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 Abstract  —Traditional  guitar  training  tools  can  show  an  image 
 of  note  fingering  to  users,  but  going  from  this  image  to  actually 
 placing  the  fingers  on  the  strings  can  be  difficult.  With  the 
 SuperFret  system,  LEDs  on  the  guitar  fretboard  show  users 
 exactly  where  to  place  their  fingers  on  the  guitar.  The  system  also 
 detects  where  the  user’s  fingers  are  located  and  when  they  strum 
 the  guitar,  allowing  the  system  to  determine  if  the  user  plays  the 
 correct  note.  This  enables  users  to  learn  the  guitar  more  rapidly 
 and engagingly. 

 Index  Terms  —Fretboard,  fret,  guitar,  metronome,  MIDI  file, 
 NeoPixel  (addressable  LED),  Raspberry  Pi,  string,  strum,  Teensy 
 4.1 (microcontroller), web app. 

 I.  I  NTRODUCTION 

 he  SuperFret  system  aims  to  create  a  more  intuitive 
 guitar  training  tool  for  beginners.  When  first  learning 
 the  guitar,  beginners  often  struggle  with  translating  an 

 image  of  how  to  play  a  note  to  an  actual  finger  placement  on 
 the  fretboard,  the  part  of  the  guitar  where  users  place  their 
 fingers  to  change  the  pitch  of  notes.  Traditional  tools  show 
 beginners  tabs  or  images  of  where  to  put  their  fingers,  which 
 they  must  first  interpret,  then  look  at  the  fretboard  to  place 
 their  fingers.  For  new  guitar  players,  this  increases  the 
 complexity  of  learning  the  guitar.  Since  beginners  are  already 
 looking  at  the  fretboard  when  playing  a  note,  indicating  where 
 to  put  their  fingers  directly  on  it  is  intuitive.  By  using  LEDs, 
 or  light-emitting  diodes,  to  indicate  to  users  where  to  place 
 their  fingers,  the  process  of  playing  new  notes  and  songs  is 
 expedited and made more natural for beginners. 

 While  more  advanced  guitar  players  can  learn  to  sight-read 
 guitar  tabs  and  images  of  notes,  these  skills  take  time  to 
 develop  and  build  muscle  memory.  Jumping  straight  into 
 reading  tabs  and  notes  can  be  overwhelming  when  learning 
 guitar.  The  SuperFret  system  targets  absolute  beginner  guitar 
 players  trying  to  pick  up  a  guitar  and  play  for  the  first  time. 
 Indicating  to  beginners  where  to  put  their  fingers  enables  them 
 to  build  finger  dexterity  and  the  skills  to  play  notes  without 
 being  inundated  with  foreign  guitar  notation.  This  removes 
 one  of  the  major  hurdles  beginner  guitar  players  face,  making 
 playing the guitar more approachable and enjoyable. 

 The  SuperFret  system  also  detects  the  position  of  the  user’s 
 fingers  and  when  they  strum,  allowing  them  to  receive 
 real-time  feedback  to  ensure  they  are  playing  the  correct  notes 
 and  strumming  at  the  right  time.  A  web  app  displays  that 
 feedback  to  the  user,  allowing  them  to  see  their  progress  and 
 determine where to improve. 

 Guitar  training  resources  are  not  a  novel  idea,  with  private 
 teachers,  training  apps,  and  accessories  being  commonplace. 
 Private  teachers  are  costly,  running  around  $40-$90  an  hour 

 [1].  This  results  in  many  individuals  favoring  personal  training 
 tools,  such  as  apps  showing  them  where  to  put  their  fingers 
 and  listen  to  their  playing.  While  tools  like  this  are  affordable, 
 they  require  users  to  look  at  a  screen  to  determine  what  note  to 
 play  and  then  try  to  match  their  fingers  to  the  image  on  the 
 screen.  By  integrating  LEDs  on  the  fretboard,  the  SuperFret 
 system  makes  it  easier  for  users  to  place  their  fingers  in  the 
 correct location. 

 A  handful  of  existing  training  tools  integrate  LEDs  onto  the 
 fretboard,  but  these  systems  use  audio  to  detect  what  the  user 
 is  playing.  These  systems  require  a  fairly  quiet  environment 
 and  take  longer  to  analyze  what  note  was  played.  The 
 SuperFret  system  directly  detects  the  user’s  finger  locations, 
 thus  enabling  rapid  feedback  and  more  accurate  analysis  of  the 
 user’s playing. 

 Overall,  the  SuperFret  system  allows  beginner  guitar  players 
 to  learn  to  play  notes  and  basic  songs  quickly  quickly.  The 
 system  determines  if  the  user  is  playing  correctly  and  provides 
 feedback  and  control  over  the  system  through  a  web  app 
 interface 

 II.  U  SE  -C  ASE  R  EQUIREMENTS 

 The  target  users  of  the  SuperFret  system  are  beginner  guitar 
 players  looking  to  improve  their  skills  and  play  basic  songs. 
 As  such,  the  use  case  requirements  are  informed  with 
 beginners  in  mind.  Beginner  guitar  players  should  find  the 
 overall  experience  of  the  web  app  and  hardware  intuitive,  as 
 the  goal  of  the  project  is  to  remove  barriers  to  entry.  From 
 picking  up  the  system  to  strumming  notes,  users  should  only 
 need  around  5  minutes  to  get  started  with  the  system.  Users 
 shall  be  able  to  upload  MIDI  files  (file  format  for  representing 
 music)  for  songs  they  want  to  practice.  The  system  should  also 
 support  selecting  between  various  playing  modes  to  suit  how 
 the user wants to practice. 

 The  system  shall  handle  notes  down  to  1/8  th  notes  at  100 
 beats  per  minute  (BPM).  This  corresponds  to  200  notes  per 
 minute  maximum,  or  around  3  notes  a  second,  faster  than  most 
 beginner  guitar  players  can  handle.  The  target  tempo  should  be 
 indicated  at  a  volume  that  is  audible  over  the  guitar.  The 
 system  should  be  able  to  identify  the  user’s  finger  placement 
 and  strumming  with  99%  accuracy,  corresponding  to 
 approximately  1-2  missed  notes  per  minute  by  the  system. 
 This  is  far  lower  than  the  number  of  mistakes  the  user  makes, 
 so this accuracy is sufficient for the system. 

 Additionally,  the  system  must  look,  feel,  and  play  like  a 
 standard  bass  guitar.  This  ensures  users  can  apply  the  skills 
 learned on the SuperFret system to other guitars. 
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 III.  A  RCHITECTURE  AND  P  RINCIPLE  OF  O  PERATION 

 Fig. 1.  A depiction of the SuperFret system. Guitar image from [2] 

 The  overall  system  is  shown  in  Fig.  1.  The  user  interacts 
 with  the  system  through  their  personal  computer  by  accessing 
 a  web  app.  They  upload  songs  and  choose  which  ones  to 
 practice  on.  When  ready  to  practice,  they  click  “Start”  on  the 
 screen,  place  their  fingers  on  the  lit-up  LEDs,  and  strum. 
 Statistics  about  their  playing  are  aggregated  and  displayed  on 
 the  web  app.  Additionally,  when  a  user  starts  a  song,  the  web 
 app  renders  a  “virtual”  guitar  that  mirrors  the  physical  guitar 
 and more easily allows users to visualize the song. 

 Fig. 2.  High-level Architecture Block Diagram. 

 Overall,  the  system  is  composed  of  3  parts  –  the  web 
 application  (“web-app”)  hosted  on  a  Raspberry  Pi  4B  (“RPi”), 
 a  Teensy  4.1  microcontroller,  which  is  the  brain  of  the 
 embedded  system,  and  the  electronic  hardware  on  the  guitar. 
 The  user  interacts  with  the  system  through  the  web 
 application,  which  allows  them  to  upload  songs  they  want  to 
 learn,  choose  songs  to  practice,  and  receive  statistics  on  their 
 playing.  The  user  uploads  songs  as  MIDI  files,  which  encode 
 note  and  timing  information  for  the  song.  The  MIDI  file  is 
 interpreted  by  RPi  and  visualized  as  falling  notes  on  the 
 virtual  guitar.  The  RPi  also  converts  the  notes  into  (fret,  string) 
 coordinates  on  the  fretboard,  which  are  passed  to  the  Teensy. 
 The  Teensy  uses  the  coordinates  and  lights  the  corresponding 
 LED  on  the  fretboard  to  guide  finger  placement.  The  LEDs 
 reside  on  Printed  Circuit  Boards  (PCBs),  15  of  which  are 
 embedded  along  the  fretboard.  The  PCBs  also  contain 
 circuitry  to  determine  which  note  the  user  has  fingered  on  the 
 fretboard.  Other  electronic  hardware  on  the  guitar  includes  a 
 metal  pick  and  accompanying  circuitry  for  strum  detection.  By 
 detecting  which  note  the  user’s  fingers  are  on  and  when  they 
 strum  it,  the  Teensy  can  determine  deviations  from  the  notes 

 and  timing  information  specified  in  the  MIDI  file  and  send 
 aggregated  statistics  back  to  the  RPi  for  display  on  the  web 
 app. 

