18-500 Final Project Report: Team A2 SuperFret 12/15/2023

SuperFret

Owen Ball, Ashwin Godura, and Tushaar Jain

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Traditional guitar training tools can show an image
of note fingering to users, but going from this image to actually
placing the fingers on the strings can be difficult. With the
SuperFret system, LEDs on the guitar fretboard show users
exactly where to place their fingers on the guitar. The system also
detects where the user’s fingers are located and when they strum
the guitar, allowing the system to determine if the user plays the
correct note. This enables users to learn the guitar more rapidly
and engagingly.

Index Terms—Fretboard, fret, guitar, metronome, MIDI file,
NeoPixel (addressable LED), Raspberry Pi, string, strum, Teensy
4.1 (microcontroller), web app.

1. INTRODUCTION

he SuperFret system aims to create a more intuitive
T guitar training tool for beginners. When first learning

the guitar, beginners often struggle with translating an
image of how to play a note to an actual finger placement on
the fretboard, the part of the guitar where users place their
fingers to change the pitch of notes. Traditional tools show
beginners tabs or images of where to put their fingers, which
they must first interpret, then look at the fretboard to place
their fingers. For new guitar players, this increases the
complexity of learning the guitar. Since beginners are already
looking at the fretboard when playing a note, indicating where
to put their fingers directly on it is intuitive. By using LEDs,
or light-emitting diodes, to indicate to users where to place
their fingers, the process of playing new notes and songs is
expedited and made more natural for beginners.

While more advanced guitar players can learn to sight-read
guitar tabs and images of notes, these skills take time to
develop and build muscle memory. Jumping straight into
reading tabs and notes can be overwhelming when learning
guitar. The SuperFret system targets absolute beginner guitar
players trying to pick up a guitar and play for the first time.
Indicating to beginners where to put their fingers enables them
to build finger dexterity and the skills to play notes without
being inundated with foreign guitar notation. This removes
one of the major hurdles beginner guitar players face, making
playing the guitar more approachable and enjoyable.

The SuperFret system also detects the position of the user’s
fingers and when they strum, allowing them to receive
real-time feedback to ensure they are playing the correct notes
and strumming at the right time. A web app displays that
feedback to the user, allowing them to see their progress and
determine where to improve.

Guitar training resources are not a novel idea, with private
teachers, training apps, and accessories being commonplace.
Private teachers are costly, running around $40-$90 an hour

[1]. This results in many individuals favoring personal training
tools, such as apps showing them where to put their fingers
and listen to their playing. While tools like this are affordable,
they require users to look at a screen to determine what note to
play and then try to match their fingers to the image on the
screen. By integrating LEDs on the fretboard, the SuperFret
system makes it easier for users to place their fingers in the
correct location.

A handful of existing training tools integrate LEDs onto the
fretboard, but these systems use audio to detect what the user
is playing. These systems require a fairly quiet environment
and take longer to analyze what note was played. The
SuperFret system directly detects the user’s finger locations,
thus enabling rapid feedback and more accurate analysis of the
user’s playing.

Overall, the SuperFret system allows beginner guitar players
to learn to play notes and basic songs quickly quickly. The
system determines if the user is playing correctly and provides
feedback and control over the system through a web app
interface

1I. Usg-CASE REQUIREMENTS

The target users of the SuperFret system are beginner guitar
players looking to improve their skills and play basic songs.
As such, the use case requirements are informed with
beginners in mind. Beginner guitar players should find the
overall experience of the web app and hardware intuitive, as
the goal of the project is to remove barriers to entry. From
picking up the system to strumming notes, users should only
need around 5 minutes to get started with the system. Users
shall be able to upload MIDI files (file format for representing
music) for songs they want to practice. The system should also
support selecting between various playing modes to suit how
the user wants to practice.

The system shall handle notes down to 1/8" notes at 100
beats per minute (BPM). This corresponds to 200 notes per
minute maximum, or around 3 notes a second, faster than most
beginner guitar players can handle. The target tempo should be
indicated at a volume that is audible over the guitar. The
system should be able to identify the user’s finger placement
and strumming with 99% accuracy, corresponding to
approximately 1-2 missed notes per minute by the system.
This is far lower than the number of mistakes the user makes,
so this accuracy is sufficient for the system.

