
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023 1

 SuperFret
 Owen Ball, Ashwin Godura, and Tushaar Jain

 Department of Electrical and Computer Engineering, Carnegie Mellon University

 Abstract —Traditional guitar training tools can show an image
 of note fingering to users, but going from this image to actually
 placing the fingers on the strings can be difficult. With the
 SuperFret system, LEDs on the guitar fretboard show users
 exactly where to place their fingers on the guitar. The system also
 detects where the user’s fingers are located and when they strum
 the guitar, allowing the system to determine if the user plays the
 correct note. This enables users to learn the guitar more rapidly
 and engagingly.

 Index Terms —Fretboard, fret, guitar, metronome, MIDI file,
 NeoPixel (addressable LED), Raspberry Pi, string, strum, Teensy
 4.1 (microcontroller), web app.

 I. I NTRODUCTION

 he SuperFret system aims to create a more intuitive
 guitar training tool for beginners. When first learning
 the guitar, beginners often struggle with translating an

 image of how to play a note to an actual finger placement on
 the fretboard, the part of the guitar where users place their
 fingers to change the pitch of notes. Traditional tools show
 beginners tabs or images of where to put their fingers, which
 they must first interpret, then look at the fretboard to place
 their fingers. For new guitar players, this increases the
 complexity of learning the guitar. Since beginners are already
 looking at the fretboard when playing a note, indicating where
 to put their fingers directly on it is intuitive. By using LEDs,
 or light-emitting diodes, to indicate to users where to place
 their fingers, the process of playing new notes and songs is
 expedited and made more natural for beginners.

 While more advanced guitar players can learn to sight-read
 guitar tabs and images of notes, these skills take time to
 develop and build muscle memory. Jumping straight into
 reading tabs and notes can be overwhelming when learning
 guitar. The SuperFret system targets absolute beginner guitar
 players trying to pick up a guitar and play for the first time.
 Indicating to beginners where to put their fingers enables them
 to build finger dexterity and the skills to play notes without
 being inundated with foreign guitar notation. This removes
 one of the major hurdles beginner guitar players face, making
 playing the guitar more approachable and enjoyable.

 The SuperFret system also detects the position of the user’s
 fingers and when they strum, allowing them to receive
 real-time feedback to ensure they are playing the correct notes
 and strumming at the right time. A web app displays that
 feedback to the user, allowing them to see their progress and
 determine where to improve.

 Guitar training resources are not a novel idea, with private
 teachers, training apps, and accessories being commonplace.
 Private teachers are costly, running around $40-$90 an hour

 [1]. This results in many individuals favoring personal training
 tools, such as apps showing them where to put their fingers
 and listen to their playing. While tools like this are affordable,
 they require users to look at a screen to determine what note to
 play and then try to match their fingers to the image on the
 screen. By integrating LEDs on the fretboard, the SuperFret
 system makes it easier for users to place their fingers in the
 correct location.

 A handful of existing training tools integrate LEDs onto the
 fretboard, but these systems use audio to detect what the user
 is playing. These systems require a fairly quiet environment
 and take longer to analyze what note was played. The
 SuperFret system directly detects the user’s finger locations,
 thus enabling rapid feedback and more accurate analysis of the
 user’s playing.

 Overall, the SuperFret system allows beginner guitar players
 to learn to play notes and basic songs quickly quickly. The
 system determines if the user is playing correctly and provides
 feedback and control over the system through a web app
 interface

 II. U SE -C ASE R EQUIREMENTS

 The target users of the SuperFret system are beginner guitar
 players looking to improve their skills and play basic songs.
 As such, the use case requirements are informed with
 beginners in mind. Beginner guitar players should find the
 overall experience of the web app and hardware intuitive, as
 the goal of the project is to remove barriers to entry. From
 picking up the system to strumming notes, users should only
 need around 5 minutes to get started with the system. Users
 shall be able to upload MIDI files (file format for representing
 music) for songs they want to practice. The system should also
 support selecting between various playing modes to suit how
 the user wants to practice.

 The system shall handle notes down to 1/8 th notes at 100
 beats per minute (BPM). This corresponds to 200 notes per
 minute maximum, or around 3 notes a second, faster than most
 beginner guitar players can handle. The target tempo should be
 indicated at a volume that is audible over the guitar. The
 system should be able to identify the user’s finger placement
 and strumming with 99% accuracy, corresponding to
 approximately 1-2 missed notes per minute by the system.
 This is far lower than the number of mistakes the user makes,
 so this accuracy is sufficient for the system.

 Additionally, the system must look, feel, and play like a
 standard bass guitar. This ensures users can apply the skills
 learned on the SuperFret system to other guitars.

 2
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023

 III. A RCHITECTURE AND P RINCIPLE OF O PERATION

 Fig. 1. A depiction of the SuperFret system. Guitar image from [2]

 The overall system is shown in Fig. 1. The user interacts
 with the system through their personal computer by accessing
 a web app. They upload songs and choose which ones to
 practice on. When ready to practice, they click “Start” on the
 screen, place their fingers on the lit-up LEDs, and strum.
 Statistics about their playing are aggregated and displayed on
 the web app. Additionally, when a user starts a song, the web
 app renders a “virtual” guitar that mirrors the physical guitar
 and more easily allows users to visualize the song.

 Fig. 2. High-level Architecture Block Diagram.

 Overall, the system is composed of 3 parts – the web
 application (“web-app”) hosted on a Raspberry Pi 4B (“RPi”),
 a Teensy 4.1 microcontroller, which is the brain of the
 embedded system, and the electronic hardware on the guitar.
 The user interacts with the system through the web
 application, which allows them to upload songs they want to
 learn, choose songs to practice, and receive statistics on their
 playing. The user uploads songs as MIDI files, which encode
 note and timing information for the song. The MIDI file is
 interpreted by RPi and visualized as falling notes on the
 virtual guitar. The RPi also converts the notes into (fret, string)
 coordinates on the fretboard, which are passed to the Teensy.
 The Teensy uses the coordinates and lights the corresponding
 LED on the fretboard to guide finger placement. The LEDs
 reside on Printed Circuit Boards (PCBs), 15 of which are
 embedded along the fretboard. The PCBs also contain
 circuitry to determine which note the user has fingered on the
 fretboard. Other electronic hardware on the guitar includes a
 metal pick and accompanying circuitry for strum detection. By
 detecting which note the user’s fingers are on and when they
 strum it, the Teensy can determine deviations from the notes

 and timing information specified in the MIDI file and send
 aggregated statistics back to the RPi for display on the web
 app.