 A.  Web Application 
 As  shown  in  the  high-level  block  diagram  (Fig.  2),  the  RPi 

 hosts  both  the  web  app  and  communicates  with  the  Teensy 
 microcontroller.  The  web  app  is  written  in  Python  using  the 
 Django  web  framework,  which  combines  the  frontend, 
 backend,  and  database  into  one  Model-View-Controller  design 
 pattern  (Fig.  3)  to  create  web  endpoints  that  the  user  can 
 access  via  a  web  browser.  From  the  website  itself,  the  server 
 provides  all  the  functionality  required  for  the  user  to  control 
 the  guitar  in  an  intuitive  interface.  User  input  is  processed  and 
 forwarded  to  the  microcontroller  through  3  different 
 communication  “streams”:  bidirectional  communication  with 
 the  Teensy  over  UART  accounts  for  2  streams,  and  the  third  is 
 for  interrupt  signals  originating  from  the  RPi  that  control  the 
 state machine (Fig. 9) inside the Teensy. 

 Fig. 3.  Django Web Frame Work Implements Model-View-Controller [9] 

 B.  Teensy and Embedded System 
 Besides  the  3  previous  streams,  the  Teensy  communicates 

 with  the  electronic  hardware  on  the  right  side  of  Fig.  2  through 
 4 streams. 

 First,  the  Teensy  specifies  the  color  of  each  NeoPixel  LED 
 on  the  fretboard  through  the  protocol  for  WS2812  LEDs, 
 which is the chipset the NeoPixel implements. 

 The  Teensy  determines  where  on  the  fretboard  the  user  has 
 pressed  on  a  string  by  detecting  the  electrical  contact  between 
 each  of  the  4  strings  with  14  frets.  This  is  done  by  applying  a 
 voltage  stimulus  to  one  of  the  14  frets  and  then  reading  the 
 voltage  on  each  of  the  4  strings.  A  high  reading  on  a  string 
 indicates  that  the  string  is  pressed  down  against  the  fret  on 
 which  the  voltage  stimulus  is  being  applied.  By  putting 
 D-Flip-Flops  between  each  fret,  the  voltage  stimulus  is 
 clocked  “down”  the  fretboard  as  if  the  D-Flip-Flops  formed  a 
 shift  register.  This  way,  only  2  signals  are  required  to  create 
 the  voltage  stimuli  for  the  frets,  as  opposed  to  having  14 
 signals, with one per fret. 

 The  Teensy  also  detects  when  the  note  is  strummed  by 
 detecting  when  a  voltage  stimulus  on  the  pick  is  conducted  to 
 a  particular  string.  This  is  a  change  from  the  design  report, 
 where  we  intended  on  using  audio-based  detection  of 
 strumming. 
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 C.  Electronic Hardware 
 Each  fret  is  associated  with  a  fretboard  PCB,  which  contains 

 4  LEDs,  one  per  string.  The  fretboard  PCB  also  has  a 
 D-flip-flop  to  receive  the  voltage  stimulus  from  the  previous 
 fretboard  PCB,  apply  the  stimulus  to  the  current  fret,  and 
 forward  the  stimulus  to  the  next  fretboard  PCB.  Strums  are 
 detected  using  a  pick  with  a  metal  electrode  that  applies  a 
 stimulus to the guitar strings. 

 The  RPi  is  connected  to  the  Teensy  using  a  custom  Pi-Hat 
 PCB,  which  handles  power  distribution  and  I/O  between  all 
 the  system  components.  Power  for  the  system  can  be  provided 
 either  through  a  wall  adapter  or  using  a  lithium  polymer 
 battery connected to a buck converter. 

 IV.  D  ESIGN  R  EQUIREMENTS 

 To  meet  the  use-case  requirements,  several  critical  design 
 specifications  were  established  for  both  the  hardware  and 
 firmware  components,  as  well  as  the  web  application  of  the 
 SuperFret  system.  For  the  hardware  and  firmware,  achieving  a 
 latency  of  less  than  50ms  from  strum  detection  to  LED 
 response  (the  threshold  of  human  visual  perception)  is 
 paramount  to  provide  users  with  real-time  feedback  during 
 practice  sessions.  Additionally,  the  hardware  and  firmware 
 must  support  a  strumming  rate  of  up  to  3.3Hz,  or  200  strums 
 per  minute.  The  system  should  indicate  the  target  tempo  at  a 
 minimum  volume  of  70dB,  which  was  found  to  be  audible 
 over the guitar notes. 

 To  meet  the  use  case  requirement  of  being  playable  like  a 
 standard  guitar,  the  system  shall  support  ~2.5  octaves  of  notes, 
 corresponding  to  14  frets.  Consequently,  the  guitar  must 
 support  60  individually  addressable  LEDs,  4  for  each  fret  and 
 4  for  the  open  string  indicators.  The  rest  of  the  board  is 
 unnecessary,  as  beginner  users  rarely  use  the  highest  notes  on 
 a  bass  guitar.  The  system  shall  support  illuminating  the  entire 
 fretboard  at  half  brightness  to  enable  arbitrary  patterns  to  be 
 displayed  on  the  fretboard.  Half  brightness  was  selected  to 
 balance visibility and system current draw. 

 Safety  is  a  key  consideration,  as  the  guitar  strings  are  driven 
 to  3.3V.  According  to  IEC  TS  60479-1,  currents  below  500μA 
 through  the  body  are  imperceptible  and  safe.  Therefore,  the 
 current  that  flows  through  the  user  under  normal  operating 
 conditions  should  be  under  500μA.  Under  abnormal  operating 
 conditions,  such  as  if  the  system  gets  wet  while  being  used, 
 the  current  through  the  body  should  not  exceed  1mA  (the 
 maximum  current  that  can  pass  through  a  human  body  without 
 impacting the user’s muscles) [3]. 

 The  web  application's  design  requirements  focus  on 
 enabling  the  user  to  control  the  guitar  and  start/stop  songs.  The 
 file  upload  capability  should  support  up  to  1GB  of  custom 
 MIDI  files  for  a  personalized  learning  experience.  The  web 
 application  shall  update  in  accordance  with  the  user’s  playing 
 within 250ms to ensure a cohesive user experience. 

 These  design  requirements  ultimately  ensure  that  the 
 SuperFret  system  achieves  the  defined  use-case  requirements 
 and  provides  a  positive  user  experience.  The  quantitative 

 specifications are summarized in Appendix Table I. 

 V.  D  ESIGN  T  RADE  S  TUDIES 

 A.  Single-Board Computer vs Microcontroller 
 The  main  computer  selected  for  the  project  was  the 

 Raspberry  Pi  4B.  The  processing  tasks  associated  with  this 
 project  consist  of  running  a  web  application,  controlling  the 
 fretboard  LEDs,  reading  from  the  fret  sensors,  and  processing 
 statistics.  Both  a  single-board  computer  (SBC)  and  a 
 WiFi-equipped  microcontroller  could  perform  these  tasks. 
 Single-board  computers  are  typically  worse  at  handling 
 real-time  interaction  with  their  environment  because  the 
 processor  also  handles  the  overhead  of  running  the  computer's 
 operating  system.  Additionally,  hosting  the  web  app  can 
 introduce  delays  that  do  not  meet  input  and  output  (I/O) 
 latency  requirements.  Running  the  system  off  a  WiFi-equipped 
 microcontroller  like  the  ESP32S3  would  enable  high-speed 
 I/O.  However,  running  the  web  app  in  parallel  to  this  on  the 
 microcontroller  would  be  challenging  due  to  the 
 single-threaded  nature  of  most  microcontrollers.  Running  the 
 system  off  a  microcontroller  would  also  introduce  significant 
 restrictions  on  the  web  interface's  functionality  due  to  the 
 microcontrollers'  limited  memory.  For  these  reasons,  we  chose 
 to  pursue  a  split  architecture,  with  an  SBC  running  the 
 high-level  control  of  the  system,  namely  running  the  web  app, 
 storing  user-uploaded  music,  and  coordinating  the  system's 
 overall  state.  A  microcontroller  runs  the  real-time  I/O  without 
 worrying  about  hosting  a  web  app,  allowing  the  target 
 latencies  to  be  achieved.  This  has  the  added  benefit  of 
 improving  our  ability  to  parallelize  work,  with  one  team 
 member  working  on  the  SBC  and  one  on  the  microcontroller, 
 rather  than  team  members  having  to  coordinate  pushing  and 
 pulling  software  changes.  The  SBC  chosen  was  the  Raspberry 
 Pi  4B  due  to  its  widespread  documentation  and  support,  and 
 the  microcontroller  chosen  was  the  Teensy  4.1  due  to  its 
 plentiful GPIO pins and high clock speed. 