Additionally, the system must look, feel, and play like a
standard bass guitar. This ensures users can apply the skills
learned on the SuperFret system to other guitars.

18-500 Final Project Report: Team A2 SuperFret 12/15/2023

III.

ARCHITECTURE AND PRINCIPLE OF OPERATION

Wel?l:pp

Fretboard PCBs
e Guitar Pick

Fig. 1. A depiction of the SuperFret system. Guitar image from [2]

The overall system is shown in Fig. 1. The user interacts
with the system through their personal computer by accessing
a web app. They upload songs and choose which ones to
practice on. When ready to practice, they click “Start” on the
screen, place their fingers on the lit-up LEDs, and strum.
Statistics about their playing are aggregated and displayed on
the web app. Additionally, when a user starts a song, the web
app renders a “virtual” guitar that mirrors the physical guitar
and more easily allows users to visualize the song.

o
L
/ user £ 2 . -
Ws2812 Fret Measuring
: MIDI File Protocal PCBs
Bioo | Clock + Data
;’_‘/_V T Control Intermupt 4x LEDs
ety S Signals Voltage on
'~ Application)/" RPi Teensy | siings 4
T
Note Correctniess,
Timing Accuracy r £}
Metal Pick
vohage |EEERE ST
b 4 b ey
Fig. 2. High-level Architecture Block Diagram.

Overall, the system is composed of 3 parts — the web
application (“web-app”) hosted on a Raspberry Pi 4B (“RPi”),
a Teensy 4.1 microcontroller, which is the brain of the
embedded system, and the electronic hardware on the guitar.
The wuser interacts with the system through the web
application, which allows them to upload songs they want to
learn, choose songs to practice, and receive statistics on their
playing. The user uploads songs as MIDI files, which encode
note and timing information for the song. The MIDI file is
interpreted by RPi and visualized as falling notes on the
virtual guitar. The RPi also converts the notes into (fret, string)
coordinates on the fretboard, which are passed to the Teensy.
The Teensy uses the coordinates and lights the corresponding
LED on the fretboard to guide finger placement. The LEDs
reside on Printed Circuit Boards (PCBs), 15 of which are
embedded along the fretboard. The PCBs also contain
circuitry to determine which note the user has fingered on the
fretboard. Other electronic hardware on the guitar includes a
metal pick and accompanying circuitry for strum detection. By
detecting which note the user’s fingers are on and when they
strum it, the Teensy can determine deviations from the notes

and timing information specified in the MIDI file and send
aggregated statistics back to the RPi for display on the web

app.
A. Web Application

As shown in the high-level block diagram (Fig. 2), the RPi
hosts both the web app and communicates with the Teensy
microcontroller. The web app is written in Python using the
Django web framework, which combines the frontend,
backend, and database into one Model-View-Controller design
pattern (Fig. 3) to create web endpoints that the user can
access via a web browser. From the website itself, the server
provides all the functionality required for the user to control
the guitar in an intuitive interface. User input is processed and
forwarded to the microcontroller through 3 different

communication “streams”: bidirectional communication with
the Teensy over UART accounts for 2 streams, and the third is
for interrupt signals originating from the RPi that control the
state machine (Fig. 9) inside the Teensy.

Fig. 3. Django Web Frame Work Implements Model-View-Controller [9]

B. Teensy and Embedded System

Besides the 3 previous streams, the Teensy communicates
with the electronic hardware on the right side of Fig. 2 through
4 streams.

First, the Teensy specifies the color of each NeoPixel LED
on the fretboard through the protocol for WS2812 LEDs,
which is the chipset the NeoPixel implements.

The Teensy determines where on the fretboard the user has
pressed on a string by detecting the electrical contact between
each of the 4 strings with 14 frets. This is done by applying a
voltage stimulus to one of the 14 frets and then reading the
voltage on each of the 4 strings. A high reading on a string
indicates that the string is pressed down against the fret on
which the voltage stimulus is being applied. By putting
D-Flip-Flops between each fret, the voltage stimulus is
clocked “down” the fretboard as if the D-Flip-Flops formed a
shift register. This way, only 2 signals are required to create
the voltage stimuli for the frets, as opposed to having 14
signals, with one per fret.

