
18-500 Design Review Report - 14 October 2023 Page 1 of 9

FPGA Accelerated N-body Simulations
Authors: Abhinav Gupta, Rene Ravanan, Yuhe Zheng

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract— A system aiming to leverage the effi-
cient programmable hardware of an FPGA to accel-
erate N-body simulations. N-body simulations play a
pivotal role in astrophysics, molecular dynamics, and
a wide range of scientific fields. The report highlights
the limitations of traditional CPU and GPU based
approaches, emphasizing the pressing need for more
efficient solutions. By leveraging FPGAs, the project
aims to achieve substantial speedup and simultaneously
reduces power consumption, making it a cost-effective
solution.

Index Terms—Acceleration, BRAM, FPGA, N-
body Simulations, Newton’s law of Gravitation,
Pipelining, Ultra96, Vitis

1 INTRODUCTION

N-body simulations are fundamental tools in the realm
of computational physics, used to model the interactions
between multiple particles or bodies within a dynamic sys-
tem. These simulations play a crucial role in understand-
ing various complex phenomena, including gravitational
forces among celestial bodies in astrophysics, the behavior
of molecules in molecular dynamics, and even the dynamics
of particles in simulations of fluid flow. The primary chal-
lenge in N-body simulations lies in the computation of the
gravitational forces or other interactions between each pair
of particles, which scales quadratically with the number of
particles, making it a computationally intensive task.

Traditional approaches to N-body simulations often in-
volve the use of Central Processing Units (CPUs) or Graph-
ics Processing Units (GPUs). While these methods are
valuable, they often face limitations in terms of speed and
power efficiency, particularly when dealing with simulations
that involve a large number of particles which have very
irregular computation patterns. To address these limita-
tions, this paper proposes a pragmatic solution: leveraging
FPGAs to enhance the performance of N-body simulations.

FPGAs are reconfigurable hardware devices that offer
the potential to significantly enhance the performance of
N-body simulations while simultaneously addressing power
consumption concerns. The driving motivation behind this
project stems from the practical need to advance compu-
tational physics. Our central goal is to run N-body simu-
lations involving a substantial 10,000 particles, striving to
attain a tenfold speedup compared to CPU-based methods.

Our project aims to incorporate FPGA acceleration into
computational physics, with a focus on practical appli-
cations. This approach is intended to improve computa-
tional efficiency, particularly for graduate students and re-

searchers with limited resources. By doing so, we aim to
facilitate the simulation of systems involving a substantial
number of interacting particles, which is often a costly and
resource-intensive task. This practical development seeks
to support the scientific community, especially in fields like
celestial mechanics and molecular dynamics, by offering a
more cost-effective solution for conducting research with-
out the need for excessive claims or resource investments.
By providing a solution that is more power efficient than
its GPU counterparts, we also aim to reduce our negative
impact on the environment as well.

2 USE-CASE REQUIREMENTS

In framing our use case for the FPGA-based N Body
simulation system, we’ve established a multifaceted set of
objectives that align with our goals. Our primary aim is
to achieve a substantial speedup compared to traditional
CPU-based simulations, thereby significantly improving
computational efficiency and reducing research time.

Incorporating public health, safety, and welfare con-
siderations, our FPGA system will prioritize user safety
through robust safety measures. Potential hazards and
risks associated with FPGA technology, including overheat-
ing concerns, are addressed comprehensively, ensuring a se-
cure research environment. Beyond safety, our approach
emphasizes accessibility. The user-friendly design, includ-
ing a display interface, is developed with sensitivity to di-
verse backgrounds, promoting a collaborative and globally
accessible research environment.

In addition, our commitment extends to environmental
sustainability by minimizing power consumption, aligning
with environmental goals for responsible high-performance
computing. Simultaneously, economic factors play a crucial
role in ensuring affordability and accessibility, particularly
for students and researchers with limited resources, foster-
ing economic inclusivity within the research community.
This approach blends speed, safety, inclusivity, environ-
mental responsibility, and economics to create a compre-
hensive N Body simulation solution.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

We implemented our solution with a straightforward
architecture. We have a host computer sending the initial
simulation conditions (positions of the particles, their mass,
and velocity) to our acceleration hardware. Our accelera-
tion piece of hardware that we plan to use the Xilinx Ul-



18-500 Design Review Report - 14 October 2023 Page 2 of 9

traScale+ Ultra96v2 development board. This board also
has an ARM core integrated into facilitating the running
of C++ and flexible FPGA fabric for accelerated kernels.
We plan to have the entire simulation run on the FPGA
with the results being displayed both on a monitor and sent
back to the user.