 B.  Microcontroller Choice 
 Members  of  the  group  were  already  familiar  with  using 

 several  microcontrollers  typically  used  in  electronic  projects, 
 and  familiarity  was  the  main  driving  force  behind  selecting  a 
 microcontroller.  We  considered  the  Arduino  UNO,  Arduino 
 Mega,  Raspberry  Pi  Pico,  Teensy  4.0,  and  Teensy  4.1.  Of 
 these,  we  wanted  a  microcontroller  with  fast  clock  speed  to 
 enable  multiple  tasks  and  enough  memory  to  store  a  MIDI 
 file’s worth of data. 

 We  found  a  benchmark  that  showed  the  Teensy  class  of 
 microcontrollers  were  the  fastest  computers  of  the  ones  we 
 were familiar with: 
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 Fig. 4.  The “CoreMark” CPU Performance Benchmark [4], [5] 

 We  conservatively  estimated  the  typical  training  song  would 
 be  2  minutes,  with  up  to  200  notes  per  minute,  and  each  note 
 would  take  5  bytes  to  specify  in  the  MIDI  format  (2  for  the 
 duration  in  “delta  ticks”  and  3  for  the  event).  Thus,  we 
 required  a  microcontroller  with  at  least  2kB  of  memory.  We 
 eliminated  the  Arduino  UNO,  which  only  has  2kB  of  SRAM 
 [6]. 

 Furthermore,  we  desired  a  microcontroller  with  a  great  deal 
 of  flexibility  in  the  I/O.  The  Teensy  4.1  supports  8  different 
 hardware  serial  ports,  almost  all  pins  can  act  as  interrupts,  and 
 all  I/O  pins  are  capable  of  functions  such  as  pulse  width 
 modulation (PWM). 

 After  considering  the  degree  of  prior  experience,  CPU 
 performance,  memory,  I/O,  and  availability,  we  selected  the 
 Teensy  4.1  because  it  was  strong  across  each  desired  trait,  and 
 we already had access to it, making it the cheapest option. 

 C.  Fret-Sensing Implementation 
 To  determine  the  user’s  finger  placement,  the  system  uses 

 the  ‘switch’  formed  when  the  user  presses  a  string  into  a  fret. 
 GPIO  pins  on  microcontrollers  are  limited,  and  wires  interfere 
 with  the  comfort  and  usability  of  the  guitar.  A  switch  array  can 
 be  employed  to  reduce  pin  and  wire  count.  By  driving  each 
 fret  to  3.3V  one  by  one  and  then  reading  the  voltage  on  each 
 string,  the  detection  of  any  strings  touching  the  3.3V  fret  can 
 be  performed.  This  requires  18  GPIO  pins  -  4  for  the  strings 
 and  14  for  the  frets.  This  still  requires  14  wires  to  be  run  from 
 each  fret  to  the  microcontroller.  Since  a  switch  array 
 necessitates  that  each  fret  is  driven  to  3.3V  one  at  a  time,  the 
 GPIO count can be reduced to 

 4 Strings + ceiling(log  2  (14)) = 8  (1) 

 pins  using  a  decoder  circuit.  However,  this  would  require 
 decoding  circuitry  next  to  each  fret,  which  would  take  up  the 
 limited  space  available.  By  using  a  “shift-register”  style 
 approach,  with  each  fret  requiring  only  a  single  D-flip-flop, 
 the  system  can  use  only  6  GPIO  pins,  4  for  the  strings,  1  clock 
 line,  and  1  data  line.  Excluding  power  wires,  this  solution, 
 shown  in  Fig.  5,  requires  only  2  wires  between  each  fret. 
 These  include  a  shared  clock  line  and  the  data  outputted  by  the 

 previous  fret’s  D-flip-flop.  The  only  tradeoff  of  this 
 implementation  is  that  each  fret  requires  a  D-flip-flop,  but  this 
 drastically  outweighs  requiring  14  individual  wires  for  each 
 fret. 

 Fig. 5.  A 6 GPIO method for reading finger positions 

 D.  Fretboard PCB Design 
 Due  to  the  finger  placement  sensing  implementation  making 

 use  of  a  D-flip-flop  next  to  each  fret,  and  the  design  requiring 
 4  addressable  LEDs  per  fret,  implementing  a  PCB  to  mount 
 these  components  is  the  ideal  solution.  It  would  be  possible  to 
 use  commercial  off-the-shelf  (COTS)  LED  strips  and  run  a 
 separate  wire  to  each  fret,  but  it  is  not  possible  to  buy  LED 
 strips  with  the  exact  spacing  needed  for  the  guitar  strings. 
 Additionally,  this  would  require  many  wires  for  the  finger 
 placement sensing, as discussed previously. 

 There  are  a  handful  of  ways  to  implement  PCBs  along  the 
 fretboard.  The  first  way  is  to  remove  and  replace  the  guitar's 
 fretboard  with  a  single  PCB.  This  would  completely  eliminate 
 the  need  for  external  wires  along  the  fretboard  but  would 
 introduce  mechanical  challenges.  Since  the  fretboard  holds  the 
 frets  in  place,  we  would  need  to  devise  a  new  way  of 
 mounting  the  frets  securely,  and  we  would  need  to  perfectly 
 match  the  spacing  of  the  original  fretboard  to  keep  the  guitar 
 in  tune.  Additionally,  this  would  require  completely  removing 
 the  guitar's  fretboard,  which  can  be  challenging  to  perform  due 
 to  the  glue  between  the  fretboard  and  the  rest  of  the  guitar. 
 These  factors  increase  the  risk  associated  with  the  project,  so 
 we chose not to pursue removing the fretboard. 

 The  other  two  implementations  involve  creating  individual 
 PCBs  mounted  next  to  each  fret.  This  approach  allows  the 
 fretboard  to  remain  mounted  to  the  guitar  and  removes  the 
 need  to  replicate  the  spacing  between  the  frets  on  a  PCB 
 perfectly.  These  PCBs  can  be  mounted  on  the  fretboard  or 
 placed  in  carved-out  channels  next  to  each  fret.  The  advantage 
 of  placing  the  PCBs  on  top  of  the  fretboard  is  that  no 
 mechanical  modification  to  the  guitar  fretboard  is  necessary. 
 The  disadvantages  of  this  approach  are  that  the  fretboard  is 
 curved,  as  shown  in  Fig.  6,  and  that  the  frets  only  extend 
 above the fretboard by 1.2mm. 



 5 
 18-500 Final Project Report: Team A2 SuperFret 12/15/2023 

 Fig. 6.  Cross  section  of  a  guitar  fretboard.  The  fretboard  surface  is  curved, 
 making PCB mounting difficult [7]. 

 The  curved  surface  of  the  fretboard  makes  mounting  rigid 
 PCBs  directly  to  the  fretboard  difficult.  A  flexible  PCB  would 
 resolve  this  issue  by  allowing  the  PCB  to  conform  to  the  shape 
 of  the  fretboard.  However,  since  the  frets  only  protrude  from 
 the  fretboard  by  1.2mm,  the  total  height  of  the  LEDs  and  the 
 PCB  must  be  below  1.2mm.  The  addressable  LEDs  being  used 
 have  a  height  of  1.6mm,  so  to  ensure  these  do  not  get  in  the 
 way  while  the  user  plays  the  guitar,  the  PCBs  sit  in  recessed 
 channels  in  the  fretboard.  These  channels  can  be  flat  on  the 
 bottom,  meaning  flexible  PCBs  are  no  longer  necessary.  Due 
 to  the  higher  costs  and  lead  times  associated  with  flexible 
 PCBs,  we  pursued  14  rigid  PCBs,  each  placed  into  carved-out 
 channels next to the frets. 

 The  primary  challenge  of  this  selected  implementation  is  the 
 carving  of  the  channels  into  the  fretboard.  Guitars  feature  a 
 metal  support  rod  running  along  their  length  that  must  be 
 avoided.  Additionally,  the  wooden  fretboard  holds  the  frets  in, 
 and  removing  material  from  around  them  may  loosen  the  fret. 
 We  created  the  channels  using  a  Dremel  and  files,  and  during 
 this  process,  one  fret  was  knocked  off  the  fretboard  but  could 
 be replaced. 