 A. Web Application
 As shown in the high-level block diagram (Fig. 2), the RPi

 hosts both the web app and communicates with the Teensy
 microcontroller. The web app is written in Python using the
 Django web framework, which combines the frontend,
 backend, and database into one Model-View-Controller design
 pattern (Fig. 3) to create web endpoints that the user can
 access via a web browser. From the website itself, the server
 provides all the functionality required for the user to control
 the guitar in an intuitive interface. User input is processed and
 forwarded to the microcontroller through 3 different
 communication “streams”: bidirectional communication with
 the Teensy over UART accounts for 2 streams, and the third is
 for interrupt signals originating from the RPi that control the
 state machine (Fig. 9) inside the Teensy.

 Fig. 3. Django Web Frame Work Implements Model-View-Controller [9]

 B. Teensy and Embedded System
 Besides the 3 previous streams, the Teensy communicates

 with the electronic hardware on the right side of Fig. 2 through
 4 streams.

 First, the Teensy specifies the color of each NeoPixel LED
 on the fretboard through the protocol for WS2812 LEDs,
 which is the chipset the NeoPixel implements.

 The Teensy determines where on the fretboard the user has
 pressed on a string by detecting the electrical contact between
 each of the 4 strings with 14 frets. This is done by applying a
 voltage stimulus to one of the 14 frets and then reading the
 voltage on each of the 4 strings. A high reading on a string
 indicates that the string is pressed down against the fret on
 which the voltage stimulus is being applied. By putting
 D-Flip-Flops between each fret, the voltage stimulus is
 clocked “down” the fretboard as if the D-Flip-Flops formed a
 shift register. This way, only 2 signals are required to create
 the voltage stimuli for the frets, as opposed to having 14
 signals, with one per fret.

 The Teensy also detects when the note is strummed by
 detecting when a voltage stimulus on the pick is conducted to
 a particular string. This is a change from the design report,
 where we intended on using audio-based detection of
 strumming.

 3
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023

 C. Electronic Hardware
 Each fret is associated with a fretboard PCB, which contains

 4 LEDs, one per string. The fretboard PCB also has a
 D-flip-flop to receive the voltage stimulus from the previous
 fretboard PCB, apply the stimulus to the current fret, and
 forward the stimulus to the next fretboard PCB. Strums are
 detected using a pick with a metal electrode that applies a
 stimulus to the guitar strings.

 The RPi is connected to the Teensy using a custom Pi-Hat
 PCB, which handles power distribution and I/O between all
 the system components. Power for the system can be provided
 either through a wall adapter or using a lithium polymer
 battery connected to a buck converter.

 IV. D ESIGN R EQUIREMENTS

 To meet the use-case requirements, several critical design
 specifications were established for both the hardware and
 firmware components, as well as the web application of the
 SuperFret system. For the hardware and firmware, achieving a
 latency of less than 50ms from strum detection to LED
 response (the threshold of human visual perception) is
 paramount to provide users with real-time feedback during
 practice sessions. Additionally, the hardware and firmware
 must support a strumming rate of up to 3.3Hz, or 200 strums
 per minute. The system should indicate the target tempo at a
 minimum volume of 70dB, which was found to be audible
 over the guitar notes.

 To meet the use case requirement of being playable like a
 standard guitar, the system shall support ~2.5 octaves of notes,
 corresponding to 14 frets. Consequently, the guitar must
 support 60 individually addressable LEDs, 4 for each fret and
 4 for the open string indicators. The rest of the board is
 unnecessary, as beginner users rarely use the highest notes on
 a bass guitar. The system shall support illuminating the entire
 fretboard at half brightness to enable arbitrary patterns to be
 displayed on the fretboard. Half brightness was selected to
 balance visibility and system current draw.

 Safety is a key consideration, as the guitar strings are driven
 to 3.3V. According to IEC TS 60479-1, currents below 500μA
 through the body are imperceptible and safe. Therefore, the
 current that flows through the user under normal operating
 conditions should be under 500μA. Under abnormal operating
 conditions, such as if the system gets wet while being used,
 the current through the body should not exceed 1mA (the
 maximum current that can pass through a human body without
 impacting the user’s muscles) [3].

 The web application's design requirements focus on
 enabling the user to control the guitar and start/stop songs. The
 file upload capability should support up to 1GB of custom
 MIDI files for a personalized learning experience. The web
 application shall update in accordance with the user’s playing
 within 250ms to ensure a cohesive user experience.

 These design requirements ultimately ensure that the
 SuperFret system achieves the defined use-case requirements
 and provides a positive user experience. The quantitative

 specifications are summarized in Appendix Table I.

 V. D ESIGN T RADE S TUDIES

 A. Single-Board Computer vs Microcontroller
 The main computer selected for the project was the

 Raspberry Pi 4B. The processing tasks associated with this
 project consist of running a web application, controlling the
 fretboard LEDs, reading from the fret sensors, and processing
 statistics. Both a single-board computer (SBC) and a
 WiFi-equipped microcontroller could perform these tasks.
 Single-board computers are typically worse at handling
 real-time interaction with their environment because the
 processor also handles the overhead of running the computer's
 operating system. Additionally, hosting the web app can
 introduce delays that do not meet input and output (I/O)
 latency requirements. Running the system off a WiFi-equipped
 microcontroller like the ESP32S3 would enable high-speed
 I/O. However, running the web app in parallel to this on the
 microcontroller would be challenging due to the
 single-threaded nature of most microcontrollers. Running the
 system off a microcontroller would also introduce significant
 restrictions on the web interface's functionality due to the
 microcontrollers' limited memory. For these reasons, we chose
 to pursue a split architecture, with an SBC running the
 high-level control of the system, namely running the web app,
 storing user-uploaded music, and coordinating the system's
 overall state. A microcontroller runs the real-time I/O without
 worrying about hosting a web app, allowing the target
 latencies to be achieved. This has the added benefit of
 improving our ability to parallelize work, with one team
 member working on the SBC and one on the microcontroller,
 rather than team members having to coordinate pushing and
 pulling software changes. The SBC chosen was the Raspberry
 Pi 4B due to its widespread documentation and support, and
 the microcontroller chosen was the Teensy 4.1 due to its
 plentiful GPIO pins and high clock speed.