The Teensy also detects when the note is strummed by
detecting when a voltage stimulus on the pick is conducted to
a particular string. This is a change from the design report,
where we intended on using audio-based detection of
strumming.

18-500 Final Project Report: Team A2 SuperFret 12/15/2023

C. Electronic Hardware

Each fret is associated with a fretboard PCB, which contains
4 LEDs, one per string. The fretboard PCB also has a
D-flip-flop to receive the voltage stimulus from the previous
fretboard PCB, apply the stimulus to the current fret, and
forward the stimulus to the next fretboard PCB. Strums are
detected using a pick with a metal electrode that applies a
stimulus to the guitar strings.

The RPi is connected to the Teensy using a custom Pi-Hat
PCB, which handles power distribution and I/O between all
the system components. Power for the system can be provided
either through a wall adapter or using a lithium polymer
battery connected to a buck converter.

IV. DESIGN REQUIREMENTS

To meet the use-case requirements, several critical design
specifications were established for both the hardware and
firmware components, as well as the web application of the
SuperFret system. For the hardware and firmware, achieving a
latency of less than 50ms from strum detection to LED
response (the threshold of human visual perception) is
paramount to provide users with real-time feedback during
practice sessions. Additionally, the hardware and firmware
must support a strumming rate of up to 3.3Hz, or 200 strums
per minute. The system should indicate the target tempo at a
minimum volume of 70dB, which was found to be audible
over the guitar notes.

To meet the use case requirement of being playable like a
standard guitar, the system shall support ~2.5 octaves of notes,
corresponding to 14 frets. Consequently, the guitar must
support 60 individually addressable LEDs, 4 for each fret and
4 for the open string indicators. The rest of the board is
unnecessary, as beginner users rarely use the highest notes on
a bass guitar. The system shall support illuminating the entire
fretboard at half brightness to enable arbitrary patterns to be
displayed on the fretboard. Half brightness was selected to
balance visibility and system current draw.

Safety is a key consideration, as the guitar strings are driven
to 3.3V. According to IEC TS 60479-1, currents below S00pA
through the body are imperceptible and safe. Therefore, the
current that flows through the user under normal operating
conditions should be under 500pA. Under abnormal operating
conditions, such as if the system gets wet while being used,
the current through the body should not exceed 1mA (the
maximum current that can pass through a human body without
impacting the user’s muscles) [3].

The web application's design requirements focus on
enabling the user to control the guitar and start/stop songs. The
file upload capability should support up to 1GB of custom
MIDI files for a personalized learning experience. The web
application shall update in accordance with the user’s playing
within 250ms to ensure a cohesive user experience.

These design requirements ultimately ensure that the
SuperFret system achieves the defined use-case requirements
and provides a positive user experience. The quantitative

specifications are summarized in Appendix Table I.

V. DEsIGN TRADE STUDIES

A. Single-Board Computer vs Microcontroller

The main computer selected for the project was the
Raspberry Pi 4B. The processing tasks associated with this
project consist of running a web application, controlling the
fretboard LEDs, reading from the fret sensors, and processing
statistics. Both a single-board computer (SBC) and a
WiFi-equipped microcontroller could perform these tasks.
Single-board computers are typically worse at handling
real-time interaction with their environment because the
processor also handles the overhead of running the computer's
operating system. Additionally, hosting the web app can
introduce delays that do not meet input and output (I/O)
latency requirements. Running the system off a WiFi-equipped
microcontroller like the ESP32S3 would enable high-speed
I/0. However, running the web app in parallel to this on the
microcontroller would be challenging due to the
single-threaded nature of most microcontrollers. Running the
system off a microcontroller would also introduce significant
restrictions on the web interface's functionality due to the
microcontrollers' limited memory. For these reasons, we chose
to pursue a split architecture, with an SBC running the
high-level control of the system, namely running the web app,
storing user-uploaded music, and coordinating the system's
overall state. A microcontroller runs the real-time I/0 without
worrying about hosting a web app, allowing the target
latencies to be achieved. This has the added benefit of
improving our ability to parallelize work, with one team
member working on the SBC and one on the microcontroller,
rather than team members having to coordinate pushing and
pulling software changes. The SBC chosen was the Raspberry
Pi 4B due to its widespread documentation and support, and
the microcontroller chosen was the Teensy 4.1 due to its
plentiful GPIO pins and high clock speed.