 VI.  S  YSTEM  I  MPLEMENTATION 

 Appendix  Figure  I  has  a  more  detailed  technical  block 
 diagram  of  the  system  as  a  whole,  beyond  what  was  shown  in 
 Fig.  1.  The  system  consists  of  three  main  subsystems  –  the 
 user  frontend  hosted  using  the  RPi,  the  physical  hardware  used 
 to  interface  with  the  guitar  and  user,  and  the  microcontroller 
 system directly interacting with this hardware. 

 A.  Raspberry Pi and Web App Subsystem 

 Fig. 7.  Block  diagram  for  the  RPi  and  web  app.  Zoomed-in  crop  of  block 
 diagram in Appendix Figure I. 

 1)  Django Web Server 
 The  RPi  hosts  a  web  server  powered  by  Python’s  Django 

 Web  Framework.  This  server  creates  a  local  endpoint 
 reachable  via  a  browser  that  responds  with  an  HTML  page 
 containing  all  the  functionality  needed  for  the  user  to 

 communicate  with  the  guitar.  Specifically,  the  web  server 
 implements these endpoints: 

 http://a2superfret.wifi.local.cmu.edu:8000/ 
 -  home - retrieves the home page 
 -  addfile - uploads a file to 
 -  deletefile/{songname} - deletes a file 
 -  startfile/{songname} - tells guitar to start song 
 -  stopFile - tells guitar to stop song 
 -  getStats - get the user’s statistics of previous songs 

 A  SQL  database  houses  all  the  file  and  user  information  to 
 achieve  a  consistent  state  for  the  server.  Each  entry  in  the 
 database represents a song and contain: 

 -  name: name of the song/file 
 -  file:  the  file  path  to  the  MIDI  (actual  file  is  stored  in  a 

 separate folder) 
 -  active:  a  boolean  to  store  if  the  song  is  currently 

 being played, keeps track of state 

 Additionally,  because  of  the  virtual  guitar  additions  to  the 
 design,  there  became  a  need  for  extensive  computation  on  the 
 frontend.  To  address  this,  when  the  user  begins  a  new  song, 
 the  webserver  returns  a  webpage  that  has  a  javascript  client 
 embedded  within  it.  This  client  constantly  communicates  with 
 the  guitar  over  http  on  behalf  of  the  user  to  request  strumming 
 information  during  a  song.  Upon  every  update  from  the  server, 
 the  client  can  refresh  the  virtual  guitar  with  current 
 information  allowing  the  physical  guitar  and  the  virtual  guitar 
 to appear completely synchronized. 

 2)  MIDI Pre-Processing 
 A  MIDI  file  is  organized  into  1  header  section  and  at  least  1 

 “Track”  section.  The  header  specifies  timing  information  to 
 determine  some  timing  info  and  the  number  of  track  sections 
 that  follow.  Each  track  section  specifies  a  tempo,  notes,  and 
 duration information. 

 Before  forwarding  the  user’s  MIDI  file  to  the  Teensy,  the 
 RPi  lightly  pre-processes  it  using  the  pretty_midi  [10]  python 
 library  so  the  Teensy  is  not  burdened  with  parsing  through 
 information  it  does  not  need.  For  example,  the  MIDI  Header 
 and  Track  sections  contain  byte  counts,  the  instrument's  name, 
 and  other  preamble  that  the  Teensy  does  not  need.  So,  the  RPi 
 can  strip  that  extraneous  information  out  and  send  an 
 “abridged”  MIDI  file,  so  the  Teensy  only  needs  to  parse  the 
 essential tempo, timing, and note information. 

 Additionally,  this  parsed  MIDI  file  also  provides  enough 
 information  for  the  virtual  guitar’s  functionality  allowing  the 
 reuse  of  our  code  for  two  separate  components  at  the  same 
 time,  lowering  development  time  and  reducing  computational 
 load on the system. 

 3)  Teensy Communication 
 The  RPi  runs  a  UART  communicator  process  to  establish 

 and  maintain  a  connection  between  the  Teensy  and  the  Pi  over 
 a  specified  port.  Its  job  is  to  receive  user  requests  from  the 
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 web  server  and  convert  them  into  interrupt  signals,  which  can 
 then  be  sent  to  the  teensy  and  vice-versa.  Upon  a  start  request 
 from  the  user,  the  web  server  tells  the  UART  communicator  to 
 send  a  specific  file  to  the  microcontroller  by  first  sending  a 
 “file_transmission”  (Fig.  9)  interrupt,  followed  by  all  the  file 
 data.  One  idea  was  to  send  the  file  one  packet  at  a  time  as 
 needed,  but  this  was  abandoned  due  to  UART  latency 
 concerns  and  since  it  would  complicate  the  real-time  Teensy 
 firmware.  When  a  fileStop  command  is  issued,  the  UART 
 communicator  interrupts  the  Teensy  by  raising  its  STOP  GPIO 
 pin to high. 

 B.  Teensy/Embedded Subsystem 

 Fig. 8.  Zoomed-in  crop  of  block  diagram  in  Appendix  Figure  I.  The 
 Teensy  microcontroller  is  the  glue  between  the  User  Interface  and  the 
 electronic  hardware.  The  Teensy’s  software  is  structured  as  a  state 
 machine. 

 1)  State Machine 
 A  state  machine  controls  the  high-level  decisions  made  by 

 the  Teensy.  There  are  two  classes  of  inputs  to  the  state 
 machine  -  interrupts  generated  by  the  RPi  (shown  in  purple  in 
 Fig.  9),  which  are  based  on  the  user’s  interaction  with  the 
 system,  and  inputs  originating  from  the  operation  of  the 
 system itself (shown in red in Fig. 9). 

 When  the  system  is  first  turned  on,  or  “idling,”  it  starts  in 
 the  “WAIT  TO  START”  state.  Once  the  user  selects  a  song  on 
 the  web  app,  the  RPi  asserts  a  GPIO  pin  high,  causing  a  rising 
 edge  on  the  “file_transmission”  digital  pin  of  the  Teensy.  This 
 causes  the  Teensy  to  enter  the  “RECEIVING  SONG”  state  to 
 listen  to  the  RPi  over  UART  for  a  stream  of  (fret,  string) 
 coordinates.  Once  the  RPi  transmits  the  file,  it  asserts  the  same 
 pin  low,  and  the  Teensy  interprets  the  falling  edge  as  the  end 
 of file transmission. 

 Having  received  the  MIDI  file,  the  Teensy  transitions  to  the 
 “PARSING  SONG”  state,  where  it  parses  the  file.  Then,  it 
 transitions  to  the  “USER  EXPERIENCE”  state,  where  it  lights 
 up  the  LED  for  the  first  note  of  the  song  and  waits  for  the  user 
 to  start  playing  the  guitar  by  strumming.  When  the  first  strum 
 is  sensed,  the  Teensy  lights  up  LEDs,  reads  frets,  and 
 continues detecting strums. 

 Once  the  user  finishes  playing  the  song  (the  last  note  is 
 reached),  the  “WAIT  TO  START”  state  is  entered  again.  The 
 Teensy  can  also  enter  this  initial  state  if  the  user  restarts  the 

 system through the web app. 

 Fig. 9.  State Machine for the Teensy’s Software 

 2)  Music information 
 The  RPI  processes  the  MIDI  file  and  distills  it  into  a  few 

 key  bits  of  information  for  the  Teensy:  metronome  speed  and 
 volume,  the  user  experience  mode  (training  or  performance) 
 and  the  note  timing  &  coordinates.  This  is  all  the  Teensy  needs 
 to  determine  when  to  light  up  a  particular  note’s  LED  and 
 when to expect the user to play that note. 

 Originally  we  had  the  RPI  forward  the  MIDI  file  to  the 
 Teensy,  which  would  reparse.  But  this  was  wasteful,  and  we 
 had  trouble  getting  the  RPI  and  Teensy  to  parse  the  file 
 similarly, so we stuck to just 1 parser. 
 3)  LED Control 

 The  Teensy  stores  a  “note  schedule”  indicating  when 
 particular  notes  should  be  played  or  released.  As  the  Teensy 
 executes  in  the  USER  EXPERIENCE  state,  it  compares  the 
 current  time  to  entries  in  the  note  schedule  to  see  if  it  is  time 
 for  a  note  to  be  played  or  released.  Once  the  particular  note  is 
 determined  from  the  note  schedule,  the  corresponding  LED 
 position  is  determined  by  indexing  into  a  static  mapping 
 relating notes to LED positions on the fretboard. 