Our high-level approach is to have the FPGA’s ARM
core manage the launching of the simulation kernels, includ-
ing transferring the particle data to and from the FGPA
fabric and FPGAmemory. We would transfer data between
our host computer and FPGA be secure copying (scp) the
files to/from the ARM core. The output files would have
a resultant position and velocity of the particles at each
time step. Once the specified number of iterations for the
simulation, this will be sent back to the user, as mentioned
above, and also be displayed on a display connected to the
FPGA via its mini DP port as a visual reference. Figure 1
shows a block diagram representing this.

The main algorithm for our simulation can be split into
four discrete steps where our optimisations will take place.
These steps consist of arithmetic computation such as mul-
tiplication, addition, dot products etc. This will also com-
prise of data transfer between some data structures that
store physical information.

We will be writing our code in C++ using Vitis HLS
to synthesize our logic onto the FPGA fabric. Doing so
allows us to take advantage of the FPGA’s performant in-
frastructure while still maintaining the ease and familiarity
of writing code for a CPU. This would allow us to focus
primarily on the actual optimisation of our design and al-
gorithm and not on getting our code to run on the FPGA.

(a)

(b)

Figure 1: System Description (a) overall system (b) inside
FGPA

Figure 2: Data flow diagram describing all pairs alogirthm

Figure 3: All pairs algorithm code

Fig. 3 above describes the all pairs algorithm which we
will be parallelizing. The as we can see the algorithm runs
in O(N2) because the outer most loop loops through all
the particles 1...N , the inner loop also goes through all the
particles and determines which particles are nearby to the
particles i ∈ 1...N . This is after all the nearby particles
have been determined we then calculate the force on par-
ticle i and then update the position of the particle. After
this is done for all the particles 1...N then we increase our
time by 1.

4 DESIGN REQUIREMENTS

4.1 Speedup

The 10x speedup is achieved by optimizing the compu-
tational aspects of the simulation. This is our most impor-
tant requirement as this is the speedup our physicists need
in order to make our product viable for them. To moti-
vation behind our speedup goal was to see what was theo-
retically the max speedup we could achieve on an FPGA.
The fabric clock on an FPGA runs at around 200MHz



18-500 Design Review Report - 14 October 2023 Page 3 of 9

Figure 4: Detailed Block Diagram

which is about 15x slower than a i7-9700 (this is the CPU
we are running our reference calculations on). But we have
seen than the Cache/DRAM on the FPGA is significantly
faster than the CPU. The memory is somewhere near 10x-
100x faster. If we take both of these factors into consider-
ation then we can see a theoretically viable and achievable
speedup is around 10x.

4.2 Simulation Scale

The system should support simulations with a mini-
mum of 10,000 particles in a 2D environment. The scale
should be suitable for molecular and astronomical simula-
tions, ensuring meaningful results. [4] The way we arrived
at this simulation was estimating our hardware resources,
on our FPGA we have 70K LUTS which should be able
to support data transfer and calculation of around 10000
particles [2]. This number does remain flexible though in
case further testing reveals to us that we might be more
hardware bound.

A 10k particle simulation before might have taken
around 20hours to run. We are very happy with our
speedup because it will be able to cut down the simulation
time to merely 2hours. This speedup is crucial in stratify-
ing our use case which is first and foremost being able to
be helping the under resourced physicists out there. This
also helps us achieve our other environmental and collabo-

rative goals that in order to achieve a 10x speedup only an
FPGA will be needed and no extra components, this will
help cut down costs, global waste and will encourage more
cross platform partnerships within academia.

5 DESIGN TRADE STUDIES

For our project, we had to make several considerations
and decisions when approaching our problem: Accelerating
N-body simulations in an efficient and cost-effective man-
ner. To start with we first had to choose our acceleration
platform, our FPGA, then our simulation algorithm and
finally our hardware acceleration approaches.

5.1 Hardware Platform

As mentioned above and in our introduction, iterations
of the N-body simulation already exist on CPUs, GPUs
and other platforms. When choosing our platform we had
to carefully evaluate the costs and benefits of each of them,
how they can cope with our workload, their efficiency and
accessibility. The three main platforms we considered were
a CPU, GPU, ASIC and an FPGA. Below are the pros and
cons of each that we considered.



