
FPGA-Accelerated N-Body Simulation
Team A3: Abhinav Gupta, Rene Ravanan, and Yuhe Zheng

18-500 Capstone Design, Fall 2023
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
N-Body simulations are a computationally intensive problem suited for FPGA acceleration
due to high workloads and high amounts of irregularity in computation. CPU
implementations are not fast enough and GPU ones are not power efficient.

Our goal is to apply FPGA acceleration to the N-Body simulation. We want to provide at
least a 10x speedup compared to a CPU implementation with a 90-95% accuracy.
We developed an FPGA based simulation system using Vitis HLS that accepts initial
particle data as an input file on which it runs our simulations for a specified number of
iterations. Results of these simulations are then stored in an output file and can also be
viewed on a graphical display.

This product is suitable for physicists that are on a budget with time constraints and are
trying to run astronomical/ molecular simulations efficiently.

System Description

System Evaluation (Accuracy)

Conclusions & Additional Information

https://course.ece.cmu.edu/~ece
500/projects/f23-teama3/

Scan to get read project
details on our website.

Our system operates primarily on the FPGA with our CPU interfacing with the board’s
ARM core to send and extract particle data. Once the data initialised, the FPGA transfers
this data on to its memory and configurable logic via the highly efficient AXI Burst protocol
(commonly used on many modern SoCs). Output data is also sent to our graphic display.

Overall we were able to meet our goals by a wide margin, which
we are very proud of. We focused mainly on the technical
aspects of the project, and put a lot of effort into getting a good
speedup. Some approaches we tried that did not work include
using fixed point types and DRAM port widening.

Our project combined the disciplines of software systems for the
actual implementation of the N-Body simulation algorithm, and
hardware systems for the FPGA optimizations. We were able to
separately work on optimizing hardware computation model,
porting the algorithm to the FPGA, and developing our graphical
display. We work together on communication between different
portions of the algorithm, integrating our systems/optimisations,
and planning general design strategies.

Further extensions to this project would be to try different
hardware platforms in addition to Vitis, implementing our system
directly in RTL instead of HLS to exploit more hardware, and to
have a more polished user interface.

CPU & FPGA
SoC

(On other side)

System Evaluation (Performance)

In our system, users prepare inputs off-board and are able to upload them via SCP.
Then, the accelerated N-Body simulation kernel is able to run on these inputs and
produce an output file that can be viewed/post-processed by the user offline.
Simulation result of each iteration is also sent to a graphical display for visualization.
Users have an option to either enable this visualisation to be synchronous (reducing
our speedup) or asynchronous.

Our system supports simulation of up
to 10000 particles. The number of
particles matches our user needs for
astronomical and molecular
simulations. This number of particles
also fit the hardware resources
available on our Ultra96v2 FPGA.

Figure 1: Optimizations Summary

Graph 1: Performance increases from optimizations

Observing the graphs below, as we apply the optimizations described in the System
Architecture section, we see a decrease in the runtime of our kernel (speedup = CPU
runtime / FPGA runtime). With just BRAM optimizations and loop refactoring alone we
achieve a ~5x speedup, but with batching coupled with unrolling and pipelining our
speedup begins to increase significantly (Graph 1). Due to Amdahl’s law, given that our
arithmetic intensity increases with number of iterations, we see our speed up also
increase (Graph 2).

Micro SD Card - Boot Drive

Furthermore, as we increase our
batch size, we use more of the
on-board resources. Broadly
speaking, the FPGA has “storage”
resources (Flip Flops and BRAMs)
and “compute” resources (Lookup
Tables and Digital Signal Processors),
and as we hit higher speedup, we use
up more of these resources, in this
case we are limited by CLBs. Still,
unlike traditional accelerators, FPGA
resources solely exist for us to use, so
we do not make as significant of an
area tradeoff when we use up more of
the board. Graph 3: Runtime vs. Resource Utilization

Graph 2: Performance vs Iterations

Graph 1: Accuracy vs Number of iterations

Figure 3: Formula used to calculate accuracy

We used a CPU implementation
which uses double precision
floating point (this was in order to
make sure that we are comparing
ourselves to a model which is more
accurate than us as we are using
single precision floating point).
Graph 1 describes the relationship
between the number of iterations
and the accuracy. As expected the
accuracy of our model decreases
and the number of iteration
increaser as the small error which
our model has propagates and
increases overtime. We still
maintain a good accuracy even
when running our model for 1000
iterations.

Note - Even the CPU
implementation is not fully accurate
as it is impossible to fully contain
position data even in 64-bit float,
but we thought it was good enough
to use as a reference value

Unrolling Pipelining

Batch compute
multiple data points

Optimising Loop Order to
remove data dependency

BRAM feed parallel
data stream

Figure 2: Graphics Results