 C.  Electronic Hardware Subsystem 
 The  interaction  between  the  Raspberry  Pi,  the  Teensy,  the 

 guitar,  and  the  user  is  provided  by  a  series  of  hardware 
 components.  These  consist  of  sensing  components  to  take  in 
 information  from  the  environment,  components  that  provide 
 user  feedback,  and  various  power  and  data  interconnects.  A 
 block  diagram  overview  of  the  hardware  components  is  shown 
 in Fig. 10. 
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 Fig. 10.  Zoomed-in  crop  of  block  diagram  in  Appendix  Figure  I,  focusing 
 on the electronic hardware. 

 1)  Strum Detection 
 The  system  must  determine  when  the  guitar  is  strummed  to 

 know  if  the  user  played  the  desired  note  correctly.  To 
 accomplish  this,  we  originally  designed  a  circuit  to  take  in  the 
 guitar's  audio  signal  and  output  a  digital  signal  indicating 
 when the guitar is strummed. 

 This  system  used  the  piezoelectric  sensor  integrated  into  the 
 guitar  rather  than  an  external  microphone  to  reduce  external 
 interference.  This  sensor  converts  the  mechanical  motion  of 
 the guitar strings into a voltage. 

 Fig. 11.  Block diagram of the strum detection circuitry 

 The  block  diagram  planned  for  the  strum  detection  is  shown 
 in  Fig.  11.  The  schematic  corresponding  to  this  block  diagram 
 is shown in Fig. 12 

 Fig. 12.  Physical implementation of the strum detection circuit 

 This  circuit  analyzes  the  audio  amplitude  and  generates  a 
 digital  output  if  it  is  over  a  set  level.  Various  changes  were 
 made  to  the  circuit,  such  as  including  a  differentiator  circuit  to 
 look  for  sharp  jumps  in  audio  amplitude,  but  we  ultimately 
 changed  approaches.  We  found  that  audio-based  detection  was 
 not  reliable  enough  to  meet  our  accuracy  requirements,  as  it 
 often  picked  up  on  external  noises  or  extraneous  noises  made 
 by the user. 

 The  selected  solution  was  to  drive  a  guitar  pick  to  3.3V  and 
 to  then  read  off  the  voltage  on  each  string,  similar  to  how  the 
 finger  placement  sensors  function.  This  solution  has  the  added 
 benefit  of  detecting  which  string  is  strummed,  without  having 
 to  Fourier  transform  the  guitar  audio.  This  solution  requires  a 
 custom  metal  guitar  pick  with  a  wire  running  to  it  in  order  to 
 drive the pick to 3.3V when desired. 

 Fig. 13.  Guitar  picks  with  metal  electrodes.  The  left  pick  has  an  electrode 
 on  both  sides,,  while  the  right  pick  only  has  an  electrode  on  one  side. 
 They can be easily interchanged to match the user’s preference. 

 2)  Fretboard PCBs 
 To  connect  the  addressable  LEDs  and  drive  each  fret  to 

 3.3V  individually,  our  system  integrates  a  fretboard  PCB  next 
 to  each  guitar  fret.  The  addressable  LEDs  require  5V,  ground, 
 and  a  data-in  pin.  They  also  have  a  data-out  pin  that  connects 
 to  the  data-in  of  the  next  LED  in  the  series.  There  is  a  0.1μF 
 capacitor  across  the  power  rails  next  to  each  LED  to  ensure 
 proper  LED  functionality.  The  LEDs  used  are  SK6812 
 NeoPixel  LEDs,  which  support  write  speeds  of  up  to  800kHz. 
 For  60  LEDs,  this  corresponds  to  around  2ms  to  write  to  all 
 the  LEDs.  Each  fretboard  PCB  has  a  D-flip-flop,  forming  one 
 large  shift  register  across  all  the  fretboard  PCBs.  The  output  of 
 a  D-flip-flop  is  connected  to  the  adjacent  fret  of  the  guitar. 
 While  we  originally  planned  on  using  a  direct  connection 
 between  each  flip-flop,  we  found  that  the  propagation  time  of 
 the  signal  between  adjacent  frets  caused  timing  violations,  so  a 
 low-pass  filter  was  added  on  the  data  lines  to  allow  the  clock 
 signal to arrive at the next flip-flop first. 

 Using  the  Teensy,  a  logical  high  can  be  clocked  into  the  first 
 fretboard  PCB,  which  can  be  shifted  to  the  next  PCB,  allowing 
 each  fret  to  be  driven  high  one  at  a  time.  A  3.3kΩ  resistor  and 
 forward-biased  diode  connect  the  D-Flip-Flop  and  a  fret  to 
 limit  the  current  that  could  flow  to  1mA.  While  a  fret  is  driven 
 high,  the  voltage  on  each  guitar  string  is  read,  allowing  the 
 Teensy  to  determine  which  strings  were  contacting  the  fret 
 being  driven  high.  The  diode  prevents  any  issues  relating  to 
 one  fretboard  PCB  trying  to  drive  a  string  low  while  another 
 drives  it  high.  Using  a  diode,  the  string  would  be  driven  high 
 in this case. 

 The  fretboard  PCB  design  is  shown  in  Fig.  14.  The  top  half 
 of  the  board  contains  the  4  addressable  LEDs,  D1-D4,  and  the 
 bottom  half  contains  the  D-flip-flop  and  supporting  passive 
 components.  The  pads  on  the  right  side  of  the  board  and  the 
 bottom  left  of  the  board  enable  the  boards  to  be  daisy-chained 
 together,  which  reduces  wiring  complexity.  Since  the  string 
 spacing  of  a  guitar  changes  slightly  between  each  fret,  we 
 created  two  different  sizes  of  PCB.  While  14  different  sizes 
 would  be  optimal  to  ensure  the  LEDs  line  up  perfectly  with 
 the  strings  at  low  production  quantities,  this  drastically 
 increases  the  price  and  complexity  of  assembly.  As  such,  we 
 chose  to  use  two  different  sizes  of  fretboard  PCBs.  8  of  the 
 boards  have  LEDs  that  are  slightly  closer  together  and  are 
 used  for  the  open  string  indication  and  for  the  frets  at  the  end 
 of  the  guitar.  7  of  the  boards  have  a  wider  LED  spacing  and 
 are used for the frets closer to the guitar's body. 
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 Fig. 14.  The small fretboard PCB (top) and large fretboard PCB (bottom). 

 To  prevent  users  from  being  able  to  touch  the  metal  pads  on 
 the  fretboard  PCBs,  and  to  prevent  the  fretboard  from  having 
 an  uncomfortable  feel,  we  created  covers  for  each  of  the 
 fretboard PCBs. 
 3)  Pi Hat PCB 

 The  RPi  and  Teensy  require  numerous  connections  for 
 UART  and  interrupts,  external  power,  and  various  input  and 
 output  devices.  To  implement  these  connections,  a  Pi  “Hat”  is 
 used.  A  Pi-Hat  is  a  PCB  that  plugs  directly  into  the  40-pin 
 header  on  the  RPi,  as  shown  on  the  right  side  of  the  board  in 
 Fig. 15. 

 The  Pi-Hat  filters  any  noise  in  the  5V  power  supply 
 connected  to  the  Hat  via  a  barrel  jack  and  distributes  this  to 
 the  Teensy,  RPi,  and  fretboard  PCBs.  The  Pi-Hat  also  connects 
 the  Teensy  and  RPi  with  10  I/O  lines  and  a  UART  channel  so 
 they can communicate. 

 The  Pi-Hat  has  a  number  of  I/O  ports  on  the  left  side  that 
 are  connected  to  the  fretboard  PCBs,  LEDs,  and  strings.  For 
 the  LEDs,  a  logic  level  converter  is  used  to  convert  the  3.3V 
 signal from the Teensy to a 5V signal for the LEDs. 

 An  active  buzzer  acts  as  a  metronome  by  beeping  in  short 
 pulses  to  indicate  the  target  tempo  to  the  user  while  they  are 
 playing.  Active  buzzers  can  be  driven  by  simply  pulling  an 
 output  pin  on  the  Teensy,  either  high  or  low,  making  this 
 design  for  the  metronome  simple  to  implement  on  the 
 firmware side. 