18-500 Design Review Report - 14 October 2023 Page 4 of 9

5.1.1 CPU with Multithreading

A comparatively straightforward approach to this prob-
lem would be to use a CPU to conduct our simulation. Two
of us have already tried this approach in the class 15-418:
Parallel Computer Architecture and Programming. The in-
tuitive way to parallelise this simulation is to do so on the
axis of each particle during the compute force section of our
simulation. This would not be the most efficient on a CPU
given that we are dealing with around ten thousand parti-
cles at a time and most standard CPUs allow 8-16 threads
(with super computers using 128). Additionally, thread
synchronization and communication costs would be very
high given that we would have many shared data struc-
tures. Additionally, CPU kernels would also spend time
context switching between different applications and pro-
cesses that are running devoting lesser time to our simula-
tions and making running them all the more expensive.

5.1.2 GPU

GPUs solve the above mentioned problem of CPUs be-
ing hardware bound by the available concurrency on the
platform as each block on a GPU can spawn up 1024
threads making this very scalable for our use case. How-
ever, our computation can be very irregular, for example
particles that are grouped together would have to per-
form larger resultant force computations as compared to
sparsely located ones. This would again lead to several
overhead communication costs between threads and GPU
blocks which significantly hurts our performance. More-
over, the memory architecture of a GPU would force us to
use its global memory instead of its shared block memory
given that all blocks need to have accesss to the particle
information. Reading/Writing data in global memory of
a GPU is also very expensive. Lastly, a GPU is not very
power efficient, an average GPU has a TDP of 800W. Even
though some fast implementations of our problem have
been designed on GPUs, their adverse effects on the en-
vironment with their power consumption makes us want to
work on a more sustainable platform.

5.1.3 ASIC

ASIC is an efficient approach, however, given the time
constraints that we are presented with, we would be able
to design and fabricate a chip. Our design would also have
to be produced at scale for this to be worthwhile, making
this not ideal for a prototype system.

5.1.4 Why FPGA?

Given the above constraints with other platforms, we
chose the FPGA as our target platform. FPGAs allow us
to take advantage of customisable hardware to exploit par-
allelism in conducting our N-body Simulation. Given that
our computation is irregular, we can customise our hard-
ware to also deal with this, i.e. instantiate extra hardware
for cases that require it such as when particles are clustered

together. FPGAs also offer high flexibility in their mem-
ory architecture with BRAM allowing us to take advantage
of memory reuse with out the costly high latency trips of
DRAM. We have also found well-documented tooling avail-
able for accelerating code on FPGAs including papers that
have tried our N-body simulations on cloud FPGAs. FPGA
kernels would also not have to deal with as much overhead
as a CPU kernel as the former would be focusing solely on
our computation. Lastly, compared to options like ASIC
they are also relatively cheaper and is also more power effi-
cient than GPUs as mentioned in our design requirements.

5.2 Hardware Acceleration Approach

5.2.1 HLS vs. HDL

After choosing the FPGA as our platform, we needed
to decide how we were going to write our kernel code. This
could have either been done using a Hardware Description
Language (HDL) like System Verilog, or using a more pro-
grammer friendly language like C++ and use High Level
Synthesis to synthesise this onto the FPGA. The first con-
sideration we had was the our initial CPU implementation
was already written in C++, choosing to with HLS would
mean that we could spend more time optimising a famil-
iar and approachable algorithm instead of spending time
getting an initial implementation setup and running. Ad-
ditionally, HLS also offers several tools to facilitate paral-
lelism, such as pipelining Pragmas on Vitis HLS, and that
the compiler also is able to infer and parallelise independent
sections of our code which programming in SystemVerilog
would not allow.

5.2.2 Fixed-Point vs Floating Point Numbers

Another consideration that we had on accelerating our
design on the hardware side was the choice between fixed-
point and floating point numbers. Floating point numbers
do offer higher precision, but they are more expensive in
computations and also take up more hardware. Given our
accuracy requirement of 90-95% as specified in our design
and testing sections, using 16.16 fixed point numbers would
be sufficient for this while giving us more hardware to ex-
ploit for concurrency.