 B. Microcontroller Choice
 Members of the group were already familiar with using

 several microcontrollers typically used in electronic projects,
 and familiarity was the main driving force behind selecting a
 microcontroller. We considered the Arduino UNO, Arduino
 Mega, Raspberry Pi Pico, Teensy 4.0, and Teensy 4.1. Of
 these, we wanted a microcontroller with fast clock speed to
 enable multiple tasks and enough memory to store a MIDI
 file’s worth of data.

 We found a benchmark that showed the Teensy class of
 microcontrollers were the fastest computers of the ones we
 were familiar with:

 4
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023

 Fig. 4. The “CoreMark” CPU Performance Benchmark [4], [5]

 We conservatively estimated the typical training song would
 be 2 minutes, with up to 200 notes per minute, and each note
 would take 5 bytes to specify in the MIDI format (2 for the
 duration in “delta ticks” and 3 for the event). Thus, we
 required a microcontroller with at least 2kB of memory. We
 eliminated the Arduino UNO, which only has 2kB of SRAM
 [6].

 Furthermore, we desired a microcontroller with a great deal
 of flexibility in the I/O. The Teensy 4.1 supports 8 different
 hardware serial ports, almost all pins can act as interrupts, and
 all I/O pins are capable of functions such as pulse width
 modulation (PWM).

 After considering the degree of prior experience, CPU
 performance, memory, I/O, and availability, we selected the
 Teensy 4.1 because it was strong across each desired trait, and
 we already had access to it, making it the cheapest option.

 C. Fret-Sensing Implementation
 To determine the user’s finger placement, the system uses

 the ‘switch’ formed when the user presses a string into a fret.
 GPIO pins on microcontrollers are limited, and wires interfere
 with the comfort and usability of the guitar. A switch array can
 be employed to reduce pin and wire count. By driving each
 fret to 3.3V one by one and then reading the voltage on each
 string, the detection of any strings touching the 3.3V fret can
 be performed. This requires 18 GPIO pins - 4 for the strings
 and 14 for the frets. This still requires 14 wires to be run from
 each fret to the microcontroller. Since a switch array
 necessitates that each fret is driven to 3.3V one at a time, the
 GPIO count can be reduced to

 4 Strings + ceiling(log 2 (14)) = 8 (1)

 pins using a decoder circuit. However, this would require
 decoding circuitry next to each fret, which would take up the
 limited space available. By using a “shift-register” style
 approach, with each fret requiring only a single D-flip-flop,
 the system can use only 6 GPIO pins, 4 for the strings, 1 clock
 line, and 1 data line. Excluding power wires, this solution,
 shown in Fig. 5, requires only 2 wires between each fret.
 These include a shared clock line and the data outputted by the

 previous fret’s D-flip-flop. The only tradeoff of this
 implementation is that each fret requires a D-flip-flop, but this
 drastically outweighs requiring 14 individual wires for each
 fret.

 Fig. 5. A 6 GPIO method for reading finger positions

 D. Fretboard PCB Design
 Due to the finger placement sensing implementation making

 use of a D-flip-flop next to each fret, and the design requiring
 4 addressable LEDs per fret, implementing a PCB to mount
 these components is the ideal solution. It would be possible to
 use commercial off-the-shelf (COTS) LED strips and run a
 separate wire to each fret, but it is not possible to buy LED
 strips with the exact spacing needed for the guitar strings.
 Additionally, this would require many wires for the finger
 placement sensing, as discussed previously.

 There are a handful of ways to implement PCBs along the
 fretboard. The first way is to remove and replace the guitar's
 fretboard with a single PCB. This would completely eliminate
 the need for external wires along the fretboard but would
 introduce mechanical challenges. Since the fretboard holds the
 frets in place, we would need to devise a new way of
 mounting the frets securely, and we would need to perfectly
 match the spacing of the original fretboard to keep the guitar
 in tune. Additionally, this would require completely removing
 the guitar's fretboard, which can be challenging to perform due
 to the glue between the fretboard and the rest of the guitar.
 These factors increase the risk associated with the project, so
 we chose not to pursue removing the fretboard.

 The other two implementations involve creating individual
 PCBs mounted next to each fret. This approach allows the
 fretboard to remain mounted to the guitar and removes the
 need to replicate the spacing between the frets on a PCB
 perfectly. These PCBs can be mounted on the fretboard or
 placed in carved-out channels next to each fret. The advantage
 of placing the PCBs on top of the fretboard is that no
 mechanical modification to the guitar fretboard is necessary.
 The disadvantages of this approach are that the fretboard is
 curved, as shown in Fig. 6, and that the frets only extend
 above the fretboard by 1.2mm.

 5
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023

 Fig. 6. Cross section of a guitar fretboard. The fretboard surface is curved,
 making PCB mounting difficult [7].

 The curved surface of the fretboard makes mounting rigid
 PCBs directly to the fretboard difficult. A flexible PCB would
 resolve this issue by allowing the PCB to conform to the shape
 of the fretboard. However, since the frets only protrude from
 the fretboard by 1.2mm, the total height of the LEDs and the
 PCB must be below 1.2mm. The addressable LEDs being used
 have a height of 1.6mm, so to ensure these do not get in the
 way while the user plays the guitar, the PCBs sit in recessed
 channels in the fretboard. These channels can be flat on the
 bottom, meaning flexible PCBs are no longer necessary. Due
 to the higher costs and lead times associated with flexible
 PCBs, we pursued 14 rigid PCBs, each placed into carved-out
 channels next to the frets.

 The primary challenge of this selected implementation is the
 carving of the channels into the fretboard. Guitars feature a
 metal support rod running along their length that must be
 avoided. Additionally, the wooden fretboard holds the frets in,
 and removing material from around them may loosen the fret.
 We created the channels using a Dremel and files, and during
 this process, one fret was knocked off the fretboard but could
 be replaced.

 VI. S YSTEM I MPLEMENTATION

 Appendix Figure I has a more detailed technical block
 diagram of the system as a whole, beyond what was shown in
 Fig. 1. The system consists of three main subsystems – the
 user frontend hosted using the RPi, the physical hardware used
 to interface with the guitar and user, and the microcontroller
 system directly interacting with this hardware.

 A. Raspberry Pi and Web App Subsystem

 Fig. 7. Block diagram for the RPi and web app. Zoomed-in crop of block
 diagram in Appendix Figure I.

