reduce loop latency. As seen in the figure 7, it does so by
starting the next iteration of a loop before the current one
finishes. This is different from unrolling as it’s possible that
different loop iterations may have some data dependencies
or just cannot be run concurrently, so pipelining facilitates
running loop iterations concurrently while not having these
critical sections overlap.

In the N-body simulation, each body interacts with ev-
ery other body to calculate gravitational forces or other in-
teractions. With the pipelining pragma, these interactions
can be divided into stages, such as data fetching, computa-
tion, and result storage. The pragma enables overlapping
the execution of different stages, making more efficient use
of hardware resources.

Figure 7: Unpipelined vs Pipelined [11]

6.3 Software Refactoring

The optimizations above alone were not enough to
achieve our speedup goals. An important part of our so-
lution was to refactor sections of our algorithm to make
it more parallelizable and therefore compatible with the
unrolling and pipelining. The two main approaches we im-
plemented are discussed below.

6.3.1 Matrix-Vector Multiplication with Loop Re-
ordering

An important code change to our solution was to sep-
arate our actual computation/math from the rest of our
code and to treat this as a dense graph. This leads us
to mapping our computational model to the matrix-vector
multiply model as seen in the figure 8. Our first iteration
of this can be seen in the left half of this figure where we
have an element-wise compute force where we accumulate
each particle force across multiple iterations. This how-
ever creates a data dependency in the inner loop leading to
pipeline stalls that affected our speedup.

This led to our next refactor where we inverted the or-
der of our two loops. By doing so, as seen in the right half
of the image below, we still retained our element-wise force
computation but instead of accumulating a resultant force

for each particle, we element-wise add forces across parti-
cles making our loops independent of each either and easy
to pipeline, boosting our speedup.

Figure 8: Matrix Multiply Model

6.3.2 Batch Computation

To augment the newly refactored code above, we also
grouped our computation in batches to take more advan-
tage of loop unrolling so we could execute a larger portion
of our code concurrently. A visual of how this works can be
seen below. This coupled with BRAM partitioning greatly
facilitated our concurrent memory accesses. With some
testing, we found that increasing our batch size led to a
higher speedup as seen in the graph below and we found
that a batch size of 8 gave us the best speedup (40x!). We
could not go beyond this due to the board’s hardware re-
source limitations.

Figure 9: Batch Computation
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Figure 10: Batch Size vs Speedup

6.4 FPGA Memory

A major advantage of computation on FPGA is that
we can implement custom memory structures to fit the al-
gorithm’s data accessing pattern. This way, we can im-
prove the memory throughput which usually bottlenecks
memory-intensive computations.

6.4.1 DRAM

The DRAM on the FPGA stores the initialization and
simulation results of our system. The host program in the
Arm core stores the initial state of the particles received
from the user’s PC or laptop to the DRAM before the sim-
ulation starts. During simulation, the N-Body computa-
tion hardware kernel in the programmable logic continu-
ously reads the particles’ information - position, velocity,
and mass - from DRAM. The kernel calculates the parti-
cles and then writes back the simulated results. At the end
of the simulation, the FPGA core extracts the simulated
results into files for the user to retrieve from the board.
The DRAM of the Ultra96-V2 FPGA contains 2GB mem-
ory and has a measured read latency of around 500ns - sev-
eral dozens of cycles depending on the computation’s target
frequency[3]. This long latency means we need to perform
our computation on locally buffered data instead of making
frequent trips to DRAM. We also need to batch-read data
from DRAM to local buffers to maximize DRAM through-
put as we have limited set of DRAM ports (512 bytes total
[3]) limiting the degree of our concurrent read/write access
patterns.

6.4.2 LUTRAM

LUTRAM is on-chip memory implemented from LUTs
in the programmable fabric. LUTRAM can have 32-bit or
64-bit wide ports, and it supports dual-edge clocking for
fast data access [12]. Therefore, LUTRAM is ideal for fast
and flexible data access. However, because LUTRAM is
implemented using LUTs, more data stored in LUTRAM
means less LUTs can be used for calculation. Therefore, we

should only store data structures that need to be accessed
in every cycle in LUTRAM to optimize resource usage.