5.3 N-body Simulation Algorithms

After finalising our hardware platform and acceleration
approach, we had to choose the algorithm that we would
run our simulations with. There are several proposed alr-
gorithms to run N-body simulations, the two most widely
accepted ones are the Barne’s Hut and All Pairs algorithms.
Their tradeoffs have been discussed below

5.3.1 Barne’s Hut Algorithm

The Barne’s Hut algorithm has an O(NLogN) time
complexity where N is the number of particles. Here at
each time-step, a particle can find its nearby particles to



18-500 Design Review Report - 14 October 2023 Page 5 of 9

compute its resultant force and velocity vectors using a
data structure called a quad tree. This data structure, as
seen in the figure fill this, splits the simulation space into
quadrants where each node represents one quadrant and
continues to recursively do so until each leaf has only 1
particle or has child nodes that split it further. Traversing
this to find nearby particles is considerably more efficient
(O(LogN) vs O(N)). However, implementing this in HLS
would be quite complex and reading/updating this data
structure would be quite expensive on an FPGA.

5.3.2 All Pairs Approach

This approach is slightly less sophisticated, at each
time-step, each particle loops over every other particle
to find out if it is nearby and then compute its interac-
tive forces. This approach as a higher time complexity of
O(N2). However, this is a lot more easy to parallelise given
its comparitive independence in force computations and up-
date phases. It is also easier to store into memory on an
FPGA making this a more widely used algorithm in accel-
erating N-body simulations in platforms such an FPGA or
a GPU. Hence, given its comparative ease to optimise, we
chose the All Pairs approach.

6 SYSTEM IMPLEMENTATION

As mentioned in the architecture section, our hardware
platform will be the Xilinx Ultra96v2 development board.
A user can interface with this board to send/receive data
from it via wifi, by copying input and result files to/from
the board via scp and ssh. The graphical display will be
connected to the board via its mini DP port.

With respect to our actual optimisations, we have men-
tioned our plan below.

Figure 5: Rolled vs Unrolled loop [5]

6.1 Loop Unrolling

Loop unrolling is a critical optimization technique em-
ployed in parallel computing to improve the execution
speed of iterative loops within algorithms. In the N-body
simulation, loop unrolling involves unwrapping a loop, es-
sentially transforming a series of repetitive iterations into
a sequence of independent and parallelized operations. In-
stead of processing a single element or body per iteration,
loop unrolling allows for the simultaneous handling of mul-
tiple elements within a single iteration, making more effi-
cient use of the hardware’s capabilities and increasing com-
putational throughput.

In the ”all pairs” algorithm, loop unrolling has a sub-
stantial impact on its performance. In the N-body simula-
tion, each body interacts with every other body to calculate
gravitational forces. The ”all pairs” algorithm has nested
loops for pairwise interactions. By unrolling these loops,
we can effectively perform multiple pairwise interactions
within a single iteration, reducing the overhead of loop con-
trol and enabling the utilization of vectorized instructions
or parallel hardware. This optimization technique signif-
icantly accelerates the simulation by decreasing the num-
ber of loop iterations and improving the overall runtime
efficiency. Loop unrolling, therefore, proves instrumental
in enhancing the speed and efficiency of N-body simula-
tions, making them suitable for tackling complex problems
in fields like astrophysics, molecular dynamics, and compu-
tational chemistry.

Figure 6: Unpipelined vs Pipelined [6]

6.2 Pipelining

Pipelining is an optimization technique in computing
used to improve the throughput of processing elements by
breaking down tasks into smaller, sequential stages. When
applied in the context of hardware acceleration using Vitis,
a pragma for pipelining defines how an operation or set of
operations should be divided into stages for concurrent exe-
cution. In essence, it enables parallel processing of multiple
elements or tasks in a streaming fashion, reducing latency
and increasing throughput.

In the N-body simulation, each body interacts with ev-
ery other body to calculate gravitational forces or other in-
teractions. With the pipelining pragma, these interactions



18-500 Design Review Report - 14 October 2023 Page 6 of 9

can be divided into stages, such as data fetching, compu-
tation, and result storage. The pragma enables overlap-
ping the execution of different stages, making more effi-
cient use of hardware resources. For instance, while one
stage is processing data for a specific interaction, the next
stage can start fetching data for the subsequent interac-
tion. This concurrent processing reduces overall execution
time, making the simulation run faster and efficiently utiliz-
ing the FPGA’s parallel processing capabilities. In essence,
pipelining is a valuable technique for optimizing the N-body
simulation on FPGAs, allowing it to tackle large-scale sim-
ulations with improved throughput and reduced time to
calculate results.