B. Microcontroller Choice

Members of the group were already familiar with using
several microcontrollers typically used in electronic projects,
and familiarity was the main driving force behind selecting a
microcontroller. We considered the Arduino UNO, Arduino
Mega, Raspberry Pi Pico, Teensy 4.0, and Teensy 4.1. Of
these, we wanted a microcontroller with fast clock speed to
enable multiple tasks and enough memory to store a MIDI
file’s worth of data.

We found a benchmark that showed the Teensy class of
microcontrollers were the fastest computers of the ones we
were familiar with:

18-500 Final Project Report: Team A2 SuperFret 12/15/2023

Teensy 4.1 | -+
Teensy 3.6 [«
espaz [l =

Teensy 3.5 [66
Metro M4 215

Teensy 3.2 [160
Arduino Due] 5
Arduino Zera IS?
Arduing Mega}‘.'

] S00 1000 1500 2000 2500

Fig. 4. The “CoreMark” CPU Performance Benchmark [4], [5]

We conservatively estimated the typical training song would
be 2 minutes, with up to 200 notes per minute, and each note
would take 5 bytes to specify in the MIDI format (2 for the
duration in “delta ticks” and 3 for the event). Thus, we
required a microcontroller with at least 2kB of memory. We
eliminated the Arduino UNO, which only has 2kB of SRAM
[6].

Furthermore, we desired a microcontroller with a great deal
of flexibility in the I/O. The Teensy 4.1 supports 8 different
hardware serial ports, almost all pins can act as interrupts, and
all /O pins are capable of functions such as pulse width
modulation (PWM).

After considering the degree of prior experience, CPU
performance, memory, 1/0, and availability, we selected the
Teensy 4.1 because it was strong across each desired trait, and
we already had access to it, making it the cheapest option.

C. Fret-Sensing Implementation

To determine the user’s finger placement, the system uses
the ‘switch’ formed when the user presses a string into a fret.
GPIO pins on microcontrollers are limited, and wires interfere
with the comfort and usability of the guitar. A switch array can
be employed to reduce pin and wire count. By driving each
fret to 3.3V one by one and then reading the voltage on each
string, the detection of any strings touching the 3.3V fret can
be performed. This requires 18 GPIO pins - 4 for the strings
and 14 for the frets. This still requires 14 wires to be run from
each fret to the microcontroller. Since a switch array
necessitates that each fret is driven to 3.3V one at a time, the
GPIO count can be reduced to

4 Strings + ceiling(log,(14)) =8)

pins using a decoder circuit. However, this would require
decoding circuitry next to each fret, which would take up the
limited space available. By using a “shift-register” style
approach, with each fret requiring only a single D-flip-flop,
the system can use only 6 GPIO pins, 4 for the strings, 1 clock
line, and 1 data line. Excluding power wires, this solution,
shown in Fig. 5, requires only 2 wires between each fret.
These include a shared clock line and the data outputted by the

previous fret’s D-flip-flop. The only tradeoff of this
implementation is that each fret requires a D-flip-flop, but this
drastically outweighs requiring 14 individual wires for each
fret.

Data —p oo Ll als Qe Qe Q
LK LK LK CLK LK
|||)|
Clock T [T [T [T [T
_ 0 0 0 g 0
Strings ¢ L C L L
g g g g {
r r r r r
Frets
Fig. 5. A 6 GPIO method for reading finger positions

D. Fretboard PCB Design

Due to the finger placement sensing implementation making
use of a D-flip-flop next to each fret, and the design requiring
4 addressable LEDs per fret, implementing a PCB to mount
these components is the ideal solution. It would be possible to
use commercial off-the-shelf (COTS) LED strips and run a
separate wire to each fret, but it is not possible to buy LED
strips with the exact spacing needed for the guitar strings.
Additionally, this would require many wires for the finger
placement sensing, as discussed previously.