 1) Django Web Server
 The RPi hosts a web server powered by Python’s Django

 Web Framework. This server creates a local endpoint
 reachable via a browser that responds with an HTML page
 containing all the functionality needed for the user to

 communicate with the guitar. Specifically, the web server
 implements these endpoints:

 http://a2superfret.wifi.local.cmu.edu:8000/
 - home - retrieves the home page
 - addfile - uploads a file to
 - deletefile/{songname} - deletes a file
 - startfile/{songname} - tells guitar to start song
 - stopFile - tells guitar to stop song
 - getStats - get the user’s statistics of previous songs

 A SQL database houses all the file and user information to
 achieve a consistent state for the server. Each entry in the
 database represents a song and contain:

 - name: name of the song/file
 - file: the file path to the MIDI (actual file is stored in a

 separate folder)
 - active: a boolean to store if the song is currently

 being played, keeps track of state

 Additionally, because of the virtual guitar additions to the
 design, there became a need for extensive computation on the
 frontend. To address this, when the user begins a new song,
 the webserver returns a webpage that has a javascript client
 embedded within it. This client constantly communicates with
 the guitar over http on behalf of the user to request strumming
 information during a song. Upon every update from the server,
 the client can refresh the virtual guitar with current
 information allowing the physical guitar and the virtual guitar
 to appear completely synchronized.

 2) MIDI Pre-Processing
 A MIDI file is organized into 1 header section and at least 1

 “Track” section. The header specifies timing information to
 determine some timing info and the number of track sections
 that follow. Each track section specifies a tempo, notes, and
 duration information.

 Before forwarding the user’s MIDI file to the Teensy, the
 RPi lightly pre-processes it using the pretty_midi [10] python
 library so the Teensy is not burdened with parsing through
 information it does not need. For example, the MIDI Header
 and Track sections contain byte counts, the instrument's name,
 and other preamble that the Teensy does not need. So, the RPi
 can strip that extraneous information out and send an
 “abridged” MIDI file, so the Teensy only needs to parse the
 essential tempo, timing, and note information.

 Additionally, this parsed MIDI file also provides enough
 information for the virtual guitar’s functionality allowing the
 reuse of our code for two separate components at the same
 time, lowering development time and reducing computational
 load on the system.

 3) Teensy Communication
 The RPi runs a UART communicator process to establish

 and maintain a connection between the Teensy and the Pi over
 a specified port. Its job is to receive user requests from the

 6
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023

 web server and convert them into interrupt signals, which can
 then be sent to the teensy and vice-versa. Upon a start request
 from the user, the web server tells the UART communicator to
 send a specific file to the microcontroller by first sending a
 “file_transmission” (Fig. 9) interrupt, followed by all the file
 data. One idea was to send the file one packet at a time as
 needed, but this was abandoned due to UART latency
 concerns and since it would complicate the real-time Teensy
 firmware. When a fileStop command is issued, the UART
 communicator interrupts the Teensy by raising its STOP GPIO
 pin to high.

 B. Teensy/Embedded Subsystem

 Fig. 8. Zoomed-in crop of block diagram in Appendix Figure I. The
 Teensy microcontroller is the glue between the User Interface and the
 electronic hardware. The Teensy’s software is structured as a state
 machine.

 1) State Machine
 A state machine controls the high-level decisions made by

 the Teensy. There are two classes of inputs to the state
 machine - interrupts generated by the RPi (shown in purple in
 Fig. 9), which are based on the user’s interaction with the
 system, and inputs originating from the operation of the
 system itself (shown in red in Fig. 9).

 When the system is first turned on, or “idling,” it starts in
 the “WAIT TO START” state. Once the user selects a song on
 the web app, the RPi asserts a GPIO pin high, causing a rising
 edge on the “file_transmission” digital pin of the Teensy. This
 causes the Teensy to enter the “RECEIVING SONG” state to
 listen to the RPi over UART for a stream of (fret, string)
 coordinates. Once the RPi transmits the file, it asserts the same
 pin low, and the Teensy interprets the falling edge as the end
 of file transmission.

 Having received the MIDI file, the Teensy transitions to the
 “PARSING SONG” state, where it parses the file. Then, it
 transitions to the “USER EXPERIENCE” state, where it lights
 up the LED for the first note of the song and waits for the user
 to start playing the guitar by strumming. When the first strum
 is sensed, the Teensy lights up LEDs, reads frets, and
 continues detecting strums.

 Once the user finishes playing the song (the last note is
 reached), the “WAIT TO START” state is entered again. The
 Teensy can also enter this initial state if the user restarts the

 system through the web app.

 Fig. 9. State Machine for the Teensy’s Software

 2) Music information
 The RPI processes the MIDI file and distills it into a few

 key bits of information for the Teensy: metronome speed and
 volume, the user experience mode (training or performance)
 and the note timing & coordinates. This is all the Teensy needs
 to determine when to light up a particular note’s LED and
 when to expect the user to play that note.

 Originally we had the RPI forward the MIDI file to the
 Teensy, which would reparse. But this was wasteful, and we
 had trouble getting the RPI and Teensy to parse the file
 similarly, so we stuck to just 1 parser.
 3) LED Control

 The Teensy stores a “note schedule” indicating when
 particular notes should be played or released. As the Teensy
 executes in the USER EXPERIENCE state, it compares the
 current time to entries in the note schedule to see if it is time
 for a note to be played or released. Once the particular note is
 determined from the note schedule, the corresponding LED
 position is determined by indexing into a static mapping
 relating notes to LED positions on the fretboard.

 C. Electronic Hardware Subsystem
 The interaction between the Raspberry Pi, the Teensy, the

 guitar, and the user is provided by a series of hardware
 components. These consist of sensing components to take in
 information from the environment, components that provide
 user feedback, and various power and data interconnects. A
 block diagram overview of the hardware components is shown
 in Fig. 10.

 7
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023

 Fig. 10. Zoomed-in crop of block diagram in Appendix Figure I, focusing
 on the electronic hardware.

 1) Strum Detection
 The system must determine when the guitar is strummed to

 know if the user played the desired note correctly. To
 accomplish this, we originally designed a circuit to take in the
 guitar's audio signal and output a digital signal indicating
 when the guitar is strummed.