6.3 FPGA Memory

A major advantage of computation on FPGA is that
we can implement custom memory structure to fit the al-
gorithm’s data accessing pattern. This way, we can im-
prove the memory throughput which usually bottlenecks
memory-intensive computations.

6.3.1 DRAM

The DRAM on the FPGA stores the initialization and
simulation results of our system. The host program in the
Arm core stores the initial state of the particles received
from the user’s PC or laptop to the DRAM before the sim-
ulation starts. During simulation, the N-body computa-
tion hardware kernel in the programmable logic continu-
ously reads the particles’ information - position, velocity,
and mass - from DRAM. The kernel calculates the parti-
cles and then writes back the simulated results. At the
end of the simulation, the FPGA extracts the simulated
results into files for the user to retrieve from the board.
The DRAM of the Ultra96-V2 FPGA contains 2GB mem-
ory and has a measured read latency of around 500ns -
several dozens of cycles depending on the computation’s
target frequency[2]. This long latency means we need to
perform our computation on locally buffered data instead
of making frequent trips to DRAM. We also need to batch-
read data from DRAM to local buffers to maximize DRAM
throughput.

6.3.2 LUTRAM

LUTRAM is on-chip memory implemented from LUTs
in the programmable fabric. LUTRAM can have 32-bit or
64-bit wide ports, and it supports dual-edge clocking for
fast data access [1]. Therefore, LUTRAM is ideal for fast
and flexible data access. However, because LUTRAM is
implemented using LUTs, more data stored in LUTRAM
means less LUTs can be used for calculation. Therefore, we
should only store data structures that need to be accessed
in every cycle in LUTRAM to optimize resource usage.

6.3.3 Block RAM

Block RAM is a hardened fast memory structure in the
programmable fabric. Block RAM supports dual port ac-
cess, which means we can read and write from Block RAM
at the same time. Block RAM ports are reconfigurable. It
supports reshaping and partitioning memory. This means
we can access multiple elements of an array at the same
time, enabling us to parallelize a computation by pipelining
and unrolling loops. Therefore, we should store the major-
ity of our data in Block RAM for efficient use of memory
resources.

(a)

(b)

Figure 7: BRAM Configuration (a) Array Reshape (b) Ar-
ray Partition

7 TEST & VALIDATION

7.1 Accuracy Tests

For our given use cases of Molecular and Astronomical
N-body Simulations, we found that a 90 − 95% accuracy
would be sufficient. Hence, the first thing that we will check
with our project is whether the N-body simulation results
that we produce satisfy the requirements in accuracy. To
do so, we have a few reference simulation results that we
can run to verify this. We also have our benchmark CPU
implementation which we developed in a previous class as
another method of validation.



18-500 Design Review Report - 14 October 2023 Page 7 of 9

Figure 8: Timing break down of CPU code

7.2 Verifying Speedup

From our code snippet above in Fig. 8 and from the
data from our CPU benchmark, we can see that the get
particles and compute force sections of our code takes the
most time and we therefore plan to achieve our speedup
by optimising this section of our code first. We will verify
this by timing our FPGA computation and comparing this
with the CPU benchmark that we have found.

7.3 Power Consumption

Given that we are trying to also be energy efficient, we
will have to verify that running our code on an FPGA does
not exceed that of a CPU or GPU. We will confirm this
using the Vitis utilisation report. For a sanity check, since
we also know the power requirements of our Ultr96v2 board
from its data-sheet, we can roughly estimate its power con-
sumption using this information and the time our code took
to run.

8 PROJECT MANAGEMENT

8.1 Schedule

Refer to our Gantt chart for our schedule. We have
accounted for slack time and breaks as well.

8.2 Team Member Responsibilities

Initially Abhinav and Rene worked on setting up the
CPU benchmark and Yuhe worked on setting up the Ul-
tra96 FPGA. Abhinav and Rene would then focus on algo-
rithm analysis and learning about Vitis HLS optimisations
while Yuhe setup our Vitis HLS workspaces. Towards the
latter half of our project once we all would focus on achiev-
ing our speedup goals. Abhinav would also spend some
time writing a script that runs on the ARM core to pro-
duce a visual representation of our simulation results.

8.3 Bill of Materials and Budget

Since Yuhe is taking 18-643 at the time of this project,
we were able to borrow her FPGA at no additional cost.
Given the software and digital hardware oriented nature of
our project, we do not foresee any additional costs. For the
graphical display, we would test on our own monitors at
home and then borrow one from the ECE clusters for our
demonstrations.