There are a handful of ways to implement PCBs along the
fretboard. The first way is to remove and replace the guitar's
fretboard with a single PCB. This would completely eliminate
the need for external wires along the fretboard but would
introduce mechanical challenges. Since the fretboard holds the
frets in place, we would need to devise a new way of
mounting the frets securely, and we would need to perfectly
match the spacing of the original fretboard to keep the guitar
in tune. Additionally, this would require completely removing
the guitar's fretboard, which can be challenging to perform due
to the glue between the fretboard and the rest of the guitar.
These factors increase the risk associated with the project, so
we chose not to pursue removing the fretboard.

The other two implementations involve creating individual
PCBs mounted next to each fret. This approach allows the
fretboard to remain mounted to the guitar and removes the
need to replicate the spacing between the frets on a PCB
perfectly. These PCBs can be mounted on the fretboard or
placed in carved-out channels next to each fret. The advantage
of placing the PCBs on top of the fretboard is that no
mechanical modification to the guitar fretboard is necessary.
The disadvantages of this approach are that the fretboard is
curved, as shown in Fig. 6, and that the frets only extend
above the fretboard by 1.2mm.

18-500 Final Project Report: Team A2 SuperFret 12/15/2023

Fig. 6. Cross section of a guitar fretboard. The fretboard surface is curved,
making PCB mounting difficult [7].

The curved surface of the fretboard makes mounting rigid
PCBs directly to the fretboard difficult. A flexible PCB would
resolve this issue by allowing the PCB to conform to the shape
of the fretboard. However, since the frets only protrude from
the fretboard by 1.2mm, the total height of the LEDs and the
PCB must be below 1.2mm. The addressable LEDs being used
have a height of 1.6mm, so to ensure these do not get in the
way while the user plays the guitar, the PCBs sit in recessed
channels in the fretboard. These channels can be flat on the
bottom, meaning flexible PCBs are no longer necessary. Due
to the higher costs and lead times associated with flexible
PCBs, we pursued 14 rigid PCBs, each placed into carved-out
channels next to the frets.

The primary challenge of this selected implementation is the
carving of the channels into the fretboard. Guitars feature a
metal support rod running along their length that must be
avoided. Additionally, the wooden fretboard holds the frets in,
and removing material from around them may loosen the fret.
We created the channels using a Dremel and files, and during
this process, one fret was knocked off the fretboard but could
be replaced.

VI. SYSTEM IMPLEMENTATION

Appendix Figure I has a more detailed technical block
diagram of the system as a whole, beyond what was shown in
Fig. 1. The system consists of three main subsystems — the
user frontend hosted using the RPi, the physical hardware used
to interface with the guitar and user, and the microcontroller
system directly interacting with this hardware.

A. Raspberry Pi and Web App Subsystem

Frontend on Browser

|
|

Raspberry Pi 4B
Django Web Server

Teensy Communication

MIDI Displaying

Displaying Statistics

|
MIDI Preprocessing ‘
|
|

Aggregating Statistics

Fig. 7. Block diagram for the RPi and web app. Zoomed-in crop of block
diagram in Appendix Figure 1.

1) Django Web Server

The RPi hosts a web server powered by Python’s Django
Web Framework. This server creates a local endpoint
reachable via a browser that responds with an HTML page
containing all the functionality needed for the user to

communicate with the guitar. Specifically, the web server
implements these endpoints:

http://a2superfret.wifi.local.cmu.edu:8000/
- home - retrieves the home page
- addfile - uploads a file to
- deletefile/{songname} - deletes a file
- startfile/{songname} - tells guitar to start song
- stopFile - tells guitar to stop song
- getStats - get the user’s statistics of previous songs

A SQL database houses all the file and user information to
achieve a consistent state for the server. Each entry in the
database represents a song and contain:
- name: name of the song/file
- file: the file path to the MIDI (actual file is stored in a
separate folder)
- active: a boolean to store if the song is currently
being played, keeps track of state

Additionally, because of the virtual guitar additions to the
design, there became a need for extensive computation on the
frontend. To address this, when the user begins a new song,
the webserver returns a webpage that has a javascript client
embedded within it. This client constantly communicates with
the guitar over http on behalf of the user to request strumming
information during a song. Upon every update from the server,
the client can refresh the virtual guitar with current
information allowing the physical guitar and the virtual guitar
to appear completely synchronized.

