Team A3 N-Body

Abhinav Gupta, Rene Ravanan and Yuhe Zheng

Use Case

Problem: For physicists the N Body simulation is an important and
computationally hard problem to solve, trying to run the algorithm in
parallely on a CPU is simply not fast enough, and running on GPU is not
power efficient.

Solution: Run the N Body simulation on a FPGA and try to achieve a gain in
performance.

Goal: Achieve a ~10x Speedup for a 10000 particle 2D-simulation.
Achieved Speedup: ~40x 22

‘\t),

Solution Approach and System Overview

Device:

Device: Ultra96-V2 FPGA
User PC or laptop Device:
. Device: MPSoC Medium Size Monitor
CPU T > Arm Core —»| Graphic Display
Simulation
User Interface Result i ¢

Device: LPDDR4

Memory

3!

Device: Programmable Logic

N-body
Simulation Logic

Base Line: N-Body Simulations on CPU

Time Breakdown of Simulation Update Iteration

on CPU
2:5
2
)
©
5 15
o
Q
&
T g
E
=
) .
0 .
Setup Get Nearby Particles Compute Force Update Particle

CPU Runtime: ~4.2s per iteration/time step
Running on i7-9700 3.0GHz, parallelised
with the Quad Tree Approach

foriin range

for j in range

for neighbors in nearByParticles

Particle 1

Particle 0

IsNearBy? 1~ i

e

IsNearBy? N~

add nearByParticles

add nearByParticles

4

Calculate force

Calculate force

Ny

Update Particles

A

Time step += 1

Particie N

—Y

add nearByParticles

A 4

Calculate force

Solution Overview: Matrix-Vector Multiply Model

Original Loop Order Optimized Loop Order
Updated Updated
Particles Inner Loop Particles Outer Loop
u0 p0 pO0 pO = === p0 pO u0 p0 pO pO N pO
a | u alpt pt pt ==« pt 2| pt a |u alpt pt pt = pi g pt
g 8 g g 8 -
:l u2 :l p2 p2 p2 === p2 Compute & p2 :| u2 :I p2 p2 p2 = s = p2 Compute 35 p2
o) =0 E . GCJ = = GCJ 5~
8 8 Force / £ | I I= Force / O .
(x) . (x) .
uN-1 pN-1 pN-1pN-1 = = = = pN-1 pN-1 uN-1 pN-1 pN-1pN-1 = = = =« PN-1 pN-1
Nx1 NxN Nx1 Nx1 NxN Nx1
Vector Matrix Vector Vector Matrix Vector
Inner loop: Inner loop:
- element-wise compute force - element-wise compute force
- accumulate forces across iterations - element-wise add forces

"\ data dependency . pipeline stall

Solution Breakdown - Minimize DRAM R/W

BRAM:

The board has roughly 432 KB of BRAM,

this allowed us to load our entire dataset
(roughly 200KB) onto it.

Block RAM reduced our R/W latencies to

memory and also allowed for more
concurrent access patterns.

DRAM

Initial
Data

Final
Result

10k Particles' Data
BRAM

oA

Feed parallel data streams
to computation modules

Compute simulation
for X time steps

Update
local buffer

Solution Breakdown - Batch Execute

Since iterations in the inner Partitioned Pl
loop are element-wise, we can BRAM
compute force on multllple SRS g e S
particles at the same time force / update
Updated
Particles Outer Loop
[0o | Pl P[P compute
uo pO pO po PR po p() U T)) p
| n+t2 | n+1| n
o |u alpt ptopt e p g p1 force update
8 8 S
4= _': P2 p2 p2 xx == P2 foompute Ei
E _é Force 8 .
: (x) : 292291 2|° | compute
| N+ n+ n
uN-1 PN-1 pN-1pN-1 = = = = pN-1| PN-1 force update
Nx1 NxN Nx1 "
Vector Matrix Vector :

n = number of particles (N) / batch-size

Testing & Verification

Quantitative Verification: CPU ve FPGA Time Breakdown

e Correctness: For our use cases (Molecular, 4

Astronomical etc.) a 90-95% accuracy with our
reference solutions would be sufficient for our

use cases. 2,
e Used a CPU implementation running on an i/ s
CPU using double precision floating point ;
numbers to compute reference solution. DO H
e Achieving this accuracy means that our final Setup GetNearby + Compute Update Particle
output should not differ from our reference by o
more than 10%. B
e (Compared to our Parallelised CPU
implementation on the right, we achieved a 40x e ar e s | aaptense
Speedup! SoNum lter 510000 Tres : Vres

Num Iter x 10000

Approaches We Tried

Approach Success

Unrolling + Pipelining Alone | NO

DRAM Widening NO
Fixed Points NO
Structs for Particles NO
BRAM YES
Batching + Unrolling + YES
Pipelining

Reason

This alone was not enough to gain any
performance. This was because of our DRAM port
not being wide enough to support several
concurrent reads/writes.

