Team A3: N-Body

By Abhinav Gupta, Rene Ravanan, and Yuhe Zheng

Use Case

Problem: For physicists the N Body
simulation is an important and
computationally hard problem to solve,
trying to run the algorithm parallely on a
CPU is simply not fast enough, and
running on GPU is not power efficient
Solution: Run the N Body simulation on
a FPGA and try to achieve a 10x
speedup

http://www.youtube.com/watch?v=D2YhKaANbWE

Quantitative Requirements

Our goal is to have a 10x Speedup for a ~10000 particle 2D-simulation.
o Simulation Size Motivation:

For the use cases that we are considering, (primarily molecular and astronomical
simulations) we would need a simulation of roughly 10000 particles.

Our FPGA has roughly 70k LUTSs, after some research and experimentation we found that
this hardware bound matches our use case while making full use of our available
resources.

o Speedup Motivation:

Ultra9ev2 Fabric Clock ~200MHz, ~15x slower than the i7-9700
Much of the compute task is data movement

Cache/DRAM -> 10s-1000s of cycles; SRAM -> 1s of cycles
Multiplying these factors together gets ~10x speedup

Solution Approach and System Overview

Device:

Device: Ultrag96-V2 FPGA
User PC or laptop Device:
l I | E | Device: MPSoC Medium Size Monitor
CPU Wi-Fi) Arm Core - Graphic Display
< MiniDP
User Interface | Smulation
Result AXI ¢

Device: LPDDR4

Memory

1

Device: Programmable Logic

N-body
Simulation Logic

Implementation Plan

e Vitis Platform:

o Host Program Compilation
o High Level Synthesis
o Utilization Report Collection

e Ultra96-vV2 FPGA:
o Arm Core
o Programmable Logic
o MiniDP port for visualization
O

W XILINX

Wifi for data upload A VITIS

N-Body Simulations (All pairs)

Main simulation loop forlin range
while not simulation_finished:
Initialize forces on each particle to zero
ClearForces()
for j in range

Calculate forces between all pairs of particles
for i in range(num_particles):
near_by_particles = []
for j in range(num_particles):
if i != j and isNearBy(particle[i], particle[j]):
near_by_particles.append(particle[]j])
for neighbour in near_by_particles:
CalculateForceBetween(particle[i], neighbour)
Update particle positions and velocities based on forces
UpdateParticles()

for neighbors in nearByParticles

Advance simulation time
UpdateSimulationTime()

Particle 1

Particle 0

b

IsNearBy? N~ ===

add nearByParticles

add nearByParticles

4

Calculate force

Calculate force

Update Particles

A

Time step += 1

Particie N

—Y

add nearByParticles

A 4

Calculate force

Algorithm Optimisations

U n rol I i ng: Rolled Loop (Default) Unrolled Loop
[Readbiz) | readtiz) | meadbis) | readbio) | e
e Take full advantage of hardware for s | resoes | sttt | vsir | i
concurrency L [« [«] =] :ﬁj

Read bf1]

e Run each particle’s iteration in parallel

Read c[1]

Read b{0]

Read c[0]

Calculate forces between all pairs of particles

for i in range(num_particles):
near_by particles = []

Programmable Hardware Kernel Optimization

Pipelining:

e The PIPELINE pragma enables us to optimise our sections of our code if
they are not entirely independent.

near_by_particles = []
for j in range(num_particles):
if i != j and isNearBy(particle[i], particle[j]): # Exclude self-interaction
near_by particles.append(particle[]j])
for neighbour in near_by_particles:
CalculateForceBetween(particle[i], neighbour)

clk | |

READ |COMPUTE | WRITE

clk

L Jcounre e)
(o Jcomrune] ware) READ | COMPUTE| WRITE
READ)| COMPUTE] WRITE .
throughput =3 READ |COMPUTE| WRITE thro“‘gh put=1 m COMPUTE| WRITE
loop latency = 12 (Crero Jcomeure]whre] = >

loop latency = 6

Memory Optimization

Using Block RAM: reconfigurable memory
structure customized for each computation

Buffer: store local copy of data to
increase DRAM throughput and
facilitate data reuse

Reshape: widen memory port to
increase bandwidth on consecutive
locations accesses

Partition: map one array to multiple
BRAMSs to allow concurrent
computation on multiple elements of
array

BRAM

BRAM

SN

BRAM

!