 This system used the piezoelectric sensor integrated into the
 guitar rather than an external microphone to reduce external
 interference. This sensor converts the mechanical motion of
 the guitar strings into a voltage.

 Fig. 11. Block diagram of the strum detection circuitry

 The block diagram planned for the strum detection is shown
 in Fig. 11. The schematic corresponding to this block diagram
 is shown in Fig. 12

 Fig. 12. Physical implementation of the strum detection circuit

 This circuit analyzes the audio amplitude and generates a
 digital output if it is over a set level. Various changes were
 made to the circuit, such as including a differentiator circuit to
 look for sharp jumps in audio amplitude, but we ultimately
 changed approaches. We found that audio-based detection was
 not reliable enough to meet our accuracy requirements, as it
 often picked up on external noises or extraneous noises made
 by the user.

 The selected solution was to drive a guitar pick to 3.3V and
 to then read off the voltage on each string, similar to how the
 finger placement sensors function. This solution has the added
 benefit of detecting which string is strummed, without having
 to Fourier transform the guitar audio. This solution requires a
 custom metal guitar pick with a wire running to it in order to
 drive the pick to 3.3V when desired.

 Fig. 13. Guitar picks with metal electrodes. The left pick has an electrode
 on both sides,, while the right pick only has an electrode on one side.
 They can be easily interchanged to match the user’s preference.

 2) Fretboard PCBs
 To connect the addressable LEDs and drive each fret to

 3.3V individually, our system integrates a fretboard PCB next
 to each guitar fret. The addressable LEDs require 5V, ground,
 and a data-in pin. They also have a data-out pin that connects
 to the data-in of the next LED in the series. There is a 0.1μF
 capacitor across the power rails next to each LED to ensure
 proper LED functionality. The LEDs used are SK6812
 NeoPixel LEDs, which support write speeds of up to 800kHz.
 For 60 LEDs, this corresponds to around 2ms to write to all
 the LEDs. Each fretboard PCB has a D-flip-flop, forming one
 large shift register across all the fretboard PCBs. The output of
 a D-flip-flop is connected to the adjacent fret of the guitar.
 While we originally planned on using a direct connection
 between each flip-flop, we found that the propagation time of
 the signal between adjacent frets caused timing violations, so a
 low-pass filter was added on the data lines to allow the clock
 signal to arrive at the next flip-flop first.

 Using the Teensy, a logical high can be clocked into the first
 fretboard PCB, which can be shifted to the next PCB, allowing
 each fret to be driven high one at a time. A 3.3kΩ resistor and
 forward-biased diode connect the D-Flip-Flop and a fret to
 limit the current that could flow to 1mA. While a fret is driven
 high, the voltage on each guitar string is read, allowing the
 Teensy to determine which strings were contacting the fret
 being driven high. The diode prevents any issues relating to
 one fretboard PCB trying to drive a string low while another
 drives it high. Using a diode, the string would be driven high
 in this case.

 The fretboard PCB design is shown in Fig. 14. The top half
 of the board contains the 4 addressable LEDs, D1-D4, and the
 bottom half contains the D-flip-flop and supporting passive
 components. The pads on the right side of the board and the
 bottom left of the board enable the boards to be daisy-chained
 together, which reduces wiring complexity. Since the string
 spacing of a guitar changes slightly between each fret, we
 created two different sizes of PCB. While 14 different sizes
 would be optimal to ensure the LEDs line up perfectly with
 the strings at low production quantities, this drastically
 increases the price and complexity of assembly. As such, we
 chose to use two different sizes of fretboard PCBs. 8 of the
 boards have LEDs that are slightly closer together and are
 used for the open string indication and for the frets at the end
 of the guitar. 7 of the boards have a wider LED spacing and
 are used for the frets closer to the guitar's body.

 8
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023

 Fig. 14. The small fretboard PCB (top) and large fretboard PCB (bottom).

 To prevent users from being able to touch the metal pads on
 the fretboard PCBs, and to prevent the fretboard from having
 an uncomfortable feel, we created covers for each of the
 fretboard PCBs.
 3) Pi Hat PCB

 The RPi and Teensy require numerous connections for
 UART and interrupts, external power, and various input and
 output devices. To implement these connections, a Pi “Hat” is
 used. A Pi-Hat is a PCB that plugs directly into the 40-pin
 header on the RPi, as shown on the right side of the board in
 Fig. 15.

 The Pi-Hat filters any noise in the 5V power supply
 connected to the Hat via a barrel jack and distributes this to
 the Teensy, RPi, and fretboard PCBs. The Pi-Hat also connects
 the Teensy and RPi with 10 I/O lines and a UART channel so
 they can communicate.

 The Pi-Hat has a number of I/O ports on the left side that
 are connected to the fretboard PCBs, LEDs, and strings. For
 the LEDs, a logic level converter is used to convert the 3.3V
 signal from the Teensy to a 5V signal for the LEDs.

 An active buzzer acts as a metronome by beeping in short
 pulses to indicate the target tempo to the user while they are
 playing. Active buzzers can be driven by simply pulling an
 output pin on the Teensy, either high or low, making this
 design for the metronome simple to implement on the
 firmware side.

 Fig. 15. Pi-Hat PCB layout

 4) Power Supply
 The system is powered using a 5V DC wall adapter, which

 connects to the Pi Hat using a 5mm barrel jack connector. The
 total expected current draw is 2.0A for the Pi, 0.15A for the
 Teensy and flip-flops, and 1.5A for the LEDs at half
 brightness. This sums to 3.65A, so a 5A power supply was
 chosen for the project. For user convenience, the system can
 also be powered by a battery. An 11.4V 2200mAh lithium
 polymer battery is connected to a 5A 5V buck converter,
 which then connects to the 5V power rail of the Pi-Hat PCB

 VII. T ESTING , V ERIFICATION , AND V ALIDATION

 To validate our solution and design requirements,
 comprehensive tests were conducted. The aim was to
 scrutinize the real-time responsiveness of the SuperFret
 system and its ability to handle diverse playing conditions.
 Refer to Table I for a summary of the test results.

 A. Results for Latency
 An oscilloscope was utilized to precisely measure the time

 delay between initiating a strumming action and the
 corresponding LEDs being written to. After multiple
 measurements, we determined the latency to be 1.85ms which
 was well under our target. This test held critical significance
 as it directly addressed the design requirement of achieving a
 latency of less than 50 milliseconds, ensuring that the system
 provides instantaneous feedback to the user to prevent the
 guitar from feeling sluggish during practice sessions.