6.4.3 Block RAM

Block RAM is a hardened fast memory structure in the
programmable fabric. Block RAM supports dual port ac-
cess, which means we can read and write from Block RAM
at the same time. Block RAM ports are reconfigurable. It
supports reshaping and partitioning memory. This means
we can access multiple elements of an array at the same
time, enabling us to parallelize a computation by pipelin-
ing and unrolling loops. We found that our board has about
432 KB of BRAM [3], which allowed us to store our entire
particle data set (about 200KB plus some more for tem-
porary buffers as seen in our resource util below) onto it
greatly improving our memory latency.

(a)

(b)

Figure 11: BRAM Configuration (a) Array Reshape (b)
Array Partition

6.5 Graphical Display

One major change from our design to our final project
was our graphical display. While we initially intended
to drive the graphical display on a monitor through the
FPGA’s miniDP port, we found that working with the
graphics libraries on the board to be very cumbersome and
we also realised it is wise to separate graphical processing
from our FPGA onto a separate Flask server. It is also
much better suited for our use case requirement wherein
the Physicist can look at the simulation data and the go
and that the graphical animation is being run in real time.
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After all of these considerations, we decided to finally de-
ploy a lightweight webapp on an online hosting platform.

6.5.1 Choice of web app framework

We choose Flask to build a web application over other
web frameworks based on a multitude of factors. In our
case, we wanted a lightweight and easy-to-use website that
displayed animations and allowed us to easily download
files. Flask is simple and lightweight, making it an ideal
choice for small to medium-sized web applications. The
flexibility enables the easy integration of third-party li-
braries and tools, which was crucial for us as we needed
to integrate other Python libraries like Matplotlib, pandas,
and NumPy in order for our graphical simulation to work
properly.

In contrast, other popular frameworks like Django offer
more built-in features but at the cost of increased complex-
ity and a steeper learning curve. We thought that Django
might be overkill for smaller webapp like ours. Ruby on
Rails also offers many built-in tools but enforces conven-
tion over configuration, which can limit flexibility which
for us again was not feasible. Flask’s extensible nature al-
lowed us to add only what we needed, ensuring a lean and
efficient application. [13].

Lastly, our decision to stick with a Python-based frame-
work was also made because our graphical simulation algo-
rithm was written in Python and so the integration of the
web app with the simulation was very seamless.

6.5.2 Choice Of Hosting Platform

Choosing to deploy a Flask web application on Amazon
Web Services (AWS) over other hosting platforms was a de-
cision influenced by several key factors. Firstly, AWS offers
a lot of scalability options, which are essential for handling
our website because depending on the simulation the user is
running they might need more CPU (to do the file reading,
processing and also animation creation) power and storage
just to simply contain (exact of our simulation result file
is around 400KB, if the user ran it for even 1000 itera-
tions the file would take up approximately 400MB). AWS
also provides a comprehensive set of services like Amazon
RDS for database management, AWS Lambda for server
less computing, and Amazon S3 for storage, which inte-
grate seamlessly with Flask, allowing for a more stream-
lined development and deployment process.

Comparatively, other platforms like Google Cloud Plat-
form (GCP) and Microsoft Azure also offer similar services,
but AWS stands out for its mature ecosystem and exten-
sive documentation, making it easier for us to find solutions
to potential issues.[14] Additionally, AWS’s pay-as-you-go
pricing model can be more cost-effective, especially for ap-
plications with fluctuating usage patterns (the website may
lay dormant for a couple of days and be used excessively on
other days depending on when the user deploys their sim-
ulation). This economic efficiency, combined with AWS’s
proven track record and widespread adoption in the indus-

try, ultimately guided the decision towards AWS for hosting
the Flask web application.

6.5.3 Functionalities on the web app

For our web app we decided that easy of use and access
was our priority so we planned on keeping the UI clean and
minimal. Our core functionalities are displaying a real time
graphical simulation. We have 3 buttons which direct the
users to 1) Downloading a ZIP file containing simulation
data from past simulation 2) Downloading simulation files
from the current simulation (this is more fine grained as
the user can specifically decide which iteration’s output file
they want to download) 3) Download the animation of the
current or past simulation. This functionality lets the user
download the most up to date animation of the current sim-
ulation (Same as the one displayed on the home page) or
of a past simulation.An image of how our homepage looks
can be seen below.