 Fig. 15.  Pi-Hat PCB layout 

 4)  Power Supply 
 The  system  is  powered  using  a  5V  DC  wall  adapter,  which 

 connects  to  the  Pi  Hat  using  a  5mm  barrel  jack  connector.  The 
 total  expected  current  draw  is  2.0A  for  the  Pi,  0.15A  for  the 
 Teensy  and  flip-flops,  and  1.5A  for  the  LEDs  at  half 
 brightness.  This  sums  to  3.65A,  so  a  5A  power  supply  was 
 chosen  for  the  project.  For  user  convenience,  the  system  can 
 also  be  powered  by  a  battery.  An  11.4V  2200mAh  lithium 
 polymer  battery  is  connected  to  a  5A  5V  buck  converter, 
 which then connects to the 5V power rail of the Pi-Hat PCB 

 VII.  T  ESTING  , V  ERIFICATION  ,  AND  V  ALIDATION 

 To  validate  our  solution  and  design  requirements, 
 comprehensive  tests  were  conducted.  The  aim  was  to 
 scrutinize  the  real-time  responsiveness  of  the  SuperFret 
 system  and  its  ability  to  handle  diverse  playing  conditions. 
 Refer to Table I for a summary of the test results. 

 A.  Results for Latency 
 An  oscilloscope  was  utilized  to  precisely  measure  the  time 

 delay  between  initiating  a  strumming  action  and  the 
 corresponding  LEDs  being  written  to.  After  multiple 
 measurements,  we  determined  the  latency  to  be  1.85ms  which 
 was  well  under  our  target.  This  test  held  critical  significance 
 as  it  directly  addressed  the  design  requirement  of  achieving  a 
 latency  of  less  than  50  milliseconds,  ensuring  that  the  system 
 provides  instantaneous  feedback  to  the  user  to  prevent  the 
 guitar from feeling sluggish during practice sessions. 

 Simultaneously,  the  web  app’s  network  delay  test  evaluated 
 the  responsiveness  of  the  web  application  and  the  ability  of  the 
 virtual  guitar  to  stay  up-to-date  with  the  physical  guitar.  The 
 test  involved  high  frame  rate  video  (240  frames  per  second)  to 
 capture  the  delay  through  the  entire  system  from  the  user 
 strum  to  the  website  updating.  After  rewatching  12  iterations 
 of  the  test,  we  aggregated  the  data  to  get  an  average  total  delay 
 of  215ms  which  was  under  our  target  of  250ms.  This  result 
 ensures  that  users  experience  a  smooth  and  responsive 
 interface  when  interacting  with  the  web  application,  aligning 
 with the design specifications and user expectations. 

 B.  Results for Accuracy 
 For  accuracy  testing,  a  strum  identification  test  was 

 designed  to  assess  the  system's  ability  to  identify  strums 
 accurately.  We  quantified  the  system's  ability  to  correctly 
 identify  strums  by  performing  200  1/8th  note  strums  at  up  to 
 300  BPM  on  each  string.  The  success  criteria  for  this  test  were 
 determined  by  calculating  the  percentage  of  correctly 
 identified  strums,  directly  addressing  the  accuracy 
 requirements  outlined  in  the  design  specifications.  At  300 
 BPM,  we  achieved  99%  accuracy  for  this  test,  clearly 
 indicating  the  system's  competency  in  identifying  and 
 responding to strumming actions. 

 In  addition  to  strum  identification,  a  finger  placement  test 
 was  conducted  to  evaluate  the  system's  accuracy  in  detecting 
 the  placement  of  fingers  on  different  string  and  fret  positions. 
 This  involved  systematically  placing  a  finger  on  each  fret  and 
 string  location  and  using  code  to  light  up  the  LED  under  the 
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 pressed  location.  We  verified  that  the  LED  came  on  under 
 each  finger  position.  We  then  repeated  this  process  multiple 
 times  and  calculated  the  percentage  accuracy,  which  quantified 
 the  system's  precision  in  detecting  finger  placement.  Using 
 this  method,  we  achieved  100%  finger  placement  accuracy, 
 since  under  no  conditions  did  the  system  not  register  a  finger 
 press  or  misidentify  a  press.  This  test  directly  validated  the 
 accuracy  requirements  for  finger  placement  detection  as 
 specified  in  the  design  specifications.  Overall,  these  tests  were 
 crucial  in  ensuring  that  the  SuperFret  system  not  only  met  the 
 theoretical  design  trade-offs  but  also  demonstrated  robust 
 performance  aligned  with  the  specific  use-case  requirements 
 for the project. 

 Accuracy  for  the  LEDs  was  verified  by  displaying  patterns 
 on  the  fretboard  to  ensure  all  LEDs  were  indexed  properly.  We 
 then  loaded  a  variety  of  MIDI  files  into  the  system  via  the  RPi 
 and  played  them  on  the  guitar.  We  used  a  tuning  tool  to  verify 
 that  the  system  always  instructed  the  user  to  play  the  correct 
 note  as  indicated  in  the  MIDI  file.  One  important  note  is  that 
 the  system  may  shift  notes  up  or  down  an  octave  if  the 
 provided MIDI file falls outside the guitar’s range. 

 C.  Safety 
 As  per  IEC  TS  60479-1,  humans  can  not  perceive  currents 

 below  500μA,  and  currents  below  1mA  do  not  impact  muscles 
 [3].  We  used  a  lab  bench  ammeter  capable  of  measuring  down 
 to  0.01μA  to  verify  this.  Under  normal  conditions,  participants 
 would  contact  the  3.3V  guitar  string  with  1  hand  and  a  ground 
 signal  with  the  other.  A  10kΩ  potentiometer  would  be  between 
 the  3.3V  source  and  the  string,  and  the  potentiometer  would 
 initially  start  at  10kΩ.  While  monitoring  the  current,  the 
 potentiometer’s  resistance  was  turned  to  0Ω,  and  the  current 
 was  recorded.  If  the  current  ever  reached  1mA  while  lowering 
 the  potentiometer  resistance,  the  test  would  be  stopped.  We 
 found  that  the  current  passing  through  a  user  was  at  most 
 0.80μA.  To  test  the  maximum  current  the  strings  carry,  we 
 used  the  ammeter  to  connect  the  fret  to  a  string  and  verify  that 
 no  more  than  1mA  flows.  Our  results  showed  that  the 
 maximum  average  current  through  a  short  circuit  in  the  system 
 was  only  5.37  μA.  This  is  an  average  since  each  fret  is  driven 
 high  for  only  10μs  out  of  a  loop  time  of  1555μs.  Using  an 
 oscilloscope  and  a  series  shunt  resistor,  we  found  the  current 
 spiked  to  0.762mA  for  10μs,  which  is  below  our  required 
 value. 

 D.  User Experience 
 For  user  experience  evaluation,  subjective  tests  were 

 conducted  to  gather  feedback  on  the  web  application  and 
 hardware  components.  The  questions  assessed  the  users' 
 perception  of  the  system's  usability  and  effectiveness.  Refer  to 
 Appendix  Table  II  for  the  specific  questions  asked  and  a 
 summary of the results. 

 Users  were  asked  to  interact  with  the  web  application  and 
 provide  ratings  on  a  scale  of  1  to  10  for  categories  such  as  the 
 intuitiveness  of  the  interface,  readability  of  statistics,  and 
 responsiveness  of  the  virtual  guitar.  These  subjective 
 evaluations  were  averaged  to  create  a  quantitative  metric  for 

 the  overall  user  experience  with  the  web  application.  For 
 example,  a  user-friendly  interface  is  crucial  to  the  system's 
 success,  as  it  directly  impacts  the  accessibility  and  satisfaction 
 of the users. 

 Similarly,  users  were  requested  to  evaluate  the  hardware 
 components,  considering  factors  like  comfortability,  LEDs' 
 effectiveness,  and  the  metronome's  volume  and  pitch.  Ratings 
 on  a  scale  of  1  to  10  for  each  category  were  averaged  to 
 provide  a  quantitative  measure  of  the  overall  user  satisfaction 
 with  the  physical  components.  Comfortability  is  vital  for 
 sustained  practice  sessions,  while  the  effectiveness  of  LEDs 
 and  the  metronome  directly  impact  the  user's  ability  to  follow 
 guidance and maintain rhythm during practice. 

 The  system's  success  in  meeting  the  user-centric  design 
 goals  was  quantified  by  aggregating  the  user  ratings.  The 
 results  of  our  test  showed  that  the  physical  components  were 
 very  well  built  and  that  the  guitar  was  very  responsive  and 
 effective  at  showing  users  where  to  play.  However,  it  also 
 showed  there  was  room  for  improvement  in  the  look  of  the 
 website.  These  user  experience  evaluations  were  essential  for 
 obtaining  qualitative  and  quantitative  insights  into  the 
 effectiveness  and  user-friendliness  of  the  SuperFret  system. 
 The  feedback  gathered  from  users  was  invaluable  in  making 
 iterative  improvements  to  enhance  the  overall  user  experience, 
 ensuring  that  the  SuperFret  system  fulfilled  the  technical 
 specifications  and  was  well-received  by  its  target  audience  of 
 beginner guitar players. 