 Simultaneously, the web app’s network delay test evaluated
 the responsiveness of the web application and the ability of the
 virtual guitar to stay up-to-date with the physical guitar. The
 test involved high frame rate video (240 frames per second) to
 capture the delay through the entire system from the user
 strum to the website updating. After rewatching 12 iterations
 of the test, we aggregated the data to get an average total delay
 of 215ms which was under our target of 250ms. This result
 ensures that users experience a smooth and responsive
 interface when interacting with the web application, aligning
 with the design specifications and user expectations.

 B. Results for Accuracy
 For accuracy testing, a strum identification test was

 designed to assess the system's ability to identify strums
 accurately. We quantified the system's ability to correctly
 identify strums by performing 200 1/8th note strums at up to
 300 BPM on each string. The success criteria for this test were
 determined by calculating the percentage of correctly
 identified strums, directly addressing the accuracy
 requirements outlined in the design specifications. At 300
 BPM, we achieved 99% accuracy for this test, clearly
 indicating the system's competency in identifying and
 responding to strumming actions.

 In addition to strum identification, a finger placement test
 was conducted to evaluate the system's accuracy in detecting
 the placement of fingers on different string and fret positions.
 This involved systematically placing a finger on each fret and
 string location and using code to light up the LED under the

 9
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023

 pressed location. We verified that the LED came on under
 each finger position. We then repeated this process multiple
 times and calculated the percentage accuracy, which quantified
 the system's precision in detecting finger placement. Using
 this method, we achieved 100% finger placement accuracy,
 since under no conditions did the system not register a finger
 press or misidentify a press. This test directly validated the
 accuracy requirements for finger placement detection as
 specified in the design specifications. Overall, these tests were
 crucial in ensuring that the SuperFret system not only met the
 theoretical design trade-offs but also demonstrated robust
 performance aligned with the specific use-case requirements
 for the project.

 Accuracy for the LEDs was verified by displaying patterns
 on the fretboard to ensure all LEDs were indexed properly. We
 then loaded a variety of MIDI files into the system via the RPi
 and played them on the guitar. We used a tuning tool to verify
 that the system always instructed the user to play the correct
 note as indicated in the MIDI file. One important note is that
 the system may shift notes up or down an octave if the
 provided MIDI file falls outside the guitar’s range.

 C. Safety
 As per IEC TS 60479-1, humans can not perceive currents

 below 500μA, and currents below 1mA do not impact muscles
 [3]. We used a lab bench ammeter capable of measuring down
 to 0.01μA to verify this. Under normal conditions, participants
 would contact the 3.3V guitar string with 1 hand and a ground
 signal with the other. A 10kΩ potentiometer would be between
 the 3.3V source and the string, and the potentiometer would
 initially start at 10kΩ. While monitoring the current, the
 potentiometer’s resistance was turned to 0Ω, and the current
 was recorded. If the current ever reached 1mA while lowering
 the potentiometer resistance, the test would be stopped. We
 found that the current passing through a user was at most
 0.80μA. To test the maximum current the strings carry, we
 used the ammeter to connect the fret to a string and verify that
 no more than 1mA flows. Our results showed that the
 maximum average current through a short circuit in the system
 was only 5.37 μA. This is an average since each fret is driven
 high for only 10μs out of a loop time of 1555μs. Using an
 oscilloscope and a series shunt resistor, we found the current
 spiked to 0.762mA for 10μs, which is below our required
 value.

 D. User Experience
 For user experience evaluation, subjective tests were

 conducted to gather feedback on the web application and
 hardware components. The questions assessed the users'
 perception of the system's usability and effectiveness. Refer to
 Appendix Table II for the specific questions asked and a
 summary of the results.

 Users were asked to interact with the web application and
 provide ratings on a scale of 1 to 10 for categories such as the
 intuitiveness of the interface, readability of statistics, and
 responsiveness of the virtual guitar. These subjective
 evaluations were averaged to create a quantitative metric for

 the overall user experience with the web application. For
 example, a user-friendly interface is crucial to the system's
 success, as it directly impacts the accessibility and satisfaction
 of the users.

 Similarly, users were requested to evaluate the hardware
 components, considering factors like comfortability, LEDs'
 effectiveness, and the metronome's volume and pitch. Ratings
 on a scale of 1 to 10 for each category were averaged to
 provide a quantitative measure of the overall user satisfaction
 with the physical components. Comfortability is vital for
 sustained practice sessions, while the effectiveness of LEDs
 and the metronome directly impact the user's ability to follow
 guidance and maintain rhythm during practice.

 The system's success in meeting the user-centric design
 goals was quantified by aggregating the user ratings. The
 results of our test showed that the physical components were
 very well built and that the guitar was very responsive and
 effective at showing users where to play. However, it also
 showed there was room for improvement in the look of the
 website. These user experience evaluations were essential for
 obtaining qualitative and quantitative insights into the
 effectiveness and user-friendliness of the SuperFret system.
 The feedback gathered from users was invaluable in making
 iterative improvements to enhance the overall user experience,
 ensuring that the SuperFret system fulfilled the technical
 specifications and was well-received by its target audience of
 beginner guitar players.

 VIII. P ROJECT M ANAGEMENT

 A. Schedule
 The Gantt chart in Appendix Figure II shows the project

 timeline for the semester. The tasks are divided into Electrical,
 Firmware, and Software, with Owen, Tushaar, and Ashwin
 leading these categories. Scheduled weekly 2-hour meetings
 between team members occur to perform integration between
 systems and discuss design considerations to prevent
 integration issues at the end of the semester. Time was
 provided at the end of the semester for the final integration of
 the systems, and team-wide tasks such as working on
 presentations and reports are also listed. Highlighted bars
 indicate progress on the listed task. One change to the
 schedule was the addition of the virtual guitar since our team
 decided to put more emphasis on its completion. Additionally,
 we experienced some schedule delays due to previously
 mentioned issues with the flip-flops. This resulted in pushing
 back the ordering of both the fretboard and Pi-Hat PCBs and
 delayed Tushaar’s ability to interface with the fretboard
 sensors. Mechanical modifications to the guitar took longer
 than expected as well, but this was compensated for by the
 assembly and testing of the PCBs being ahead of schedule

 B. Team Member Responsibilities
 As shown in the schedule, the work was divided into 4 main

 areas - overall project management, web app, firmware, and
 electronics. All members were responsible for staying up to
 date on the overall project timeline and keeping the timeline

 10
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023

 for their area on track.
 Ashwin focused on the web app and wrote software on the

 RPi to host it. He also wrote software to send MIDI files to the
 Teensy and receive statistics on how the user is doing from
 Teensy.

