
SuperFret
Team A2: Owen Ball, Tushaar Jain, Ashwin Godura

18-500 Capstone Design, Fall 2023
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
Software
➢Web App

○ Allows the user to upload
and select MIDI files

○ Displays upcoming notes
visually on a guitar

➢MIDI Parsing
○ Converts MIDI notes into

string-fret tuple
Firmware
➢Teensy

○ Receives song and
settings from web app

○ Directs LEDs to light up
along with song

Hardware
➢Fretboard PCBs

○ Display target note using
NeoPixel LEDs

○ Use D-flip-flops to drive
each fret high sequentially

➢Pi-Hat PCB
○ Connects the Teensy and

RPi with GPIOs and UART
○ Breaks out Teensy I/O to

control hardware

Beginner guitar players have trouble associating fingering positions
in images or guitar tabs with physical locations on the fretboard.
SuperFret addresses this by guiding the user with lights. Our
product has 2 modes. In “Training” mode, SuperFret waits for the
user to strum the correct note. In “Performance” mode, the system
flashes LEDs according to a song file and the user tries to keep up.
In both modes, SuperFret will record the user’s performance and
displays feedback in the form of statistics on the intuitive web app.

SuperFret provides 4 hours of fun on a charge! With SuperFret’s
sub-2 millisecond LED latency and 99% strum and finger
placement sensing, you can play with confidence and trust the
system will keep up, even as your skills rapidly progress.

System Description

System Evaluation

Conclusions & Additional Information

The SuperFret system has 3 main subsystems:
1. Frontend UI: Constantly requests updates from the Raspberry

Pi (RPi) over HTTP for low latency synchronization
2. Raspberry Pi 4B: Orchestrates communication between

front-end user commands and back-end user feedback and
maintains consistent system state

3. Teensy 4.1: Executes songs on the LEDs and analyzes the
user’s playing. Reports playing data back to the RPi

Custom PCB (Pi Hat)

Teensy 4.1
NeoPixel Library

Reading Frets

Determining Accuracy

Reading Strums

UART

Interrupts

Fretboard PCB
NeoPixel LEDs

Flip-Flop to Drive
Fret

Fretboard PCB
NeoPixel LEDs

Flip-Flop to Drive
Fret

WS2812
Protocol

Voltages on Guitar Strings

Clock and
Data

…

15

HardwareSoftware Custom
Made

Purchased
Component

KEY

Buzzer for
Metronome

Guitar
Pick

Fretboard PCB
NeoPixel LEDs

* Used to indicate
open strings

Frontend on Browser
User Controls

Virtual Guitar
Raspberry Pi 4B

Django Web Server

MIDI Preprocessing

Aggregating Statistics

Teensy Communication
5V Buck

Converter

MIDI Displaying

3S 2200mAh
LiPo Battery

Pick Electrode

Figure 3: Full Guitar Assembly

Buck Converter Pi Hat Teensy RPi

SuperFret surpassed all expectations we set and
has proven to be an enjoyable and effective way to
learn guitar. Throughout the project, we faced
numerous challenges including timing violations
induced by signal propagation time and
synchronizing the web app with user playing. We
were able to overcome these challenges through
collaborative debugging and integration testing. In
the future, this project could be expanded on by
using finger placement and strum detection to
create MIDI files and sheet music as the user plays.

Fretboard PCBs

Metric Target Actual

MIDI to fretboard LED conversion accuracy 100% 100%

Finger placement detection accuracy ≥99% 100%

Strums per minute supported ≥200 300

Strum detection accuracy ≥99% 99%

Latency from strum to LEDs updating in response ≤50ms 1.85ms

Latency from strum to web app updating in response ≤250ms 215ms

Average current through body possible ≤1mA 5.37µA

Total system current with all LEDs at 50% brightness <4.5A 0.96A

To ensure the system provides a positive user experience,
numerous use-case and design requirements were developed.
Using lab-bench ammeters and oscilloscopes, along with
various accuracy testing procedures, we were able to verify that
the system met all our target requirements.

Figure 2: Virtual Guitar on Web App

Figure 1: System Block Diagram

Figure 4: Test Results Table

Project documentation
and weekly updates

https://course.ece.cmu.edu/~ece
500/projects/f23-teama2/