 VIII.  P  ROJECT  M  ANAGEMENT 

 A.  Schedule 
 The  Gantt  chart  in  Appendix  Figure  II  shows  the  project 

 timeline  for  the  semester.  The  tasks  are  divided  into  Electrical, 
 Firmware,  and  Software,  with  Owen,  Tushaar,  and  Ashwin 
 leading  these  categories.  Scheduled  weekly  2-hour  meetings 
 between  team  members  occur  to  perform  integration  between 
 systems  and  discuss  design  considerations  to  prevent 
 integration  issues  at  the  end  of  the  semester.  Time  was 
 provided  at  the  end  of  the  semester  for  the  final  integration  of 
 the  systems,  and  team-wide  tasks  such  as  working  on 
 presentations  and  reports  are  also  listed.  Highlighted  bars 
 indicate  progress  on  the  listed  task.  One  change  to  the 
 schedule  was  the  addition  of  the  virtual  guitar  since  our  team 
 decided  to  put  more  emphasis  on  its  completion.  Additionally, 
 we  experienced  some  schedule  delays  due  to  previously 
 mentioned  issues  with  the  flip-flops.  This  resulted  in  pushing 
 back  the  ordering  of  both  the  fretboard  and  Pi-Hat  PCBs  and 
 delayed  Tushaar’s  ability  to  interface  with  the  fretboard 
 sensors.  Mechanical  modifications  to  the  guitar  took  longer 
 than  expected  as  well,  but  this  was  compensated  for  by  the 
 assembly and testing of the PCBs being ahead of schedule 

 B.  Team Member Responsibilities 
 As  shown  in  the  schedule,  the  work  was  divided  into  4  main 

 areas  -  overall  project  management,  web  app,  firmware,  and 
 electronics.  All  members  were  responsible  for  staying  up  to 
 date  on  the  overall  project  timeline  and  keeping  the  timeline 
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 for their area on track. 
 Ashwin  focused  on  the  web  app  and  wrote  software  on  the 

 RPi  to  host  it.  He  also  wrote  software  to  send  MIDI  files  to  the 
 Teensy  and  receive  statistics  on  how  the  user  is  doing  from 
 Teensy. 

 Owen  designed  the  electronic  hardware,  which  involved  the 
 PCBs  on  the  fretboard,  the  strum  detection  circuitry,  and  the 
 interface  board  that  allowed  signals  to  pass  between  the 
 Teensy and RPi. 

 Tushaar  focused  on  the  firmware,  the  glue  between  Ashwin 
 and  Owen’s  areas.  This  involved  writing  the  Teensy’s  software 
 for  interfacing  with  the  RPi  and  the  electronic  hardware  that 
 Owen designed. 

 C.  Bill of Materials and Budget 
 The  total  bill  of  materials  used  on  this  project  totals  to 

 $168.00.  Appendix  Table  III  shows  the  full  breakdown  of  the 
 parts  used  on  the  system  as  well  as  some  of  the  unused  parts. 
 We  acquired  some  of  the  more  expensive  components,  such  as 
 the  RPi  4B  and  Teensy  4.1  from  the  ECE  department  and 
 Roboclub.  The  primary  changes  from  the  design  report  are  a 
 more  detailed  breakdown  of  the  components  on  the  Pi-Hat 
 PCB,  specific  pricing  for  the  revised  fretboard  PCBs,  and  the 
 addition  of  a  LiPo  battery  and  a  buck  converter  for  power.  Due 
 to  our  change  to  a  metal  pick,  we  no  longer  needed  the 
 microphone  listed  in  the  design  report  Appendix  Table  IV 
 indicates  the  reasons  why  components  were  not  used. 
 Additionally,  excess  parts  were  ordered  for  some  components 
 as  spares  and  to  hit  Digikey  price  breaks.  For  example,  excess 
 flip-flops  were  ordered  since  at  one  point  we  believed  the 
 issues  with  the  flip-flops  may  have  been  ESD  damage  or  heat 
 damage caused when soldering. 

 D.  Risk Management 
 Several  critical  risks  were  identified  when  planning  the 

 project,  each  requiring  careful  consideration  and  mitigation 
 strategies to ensure a smooth design implementation. 

 One  risk  involved  detecting  which  string  the  user  strummed. 
 This  is  necessary  for  determining  if  the  user  put  their  fingers 
 in  the  correct  position  but  strummed  wrong.  While  we  initially 
 planned  on  using  audio  amplitude  to  detect  strums,  we 
 realized  that  this  would  be  insufficient  for  detecting  which 
 string  was  played.  While  from  the  beginning  we  knew  an 
 electrode  based  guitar  pick  would  solve  the  issues,  we  hoped 
 to  resolve  this  issue  without  using  a  pick,  as  this  makes  the 
 system  more  intrusive  and  limits  how  users  can  play.  We 
 experimented  with  capacitive  touch  sensing  on  the  strings,  but 
 this  method  turned  out  to  be  too  slow  and  could  not  function 
 alongside  the  finger  placement  sensing.  We  also  investigated 
 inductive  guitar  pickups  used  on  many  electric  guitars. 
 However,  these  systems  combine  the  4-6  strings  of  the  guitar 
 into  a  single  output,  meaning  that  we  would  not  be  able  to 
 detect  which  string  is  strummed.  Finally,  we  looked  at 
 performing  an  FFT  of  the  guitar  audio  on  the  Teensy. 
 However,  this  proved  to  be  too  slow  to  meet  our  desired 
 latency  requirements.  We  ultimately  ended  up  switching  to  our 
 fall-back  plan  of  an  electrode-pick.  This  did  have  the  added 

 benefit  of  removing  the  need  for  audio  based  strum  detection, 
 which  increased  the  accuracy  of  the  system.  The  Pi-Hat  was 
 designed  with  multiple  free  digital  and  analog  I/O  pins 
 however  in  case  we  found  a  sensor  that  could  be  used  to 
 indicate which string was played. 

 The  ambiguity  in  fret-string  contact  due  to  multiple  ways  to 
 play  the  same  note  posed  another  risk.  Generally,  we  want 
 notes  around  the  same  time  to  be  played  around  the  same  fret. 
 This  prevents  users  from  needing  to  move  their  arms  rapidly 
 up  and  down  the  guitar.  To  address  this,  we  developed  an 
 algorithm  to  determine  which  alternative  of  the  same  note  is 
 most  appropriate  to  play.  The  algorithm  would  take  in  multiple 
 parameters  such  as  the  note  value,  the  previous  note  value,  and 
 the  time  since  the  previous  note  was  played  and  compute  a 
 (fret,  string)  tuple  output  which  specifies  to  the  system  where 
 the  next  note  will  be  played.  However,  we  noticed  the 
 algorithm  was  imperfect  and  generated  valid  but  not 
 necessarily  optimal  outputs.  So  throughout  the  development 
 cycle,  we  adjusted  the  algorithm  when  we  noticed 
 discrepancies  by  adding  more  edge-case  handling  and  tiny 
 tweaks  that  helped  improve  the  fingering  on  the  guitar.  The 
 constant  maintenance  of  the  algorithm  helped  translate  the 
 MIDI  file  notes  and  guitar  notes  much  more  simply  and 
 mitigate the component’s risk. 

 A  final  risk  we  had  to  manage  while  working  on  the  project 
 was  the  D-flip-flops.  In  our  original  design,  we  directly 
 connected  the  output  of  each  flip-flop  to  the  input  of  the  next 
 flip-flop,  as  is  typically  done  when  creating  a  shift  register. 
 However,  during  our  testing,  we  discovered  that  on  a  single 
 clock  edge,  a  signal  could  pass  through  up  to  3  flip-flops.  We 
 eventually  discovered  that  this  issue  was  caused  by  the 
 propagation  time  of  the  signals  in  the  wires  since  we  had  used 
 high-speed  flip-flops.  The  oscilloscope  we  used  while 
 debugging  could  not  handle  sub-nanosecond  time  steps, 
 making  this  issue  difficult  to  locate.  Although  we  eventually 
 located  and  resolved  the  issue,  we  formulated  a  backup  plan 
 and  instituted  a  date  at  which  we  would  switch  to  the  backup 
 plan.  The  plan  was  to  run  an  individual  wire  to  each  fret 
 instead  of  using  the  flip-flops.  Our  final  Pi-Hat  PCB  was 
 ordered  before  this  issue  was  resolved,  and  as  such,  you  can 
 see  the  numerous  Teensy  I/O  that  were  broken  out  to  pads  in 
 case we switched to this plan. 