 Owen designed the electronic hardware, which involved the
 PCBs on the fretboard, the strum detection circuitry, and the
 interface board that allowed signals to pass between the
 Teensy and RPi.

 Tushaar focused on the firmware, the glue between Ashwin
 and Owen’s areas. This involved writing the Teensy’s software
 for interfacing with the RPi and the electronic hardware that
 Owen designed.

 C. Bill of Materials and Budget
 The total bill of materials used on this project totals to

 $168.00. Appendix Table III shows the full breakdown of the
 parts used on the system as well as some of the unused parts.
 We acquired some of the more expensive components, such as
 the RPi 4B and Teensy 4.1 from the ECE department and
 Roboclub. The primary changes from the design report are a
 more detailed breakdown of the components on the Pi-Hat
 PCB, specific pricing for the revised fretboard PCBs, and the
 addition of a LiPo battery and a buck converter for power. Due
 to our change to a metal pick, we no longer needed the
 microphone listed in the design report Appendix Table IV
 indicates the reasons why components were not used.
 Additionally, excess parts were ordered for some components
 as spares and to hit Digikey price breaks. For example, excess
 flip-flops were ordered since at one point we believed the
 issues with the flip-flops may have been ESD damage or heat
 damage caused when soldering.

 D. Risk Management
 Several critical risks were identified when planning the

 project, each requiring careful consideration and mitigation
 strategies to ensure a smooth design implementation.

 One risk involved detecting which string the user strummed.
 This is necessary for determining if the user put their fingers
 in the correct position but strummed wrong. While we initially
 planned on using audio amplitude to detect strums, we
 realized that this would be insufficient for detecting which
 string was played. While from the beginning we knew an
 electrode based guitar pick would solve the issues, we hoped
 to resolve this issue without using a pick, as this makes the
 system more intrusive and limits how users can play. We
 experimented with capacitive touch sensing on the strings, but
 this method turned out to be too slow and could not function
 alongside the finger placement sensing. We also investigated
 inductive guitar pickups used on many electric guitars.
 However, these systems combine the 4-6 strings of the guitar
 into a single output, meaning that we would not be able to
 detect which string is strummed. Finally, we looked at
 performing an FFT of the guitar audio on the Teensy.
 However, this proved to be too slow to meet our desired
 latency requirements. We ultimately ended up switching to our
 fall-back plan of an electrode-pick. This did have the added

 benefit of removing the need for audio based strum detection,
 which increased the accuracy of the system. The Pi-Hat was
 designed with multiple free digital and analog I/O pins
 however in case we found a sensor that could be used to
 indicate which string was played.

 The ambiguity in fret-string contact due to multiple ways to
 play the same note posed another risk. Generally, we want
 notes around the same time to be played around the same fret.
 This prevents users from needing to move their arms rapidly
 up and down the guitar. To address this, we developed an
 algorithm to determine which alternative of the same note is
 most appropriate to play. The algorithm would take in multiple
 parameters such as the note value, the previous note value, and
 the time since the previous note was played and compute a
 (fret, string) tuple output which specifies to the system where
 the next note will be played. However, we noticed the
 algorithm was imperfect and generated valid but not
 necessarily optimal outputs. So throughout the development
 cycle, we adjusted the algorithm when we noticed
 discrepancies by adding more edge-case handling and tiny
 tweaks that helped improve the fingering on the guitar. The
 constant maintenance of the algorithm helped translate the
 MIDI file notes and guitar notes much more simply and
 mitigate the component’s risk.

 A final risk we had to manage while working on the project
 was the D-flip-flops. In our original design, we directly
 connected the output of each flip-flop to the input of the next
 flip-flop, as is typically done when creating a shift register.
 However, during our testing, we discovered that on a single
 clock edge, a signal could pass through up to 3 flip-flops. We
 eventually discovered that this issue was caused by the
 propagation time of the signals in the wires since we had used
 high-speed flip-flops. The oscilloscope we used while
 debugging could not handle sub-nanosecond time steps,
 making this issue difficult to locate. Although we eventually
 located and resolved the issue, we formulated a backup plan
 and instituted a date at which we would switch to the backup
 plan. The plan was to run an individual wire to each fret
 instead of using the flip-flops. Our final Pi-Hat PCB was
 ordered before this issue was resolved, and as such, you can
 see the numerous Teensy I/O that were broken out to pads in
 case we switched to this plan.

 IX. E THICAL I SSUES

 Although this product aims to help beginners learn to play
 the guitar, this is also the population most susceptible to
 problems arising from the misuse or failure of the project. In
 terms of user safety, there is a very small risk of a shock.
 While the system does have the user touching 3.3V, this is
 through a current limiting resistor and poses no risk, as
 explored previously. The only risk associated with the project
 is the improper use of the wall power adapter, which could
 introduce a safety hazard if the user improperly uses the
 adapter or if the adapter fails. Besides the power supply, a
 hardware failure of the system would not introduce any safety
 risks but would rather hinder the training effectiveness of the

 11
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023

 project.
 The user is also subject to the risks when using the web app

 hosted on the Pi. While highly unlikely, it could be imagined
 that if a malicious individual could gain access to the Pi and
 manipulate the web app, they could acquire some information
 from the user’s computer, such as browser session tokens and
 cookies. In terms of misapplication, the Pi connects to the
 internet. If the default Pi password is not properly changed,
 the Pi can be hacked relatively easily and used to perform
 some damage to the network it is connected to, depending on
 the network's security.

 When it comes to data, our project uses MIDI files that we
 acquire from the internet. Ideally, these files would not contain
 malicious information that would cause our system to become
 a security threat. A thorough analysis of our system’s security
 risks would be prudent.

 X. R ELATED W ORK

 Fret Zealot [8] is an existing product that is similar to ours.
 It is a guitar learning tool hosted on a website with features
 such as song tutorial videos and online guitar courses. They
 also sell a set of guitar LEDs that allow users to learn chords
 and songs, similar to our project.