Reshape

SN

!

Part1

Part2

i

Partition

i

Data Optimisations

Fixed Point Numbers:

e Using fixed point number over floating point numbers takes up less hardware for
storage and computation.
e This allows for more hardware to be used for concurrency.

sign <= exponent —4— mantissa —»>

."o €q-1 "04 SR Hh R Iy R W

Floating-Point Format

sign - ,',”(rg(lrpur[L ﬁ'aclionu/pm’l _—

ldm-l do d'] EEEEEY CEEEEEE B B ...d_”

Fixed-Point Format

Testing & Verification

Quantitative Verification:

e Correctness: For our use cases (Molecular,
Astronomical etc.) a 90-95% accuracy with our
reference solutions would be sufficient for our
use cases.

e We aim to focus on optimising the get particles
and compute force sections of our simulation.

e \erify our power consumption from the Vitis
utilisation report

e \Verifying if we achieve 10x speedup

Time/ seconds

Time Breakdown of Simulation Update Iteration
on CPU

=
wn

[

o
wn

Setup Get Nearby Particles Compute Force Update Particle

o

Schedule

Assigned R 2023 OCTOBER 2023
§ 18 1920 21222526 27 2829 2 3 4 5 6 9 10 M 12 13 16 17 18 19 20 23 24 25 26 2730 31 1 2 3 6 7 8

v Platform MTWTFMTWTFMT TEMTWT WTFMTWTFMTWTFMTW

Initial setup Yuhe Zhang Yuhe Zhang

AXI Burst Yuhe Zhang Yuhe Zhang

HDMI out to monitor Al Al

Rewrite sequential code Abhinav Gupta, Ren Abhinav Gupta, Rene Ravanan

Code analysis Abhinav Gupta, Ren Abhinav Gupta, Rene Ravanan

Slack Al All
v FPGA

Figure out hardware resources Abhinav Gupta Abhinav Gupta

Figure out how to benchmark performance Rene Ravanan Rene Ravanan

Get data in using AXI burst Yuhe Zhang Yuhe Zhang

HLS using Vitis Al All

* Integrate both things together
Integrate both things together (1) Yuhe Zhang Yuhe Zhang

Integrate both things together (2) Yuhe Zhang Yuhe Zhang

Slack Al Al

v Acceleration

Initialize algorithm Abhinav Gupta, Ren Abhinav Gupta, Rene Ravanan

Create threading operations for quads/pipeline Abhinav Gupta, Ren Abhinav Gupta, Rene Ravanan

Ensure correctness of accelerated approach Al Al
Slack Al Al
¥ CPU

Further optimizing Rene Ravanan, Yuhe

Develop. graphic simulation script Abhinav Gupta

offload results onto CPU Yuhe Zhang
Make sure simulation works on display Abhinav Gupta, Ren

Slack. Al

v Misc
Design presentation All Al
Design report Al i o) Al
Final Presentation Al

Final Report All

9 10 13 14 15 16 17 20 21 22 23 24 27 28 29

NOVEMBER 2023

WTFMTWTF[M

Rene Ravanan, Yuhe Zhang
Abhinav Gupta
Yuhe Zhang
Abhinav Gupta, Rene Ravanan

Al

30

1

DECEMBER 2023

2B u

5 18
F M

19

Recap

MVP

e Goalis to make the 2D N-body simulation run 10x faster on the FPGA.
N = 10k, time-steps = 100k

How are we going to achieve it

e Use algorithmic optimization (Unrolling)
e hardware kernel optimization (Pipelining)
e Memory Optimization (Block RAM)

e data optimization (fixed point numbers).

How are we going to verify it
e Achieve a 90-95% accuracy when compared to the reference solution