 IX.  E  THICAL  I  SSUES 

 Although  this  product  aims  to  help  beginners  learn  to  play 
 the  guitar,  this  is  also  the  population  most  susceptible  to 
 problems  arising  from  the  misuse  or  failure  of  the  project.  In 
 terms  of  user  safety,  there  is  a  very  small  risk  of  a  shock. 
 While  the  system  does  have  the  user  touching  3.3V,  this  is 
 through  a  current  limiting  resistor  and  poses  no  risk,  as 
 explored  previously.  The  only  risk  associated  with  the  project 
 is  the  improper  use  of  the  wall  power  adapter,  which  could 
 introduce  a  safety  hazard  if  the  user  improperly  uses  the 
 adapter  or  if  the  adapter  fails.  Besides  the  power  supply,  a 
 hardware  failure  of  the  system  would  not  introduce  any  safety 
 risks  but  would  rather  hinder  the  training  effectiveness  of  the 
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 project. 
 The  user  is  also  subject  to  the  risks  when  using  the  web  app 

 hosted  on  the  Pi.  While  highly  unlikely,  it  could  be  imagined 
 that  if  a  malicious  individual  could  gain  access  to  the  Pi  and 
 manipulate  the  web  app,  they  could  acquire  some  information 
 from  the  user’s  computer,  such  as  browser  session  tokens  and 
 cookies.  In  terms  of  misapplication,  the  Pi  connects  to  the 
 internet.  If  the  default  Pi  password  is  not  properly  changed, 
 the  Pi  can  be  hacked  relatively  easily  and  used  to  perform 
 some  damage  to  the  network  it  is  connected  to,  depending  on 
 the network's security. 

 When  it  comes  to  data,  our  project  uses  MIDI  files  that  we 
 acquire  from  the  internet.  Ideally,  these  files  would  not  contain 
 malicious  information  that  would  cause  our  system  to  become 
 a  security  threat.  A  thorough  analysis  of  our  system’s  security 
 risks would be prudent. 

 X.  R  ELATED  W  ORK 

 Fret  Zealot  [8]  is  an  existing  product  that  is  similar  to  ours. 
 It  is  a  guitar  learning  tool  hosted  on  a  website  with  features 
 such  as  song  tutorial  videos  and  online  guitar  courses.  They 
 also  sell  a  set  of  guitar  LEDs  that  allow  users  to  learn  chords 
 and songs, similar to our project. 

 However,  this  product  lacks  finger  placement  and  strum 
 detection  on  the  guitar  and  relies  on  a  microphone.  Thus,  the 
 guitar  cannot  provide  feedback  regarding  whether  notes  were 
 played  correctly,  rapidly,  and  accurately.  Our  product  also 
 separates  itself  by  collecting  this  data  and  displaying  dynamic 
 songs  moving  at  the  user's  pace.  It  also  displays  the  timing  and 
 accuracy  information  to  the  user,  allowing  them  to  observe 
 their  skills  increase  over  time.  However,  Fret  Zealot’s 
 approach  to  guitar  learning  offers  them  distinct  advantages. 
 The  most  prominent  is  that  their  LEDs  are  detachable,  which 
 allows  users  to  pick  their  own  guitar  for  learning  instead  of  us 
 deciding.  Overall,  our  solution  offers  a  more  interactive 
 experience for the user. 

 XI.  S  UMMARY 

 The  SuperFret  project  aimed  to  develop  a  system  to  assist 
 beginner  guitar  players  in  improving  their  skills  and  playing 
 basic  songs.  Learning  new  songs,  practicing  tempo,  and 
 drilling  finger  exercises  were  made  simple  through  our 
 interactive  design,  according  to  over  15  test  users.  Thus,  we 
 met our design requirements. 

 The  system's  user-friendly  interface,  real-time  feedback 
 through  LEDs,  and  guidance  enhance  the  learning  experience. 
 The  web  application  allows  users  to  upload  their  favorite 
 songs  for  practice,  promoting  an  enjoyable  and  tailored 
 learning  journey.  The  system's  ability  to  handle  notes  down  to 
 1/8th  at  100  BPM  and  accurately  identify  finger  placement 
 and  strumming  with  a  99%  accuracy  rate  ensures  a  supportive 
 and effective practice environment. 

 However,  the  design  of  both  our  hardware  and  software 
 components  limits  the  use  of  the  guitar  to  single  sequential 
 notes.  This  means  that  playing  chords  and  sustaining  notes  is 
 not  supported  under  our  current  architecture.  Additionally, 

 communication  between  the  website  and  the  physical  guitar  is 
 severely  unoptimized  for  low  latency  as  it  uses  a  simple  http 
 protocol.  This  creates  a  small  yet  noticeable  215ms  latency 
 between  the  virtual  guitar  and  the  physical  one.  Although  the 
 Superfret  system  is  a  powerful  tool  for  learning  the  guitar,  it 
 could still benefit from more development, given these limits. 

 A.  Future Work 
 Many  more  exciting  enhancements  could  extend  our 

 project’s  use  cases  if  given  more  time.  Our  team  particularly 
 wanted  to  create  an  additional  mode  for  displaying  scales  on 
 the  guitar.  This  mode  would  display  all  the  notes 
 corresponding  to  a  scale  (a  subset  of  the  possible  12  notes) 
 while  allowing  the  user  to  practice  only  playing  notes  on  a 
 scale.  We  think  this  could  be  a  very  effective  tool  for  learning 
 the  patterns  that  scales  create  on  the  fretboard.  Additionally, 
 since  our  system  already  has  finger  sensing  and  strum 
 detection,  we  could  implement  a  mode  where  a  user  can  play 
 whatever  they  want  on  the  guitar,  and  the  resulting  song  will 
 be  automatically  recorded  and  stored  in  midi  format  for  the 
 user  to  playback  and  edit.  This  could  promote  creativity  in 
 users and entice them to explore the guitar further. 

 B.  Lessons Learned 
 Throughout  the  development  of  this  project,  our  team  came 

 across  some  challenges  that  eventually  turned  into  learning 
 experiences  for  us.  The  first  challenge  was  carving  out 
 channels  across  the  wooden  neck  of  the  guitar  to  install  our 
 PCB  boards  flush  against  the  surface  of  the  fretboard.  We 
 initially  did  not  plan  for  this  to  take  long,  but  the  process  of 
 hand-grinding  the  channels  took  a  day’s  worth  of  time.  We 
 underestimated  the  level  of  effort  required  to  work  with  wood 
 which  set  us  back  in  our  schedule.  For  future  projects  that  deal 
 with  handling  and  modifying  wood  materials,  we  recommend 
 having  a  thorough  plan  in  place  with  sufficient  time  in  your 
 schedule  dedicated  to  woodworking.  It  will  take  a  lot  of  time 
 to  complete,  so  one  must  ensure  it  is  accounted  for  in  their 
 team schedules. 

 Another  learning  lesson  came  when  trying  to  implement 
 synchronization  between  the  virtual  guitar  and  the  physical 
 guitar.  Upon  the  addition  of  the  virtual  guitar,  it  was  obvious 
 that  it  had  to  remain  synchronized  at  all  times  with  the 
 physical  guitar.  The  complexity  of  our  solution  quickly  blew 
 up  as  the  front-end  simulator  had  to  request  an  update  from  the 
 RPi,  which  requested  an  update  from  the  Teensy 
 microcontroller  and  then  sent  a  response  back.  We  suddenly 
 had  to  keep  track  of  the  state  of  three  different  system 
 environments,  which  was  proving  hard  to  do.  We  settled  with 
 a  slightly  messy  information  pipeline  that  could  have  been 
 more  optimized.  With  20/20  vision,  the  lesson  that  we  learned 
 from  this  was  just  how  different  the  programming  for 
 distributed  computing  is.  A  more  thoughtful  approach  from  a 
 distributed  systems  philosophy  would  have  helped  streamline 
 the  communication  protocols  and  make  the  code  cleaner  and 
 easier  to  reason  with.  For  future  teams  that  require  distributed 
 computing  for  their  project,  we  highly  recommend  researching 
 appropriate  communication  protocols  that  serve  their  projects' 
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 needs  instead  of  trying  to  develop  their  own  (for  us,  Remote 
 Procedure  Calls  would  have  worked  very  well).  A  good 
 framework  could  even  abstract  out  a  lot  of  the  complexity  of 
 this problem. 

 G  LOSSARY  OF  A  CRONYMS 

 BPM – Beats per Minute 
 COTS – Commercial Off-The-Shelf 
 GPIO – General Purpose Input Output 
 I/O – Input and Output 
 MIDI – Musical Instrument Digital Interface 
 PCB – Printed Circuit Board 
 RPi – Raspberry Pi 
 SBC – Single Board Computer 
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