 However, this product lacks finger placement and strum
 detection on the guitar and relies on a microphone. Thus, the
 guitar cannot provide feedback regarding whether notes were
 played correctly, rapidly, and accurately. Our product also
 separates itself by collecting this data and displaying dynamic
 songs moving at the user's pace. It also displays the timing and
 accuracy information to the user, allowing them to observe
 their skills increase over time. However, Fret Zealot’s
 approach to guitar learning offers them distinct advantages.
 The most prominent is that their LEDs are detachable, which
 allows users to pick their own guitar for learning instead of us
 deciding. Overall, our solution offers a more interactive
 experience for the user.

 XI. S UMMARY

 The SuperFret project aimed to develop a system to assist
 beginner guitar players in improving their skills and playing
 basic songs. Learning new songs, practicing tempo, and
 drilling finger exercises were made simple through our
 interactive design, according to over 15 test users. Thus, we
 met our design requirements.

 The system's user-friendly interface, real-time feedback
 through LEDs, and guidance enhance the learning experience.
 The web application allows users to upload their favorite
 songs for practice, promoting an enjoyable and tailored
 learning journey. The system's ability to handle notes down to
 1/8th at 100 BPM and accurately identify finger placement
 and strumming with a 99% accuracy rate ensures a supportive
 and effective practice environment.

 However, the design of both our hardware and software
 components limits the use of the guitar to single sequential
 notes. This means that playing chords and sustaining notes is
 not supported under our current architecture. Additionally,

 communication between the website and the physical guitar is
 severely unoptimized for low latency as it uses a simple http
 protocol. This creates a small yet noticeable 215ms latency
 between the virtual guitar and the physical one. Although the
 Superfret system is a powerful tool for learning the guitar, it
 could still benefit from more development, given these limits.

 A. Future Work
 Many more exciting enhancements could extend our

 project’s use cases if given more time. Our team particularly
 wanted to create an additional mode for displaying scales on
 the guitar. This mode would display all the notes
 corresponding to a scale (a subset of the possible 12 notes)
 while allowing the user to practice only playing notes on a
 scale. We think this could be a very effective tool for learning
 the patterns that scales create on the fretboard. Additionally,
 since our system already has finger sensing and strum
 detection, we could implement a mode where a user can play
 whatever they want on the guitar, and the resulting song will
 be automatically recorded and stored in midi format for the
 user to playback and edit. This could promote creativity in
 users and entice them to explore the guitar further.

 B. Lessons Learned
 Throughout the development of this project, our team came

 across some challenges that eventually turned into learning
 experiences for us. The first challenge was carving out
 channels across the wooden neck of the guitar to install our
 PCB boards flush against the surface of the fretboard. We
 initially did not plan for this to take long, but the process of
 hand-grinding the channels took a day’s worth of time. We
 underestimated the level of effort required to work with wood
 which set us back in our schedule. For future projects that deal
 with handling and modifying wood materials, we recommend
 having a thorough plan in place with sufficient time in your
 schedule dedicated to woodworking. It will take a lot of time
 to complete, so one must ensure it is accounted for in their
 team schedules.

 Another learning lesson came when trying to implement
 synchronization between the virtual guitar and the physical
 guitar. Upon the addition of the virtual guitar, it was obvious
 that it had to remain synchronized at all times with the
 physical guitar. The complexity of our solution quickly blew
 up as the front-end simulator had to request an update from the
 RPi, which requested an update from the Teensy
 microcontroller and then sent a response back. We suddenly
 had to keep track of the state of three different system
 environments, which was proving hard to do. We settled with
 a slightly messy information pipeline that could have been
 more optimized. With 20/20 vision, the lesson that we learned
 from this was just how different the programming for
 distributed computing is. A more thoughtful approach from a
 distributed systems philosophy would have helped streamline
 the communication protocols and make the code cleaner and
 easier to reason with. For future teams that require distributed
 computing for their project, we highly recommend researching
 appropriate communication protocols that serve their projects'

 12
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023

 needs instead of trying to develop their own (for us, Remote
 Procedure Calls would have worked very well). A good
 framework could even abstract out a lot of the complexity of
 this problem.

 G LOSSARY OF A CRONYMS

 BPM – Beats per Minute
 COTS – Commercial Off-The-Shelf
 GPIO – General Purpose Input Output
 I/O – Input and Output
 MIDI – Musical Instrument Digital Interface
 PCB – Printed Circuit Board
 RPi – Raspberry Pi
 SBC – Single Board Computer

 R EFERENCES

 [1] “Live online guitar lessons: Learn guitar online,” Lesson With You,
 https://lessonwithyou.com/guitar-lessons/ (accessed Oct. 13, 2023).

 [2] “Acoustic bass guitar stock clipart: Royalty-free,” Freeimages,
 https://www.freeimages.com/premium-clipart/acoustic-bass-guitar-4992
 596?ref=clipartlogo (accessed Sep. 28, 2023).

 [3] “IEC TS 60479-1” International Electrotechnical Commission. (2018).
 IEC 60479-1:2018 Effects of current on human beings and livestock
 (accessed Sep. 23, 2023)

 [4] P. Stoffregen. “Teensy® 4.1 Development Board.”
 https://www.pjrc.com/store/teensy41.html (accessed Sept. 28, 2023)

 [5] P. Stoffregen. “CoreMark - CPU Performance Benchmark.”
 https://github.com/PaulStoffregen/CoreMark#coremark---cpu-performan
 ce-benchmark (accessed Sept. 28, 2023)

 [6] “Arduino Memory Guide”
 https://docs.arduino.cc/learn/programming/memory-guide (accessed Oct.
 10, 2023)

 [7] A. Matthies, “Guitar neck shapes & fretboard radius explained,”
 Guitar Gear Finder,
 https://guitargearfinder.com/guides/guitar-neck-shapes/ (accessed Oct.
 12, 2023).

 [8] “Best way to learn guitar: How to learn guitar at home,” Fret Zealot,
 https://www.fretzealot.com/ (accessed Oct. 13, 2023).

 [9] “Model View Controller”, Open Genuis IQ,
 https://iq.opengenus.org/model-view-controller-django/ (accessed Dec.
 15 2023)

 [10] “pretty_midi”, Craffel, https://craffel.github.io/pretty-midi/ (accessed
 Dec. 15 2023)

https://www.pjrc.com/store/teensy41.html

 13
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023

 14
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023

 15
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023

