
Team A3 N-Body
Abhinav Gupta, Rene Ravanan and Yuhe Zheng



● Problem: For physicists the N Body simulation is an important and 

computationally hard problem to solve, trying to run the algorithm in 

parallely on a CPU is simply not fast enough, and running on GPU is not 

power efficient. 

● Solution: Run the N Body simulation on a FPGA and try to achieve a gain in 

performance.

● Goal: Achieve a ~10x Speedup for a 10000 particle 2D-simulation.
● Achieved Speedup: ~40x 

Use Case



Solution Approach and System Overview



Base Line: N-Body Simulations on CPU

CPU Runtime: ~4.2s per iteration/time step
Running on i7-9700 3.0GHz, parallelised 
with the Quad Tree Approach 



Solution Overview: Matrix-Vector Multiply Model
Original Loop Order Optimized Loop Order

Inner loop: 
- element-wise compute force
- accumulate forces across iterations

Inner loop: 
- element-wise compute force
- element-wise add forces

data dependency pipeline stall



Solution Breakdown - Minimize DRAM R/W 

BRAM: 
● The board has roughly 432 KB of BRAM, 

this allowed us to load our entire dataset 
(roughly 200KB) onto it.

● Block RAM reduced our R/W latencies to 
memory and also allowed for more 
concurrent access patterns.



Solution Breakdown - Batch Execute

Since iterations in the inner 
loop are element-wise, we can 
compute force on multiple 
particles at the same time 

n = number of particles (N) / batch-size



Quantitative Verification:
● Correctness: For our use cases (Molecular, 

Astronomical etc.) a 90-95% accuracy with our 
reference solutions would be sufficient for our 
use cases.

● Used a CPU implementation running on an i7 
CPU using double precision floating point 
numbers to compute reference solution.

● Achieving this accuracy means that our final 
output should not differ from our reference by 
more than 10%.

● Compared to our Parallelised CPU 
implementation on the right, we achieved a 40x 
Speedup!

Testing & Verification



Approaches We Tried
Approach Success Reason

Unrolling + Pipelining Alone NO This alone was not enough to gain any 
performance. This was because of our DRAM port 
not being wide enough to support several 
concurrent reads/writes.

DRAM Widening NO Due to limited port availability, this did not solve 
the issue above

Fixed Points NO While this did produce significant speedup, we 
later realised that this was not accurate for longer 
iterations due to loss of precision. Increasing bit 
width was not feasible for our resource utilisation

Structs for Particles NO While they made our code easier to read, they 
increased our hardware utilisation 

BRAM YES Improved our R/W Latency

Batching + Unrolling + 
Pipelining

YES Improved latency for our concurrent memory 
operations. This coupled with BRAM above, set up 
unrolling + pipelining



● Given that we stuck to using floating point types, we ended up with a 96% accuracy to 
our reference CPU implementation ! 

● Our CPU implementation (Running on i7-9700 with a parallelised QuadTree 
implementation) ran for roughly 4.2s per iteration, we produced roughly 0.102s per 
iteration giving us a ~40x Speedup for 10 iterations!

● This scales non-linearly with number of iteration (time steps) due to Amdahl’s Law

Our Results 



Trade Off 
Speedup (batch size) vs Resources 



● We have 2 working scripts for 
graphical simulation (C++, Python)

● Getting the simulation displayed 
directly using on the FPGA has 
turned out to be very cumbersome 

● In addition to running our display on 
the board, we are looking into other 
alternatives like the FPGA 
communicating with an AWS server 
to do the simulation.

Results (Graphics)



Project Management