Figure 12: Web Server

6.5.4 Tradeoffs

Some of the trade-offs we made for our web app were
that they ran our application on a t2.medium AWS EC2
instance which is a paid instance and costs $0.0464[15]. We
did this rather than running it on a free instance because
our CPU utilization on the free instance made was hovering
around 70% which was too high and the website could not
be accessed due to extremely high load, so we decided to
switch to paid instance. Even with our paid if the server is
constantly up and running for around 7 days straight they
would have to pay around $8 which is very reasonable
(User can stop the instance when not running a simulation
and would not have to incur a cost).

The other major trade-off we made was adding the func-
tionalities of downloading past results, this made the web
app a little bit less lightweight and the server would have to
serve more content and do more processing when a down-
load request occurs (Probably another reason as to why we
had to upgrade our server). But again we thought that this
was something we could not leave out as it is very possi-
ble the user wants to look at past simulations and not just
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the current or that they might want to download a ZIP
file containing the whole simulation’s data rather than the
data from individual time step.

7 TESTING & VALIDATION

7.1 Accuracy Tests

For our given use cases of Molecular and Astronomical
N-Body Simulations, we found that a 90 − 95% accuracy
would be sufficient[2]. Hence, the first thing that we will
check with our project is whether the N-Body simulation
results that we produce satisfy the requirements in accu-
racy. To do so, we have our benchmark CPU implementa-
tion which we developed in a previous class as a method
of validation. Note that to make this a fair comparison,
especially since we switched back to floating point types on
the FPGA, the CPU implementation was modified to use
double-precision floating point numbers to best evaluate
any changes in accuracy.

To get a numerical value for our accuracy we used the
formula that intuitively makes sense, we simply take the av-
erage difference over all 10000 values over all our iterations
between the (x, y) coordinates of the reference solution and
our own.

Note - Even though we used we used double precision
floating point value for our reference (this serves well for
our purpose of comparing our simulation to a model that
is more accurate than us.) the CPU implementation is not
fully accurate as it is impossible to fully contain position
data even in 64-bit float, but again we thought it was good
enough to use as a reference value and we since

Figure 13: Accuracy Verification Formula

Below we have included our results for the same. Note
that we mentioned we are comparing our FPGA to a dou-
ble precision floating point implementation on the CPU.
We did also try single precision floating points on both and
found that they were always almost a 100% accurate and
therefore did not think that this was a fair comparison as
we want to compare the best CPU implementation with
our FPGA. In the figure 14 we can see that our accuracy
scales quite well with the number of iterations which suits
our use case. At higher iterations, our accuracy declines
a lot more gradually. This is because for our simulations
it is impossible to achieve perfect accuracy since all data
types would start to lose precision at some point as seen in
the CPU implementation also beginning to lose precision
at higher iterations slowing down the decline in accuracy
of our FPGA keeping it above 90%.

Figure 14: Accuracy vs Number of Iterations

7.2 Verifying Speedup

To measure and verify our speedup we measured the
end-to-end run time of our CPU implementation and di-
vided this by the end-to-end run time of our FPGA imple-
mentation. The figure 15 below shows the time breakdown
of the distribution of our speedup. As mentioned in our
design, we aimed to first optimize our data access latency
by using BRAM for the initializing and return of particle
data but the bulk of our speedup was achieved in our com-
putation section. Note that these timings were taken for
a 10 timestep/iteration simulation and averaged to get the
per iteration speedup. These results were also averaged
across multiple runs of the same input to average out any
non-deterministic DRAM timing. These results are also
tested against a variety of input patterns to make sure our
speedup was not specific to any use case.

Figure 15: Timing breakdown of Runtime for 1 iteration
for 10K particles for 10 iterations

Another metric that was important to explore was how
our speedup scales with the number of iterations. It was im-
portant that we at least maintained our achieved speedup.
The graph below shows the results for the same. Here we
can see that our speedup scales up as the number of itera-
tions increases, reaching about 50x for 1000 iterations! This
can be explained with Amdahl’s law[16]. Given that our
bottle was reading and writing the initial and final particle
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data to and from BRAM (the sequential non-parallelisable
part of our code), increasing the number of iterations leads
to us spending more time on our computation therefore in-
creasing the arithmetic intensity of our program leading to
our higher speedup. A figure plotting these results can be
seen below.

Figure 16: Scaling of Speedup with Iterations

7.3 Power Consumption

Given that we are trying to also be energy efficient,
given our achieved speedup of 40x and the Ultra96’s 24W
TDP [3], we have achieved our goal of being more efficient
than CPUs (100W TDP) and GPUs (300W TDP) [6].