Due to limited port availability, this did not solve
the issue above

While this did produce significant speedup, we
later realised that this was not accurate for longer
iterations due to loss of precision. Increasing bit
width was not feasible for our resource utilisation

While they made our code easier to read, they
increased our hardware utilisation

Improved our R/W Latency

Improved latency for our concurrent memory
operations. This coupled with BRAM above, set up
unrolling + pipelining

Our Results

e Given that we stuck to using floating point types, we ended up with a 96% accuracy to
our reference CPU implementation !

e Our CPU implementation (Running on i7-9700 with a parallelised QuadTree
implementation) ran for roughly 4.2s per iteration, we produced roughly 0.102s per
iteration giving us a ~40x Speedup for 10 iterations!

e This scales non-linearly with number of iteration (time steps) due to Amdahl's Law

Speed 1
peedup = ————
(I1-p)+p/N
45
20 Speedup
35 60
30
S5 50
B 40
2 2 =
15 T 30
2
10 v 20
. H R
[— 10
Q N & N a3 O % @ 0
\a $ > N X X X X
¥ & N < < <) <
S @xo QQ\@O & & & & & 1 10 100
Q,%V &° Iterations

Trade Off

Speedup (batch size) vs Resources

Batch Size vs Resources

100

80

60

40

Util Percentage

20

1 2 - 5 8

Batch Size

e=@u=(C|B ==@==BRAM DSP LUT o=@ FF

Results (Graphics)

e We have 2 working scripts for
graphical simulation (C++, Python)

e Getting the simulation displayed
directly using on the FPGA has
turned out to be very cumbersome

e [n addition to running our display on
the board, we are looking into other
alternatives like the FPGA
communicating with an AWS server
to do the simulation.,

Project Management

Assigned R 2023 OCTOBER 2023 NOVEMBER 2023 DECEMBER 2023
) 18 19020 21 22 2526 27 2829 2 3 4 5 6 9 10 1 12 13 16 17 18 19 20 23 24 25 26 2730 31 1 2 3 6 7 8 9 10 13 ¥4 15 16 17 20 21 22 23 24 27 282930 1 4 5 6 7 8 M 12 1B 4 15 18 19
* Platform MTWTFEMTWTFMTWTFMTWTFMTWTFMTWTFMTWTEFMTWTFMTWTFMTWTEFMTWT[FIMTWTFMTWTF T
Initial setup Yuhe Zhang Yuhe Zhang
AXI Burst Yuhe Zhang Yuhe Zhang
HDMI out to monitor Al Al
Rewrite sequential code Abhinav Gupta, Ren Abhinav Gupta, Rene Ravanan
Code analysis Abhinav Gupta, Ren Abhinav Gupta, Rene Ravanan
Slack Al Al
v FPGA
Figure out hardware resources Abhinav Gupta Abhinav Gupta
Figure out how to benchmark performance Rene Ravanan Rene Ravanan
Get data in using AXI burst Yuhe Zhang Yuhe Zhang
HLS using Vitis Al Al
+ Integrate both things together
Integrate both things together (1) Yuhe Zhang Yuhe Zhang
Integrate both things together (2) Yuhe Zhang Yuhe Zhang
Slack Al Al
 Acceleration
Initialize algorithm Abhinav Gupta, Ren Abhinav Gupta, Rene Ravanan
Create threading operations for quads/pipeline Abhinav Gupta, Ren Abhinav Gupta, Rene Ravanan
Ensure correctness of accelerated approach Al Al
Slack Al Al
v cPU
Further optimizing Rene Ravanan, Yuhe Rene Ravanan, Yuhe Zhang
Develop. graphic simulation script Abhinav Gupta Abhinav Gupta
offload results onto CPU Yuhe Zhang Yuhe Zhang
Make sure simulation works on display Abhinav Gupta, Ren Abhinav Gupta, Rene Ravanan
Slack Al Al
v Misc
Design presentation Al All
Design report Al Al
Final Presentation Al Al

Final Report Al Al