8.4 Risk Mitigation Plans

One challenge we can face is running out of the pro-
grammable fabric’s hardware resources. There are two
types of resources we can run out of: computation resources
and memory resources. The high-level synthesis compiler
uses DSPs for calculation by default, but the Ultra96-V2
FPGA only has 360 DSPs, which limits the amount of com-
putation we can do in parallel. In case we need more com-
putation units, we can intentionally tell the compiler to
use LUTs to perform some calculations, providing more
computing capabilities. BRAM resources can also run out
when we parallelize data access to a degree that uses up
all the BRAM ports. To solve this issue, we need to re-
arrange our data accessing pattern, so that we partition
data to fit BRAM block shape for efficient BRAM usage.
If both strategies do not work, we need to parallelize less
and improve speedup in other ways, such as increasing the
frequency of our computation.

9 SUMMARY

To conclude, our project aims to accelerate N-body sim-
ulations on an FPGA. N-body simulations are a computa-
tionally intensive simulations run by molecular and astro-
nomical physicists and current implementations of this are
slow and/or inefficient. We aim to leverage the FPGA’s
versatility and power efficiency to contribute to making
these simulations more accessible to scientists on a budget
while being sustainable for the environment. Our FPGA
of choice is the Xilinx Ultra96v2, and hope to both acceler-
ate and produce a visual representation of this simulation.
Our plan for carrying out this optimisation involves tak-
ing advantage of Vitis Pragmas like pipelining, and FPGA
memory features like BRAM. While we do foresee compli-
cations with working with Vitis and some of the hardware
restrictions of the FPGA (LUT count etc.), we are confi-
dent that we can come up with an optimal design to meet
our design goals. [3]

Glossary of Acronyms

• ASIC - Application-specific Integrated Circuit

• BRAM - Block Random Access Memory

• CPU - Central Processing Unit



18-500 Design Review Report - 14 October 2023 Page 8 of 9

• DRAM - Dynamic Random Access Memory

• FPGA - Field Programmable Gate Array

• GPU - Graphics Processing Unit

• HDL - Hardware Description Language

• HLS - High-Level Synthesis

• LUT - Lookup Table

• DSP - Digital Signal Processor

• LUTRAM - Lookup Table Random Access Memory

• SRAM - Static Random Access Memory

• TDP - Thermal Design Power

References

[1] AMD Adaptive Computing Documentation Portal.
Versal ACAP Configurable Logic Block Architecture
Manual (AM005). Accessed: 14 October 2023. 2023.
url: https://docs.xilinx.com/r/en-US/am005-
versal-clb/Look-Up-Table.

[2] Avnet. Ultra96-V2 Single Board Computer Hard-
ware User’s Guide. Accessed: 15 October 2023. 2021.
url: https : / / www . avnet . com / wps / wcm /

connect / onesite / b85b9556 - 0b2a - 42b3 - ad6a -

8dcf3eac1ff9/Ultra96- V2- HW- User- Guide- v1_

3.pdf?MOD=AJPERES.

[3] Intel® FPGA SDK for OpenCL™ Standard Edition:
Best Practices Guide. Floating-Point versus Fixed-
Point Representations. Accessed: 14 October 2023.
n.d. url: https : / / www . intel . com / content /

www / us / en / docs / programmable / 683176 / 18 -

1 / floating - point - versus - fixed - point -

representations.html.

[4] Rajeev Patwari and N.C.K. Choy. Ultra96 FPGA-
Accelerated Parallel N-Particle Gravity Sim. Accessed:
14 October 2023. Hackster.io. 2019. url: https://
www . hackster . io / rajeev - patwari - ultra96 -

2019/ultra96- fpga- accelerated- parallel- n-

particle-gravity-sim-87f45e.

[5] Murali Ravi et al. “FPGA as a Hardware Accelera-
tor for Computation Intensive Maximum Likelihood
Expectation Maximization Medical Image Reconstruc-
tion Algorithm”. In: IEEE Access PP (Aug. 2019),
pp. 1–1. doi: 10.1109/ACCESS.2019.2932647.

[6] wordchao. HLS Optimization: Throughput. cnblogs.
2019. url: https://www.cnblogs.com/wordchao/
p/10943227.html.



18-500 Design Review Report - 14 October 2023 Page 9 of 9

F
ig
u
re

9
:
G
a
n
tt

C
h
a
rt