7.4 Resource Utilisation

To confirm that we pushed our board to achieve the
best possible speedup, we analyzed our Vitis Resource Util-
isation reports for the different resources on board (Block
RAM, Look Up Tables, Digital Signal Processors, and
Computational Logic Blocks). In the graph below, we see
that for a batch size of 8, we nearly max out our CLBs hint-
ing that this was the highest speedup we could achieve with
our current implementation. Another confirmation of this
was that trying to build an implementation with a higher
batch size would not succeed. Another thing to note here
would be the evident tradeoff between achieved speedup
and resource utilization, getting a higher speedup comes at
the cost of using up more resources on the board, reaching
our 40x speedup led to us maxing out the same.

Figure 17: Resource Utilisation vs Batch Size

8 PROJECT MANAGEMENT

8.1 Schedule

Refer to our Gantt chart for our schedule. We have
accounted for slack time and breaks as well.

8.2 Team Member Responsibilities

Initially, Abhinav and Rene worked on setting up the
CPU benchmark and Yuhe worked on setting up the Ul-
tra96 FPGA. Abhinav and Rene would then focus on algo-
rithm analysis and learning about Vitis HLS optimizations
while Yuhe set up our Vitis HLS workspaces. Towards the
latter half of our project, we all focused on achieving our
speedup goals. Nearing the end, Abhinav began to spend
time deploying a web server that can visualize our sim-
ulation results (both live and asynchronously) and Rene
helped with setting up the board’s internet connectivity
for the same.

8.3 Bill of Materials and Budget

Since Yuhe is taking 18-643 at the time of this project,
we were able to borrow her 2 FPGAs (her board and her
TA’s) at no additional cost. We bought a MiniDP cable
for around $9 on Amazon and also used a paid AWS EC2
t2.medium instance which cost us $0.8 (We ran this server
for 10 hours for testing purposes and our final demo). We
did not use most our allocated budget due to the software
and digital hardware oriented nature of our project.

Bill of Materials
Item Quantity Cost ($)
Xilinx Ultra96v2 2 0
MiniDP to HDMI
Cable

1 8.54

AWS EC2 Instance 10 hours 0.8
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8.4 Risk Mitigation Plans

One challenge we can face is running out of the pro-
grammable fabric’s hardware resources. There are two
types of resources we can run out of: computation resources
and memory resources. The high-level synthesis compiler
uses DSPs for calculation by default, but the Ultra96-V2
FPGA only has 360 DSPs, which limits the amount of com-
putation we can do in parallel. In case we need more com-
putation units, we can intentionally tell the compiler to
use LUTs to perform some calculations, providing more
computing capabilities. BRAM resources can also run out
when we parallelize data access to a degree that uses up
all the BRAM ports. To solve this issue, we need to re-
arrange our data accessing pattern, so that we partition
data to fit BRAM block shape for efficient BRAM usage.
If both strategies do not work, we need to parallelize less
and improve speedup in other ways, such as increasing the
frequency of our computation.

9 SUMMARY

To conclude, our project aims to accelerate N-body sim-
ulations on an FPGA. N-body simulations are computa-
tionally intensive simulations run by molecular and astro-
nomical physicists and current implementations of this are
slow and/or inefficient. We aim to leverage the FPGA’s
versatility and power efficiency to contribute to making
these simulations more accessible to scientists on a budget
while being sustainable for the environment. Our FPGA
of choice is the Xilinx Ultra96v2, and hope to both acceler-
ate and produce a visual representation of this simulation.
Our plan for carrying out this optimization involves tak-
ing advantage of Vitis Pragmas like pipelining, and FPGA
memory features like BRAM. While we do foresee compli-
cations with working with Vitis and some of the hardware
restrictions of the FPGA (LUT count etc.), we are confi-
dent that we can come up with an optimal design to meet
our design goals. [17]

Glossary of Acronyms

• ASIC - Application-specific Integrated Circuit

• BRAM - Block Random Access Memory

• CPU - Central Processing Unit

• DRAM - Dynamic Random Access Memory

• FPGA - Field Programmable Gate Array

• GPU - Graphics Processing Unit

• HDL - Hardware Description Language

• HLS - High-Level Synthesis

• LUT - Lookup Table

• DSP - Digital Signal Processor

• LUTRAM - Lookup Table Random Access Memory

• SRAM - Static Random Access Memory

• TDP - Thermal Design Power
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