2) MIDI Pre-Processing

A MIDI file is organized into 1 header section and at least 1
“Track” section. The header specifies timing information to
determine some timing info and the number of track sections
that follow. Each track section specifies a tempo, notes, and
duration information.

Before forwarding the user’s MIDI file to the Teensy, the
RPi lightly pre-processes it using the pretty midi [10] python
library so the Teensy is not burdened with parsing through
information it does not need. For example, the MIDI Header
and Track sections contain byte counts, the instrument's name,
and other preamble that the Teensy does not need. So, the RPi
can strip that extraneous information out and send an
“abridged” MIDI file, so the Teensy only needs to parse the
essential tempo, timing, and note information.

Additionally, this parsed MIDI file also provides enough
information for the virtual guitar’s functionality allowing the
reuse of our code for two separate components at the same
time, lowering development time and reducing computational
load on the system.

3) Teensy Communication

The RPi runs a UART communicator process to establish
and maintain a connection between the Teensy and the Pi over
a specified port. Its job is to receive user requests from the

18-500 Final Project Report: Team A2 SuperFret 12/15/2023

web server and convert them into interrupt signals, which can
then be sent to the teensy and vice-versa. Upon a start request
from the user, the web server tells the UART communicator to
send a specific file to the microcontroller by first sending a
“file transmission” (Fig. 9) interrupt, followed by all the file
data. One idea was to send the file one packet at a time as
needed, but this was abandoned due to UART latency
concerns and since it would complicate the real-time Teensy
firmware. When a fileStop command is issued, the UART
communicator interrupts the Teensy by raising its STOP GPIO
pin to high.

B. Teensy/Embedded Subsystem

e N

Teensy 4.1

NeoPixel Library

Reading Frets Buzzer for

Metronome

Reading Strums

Determining

\ Accuracy /

Fig. 8. Zoomed-in crop of block diagram in Appendix Figure I. The
Teensy microcontroller is the glue between the User Interface and the
electronic hardware. The Teensy’s software is structured as a state
machine.

1) State Machine

A state machine controls the high-level decisions made by
the Teensy. There are two classes of inputs to the state
machine - interrupts generated by the RPi (shown in purple in
Fig. 9), which are based on the user’s interaction with the
system, and inputs originating from the operation of the
system itself (shown in red in Fig. 9).

When the system is first turned on, or “idling,” it starts in
the “WAIT TO START” state. Once the user selects a song on
the web app, the RPi asserts a GPIO pin high, causing a rising
edge on the “file transmission” digital pin of the Teensy. This
causes the Teensy to enter the “RECEIVING SONG” state to
listen to the RPi over UART for a stream of (fret, string)
coordinates. Once the RP1 transmits the file, it asserts the same
pin low, and the Teensy interprets the falling edge as the end
of file transmission.

Having received the MIDI file, the Teensy transitions to the
“PARSING SONG” state, where it parses the file. Then, it
transitions to the “USER EXPERIENCE” state, where it lights
up the LED for the first note of the song and waits for the user
to start playing the guitar by strumming. When the first strum
is sensed, the Teensy lights up LEDs, reads frets, and
continues detecting strums.

Once the user finishes playing the song (the last note is
reached), the “WAIT TO START” state is entered again. The
Teensy can also enter this initial state if the user restarts the

system through the web app.

file_transmission

done | restart

file_transmission file_transmission

Receiving
Song

file_transmission

Parsing
Song

done

User
Experience

Fig. 9. State Machine for the Teensy’s Software

2) Music information

The RPI processes the MIDI file and distills it into a few
key bits of information for the Teensy: metronome speed and
volume, the user experience mode (training or performance)
and the note timing & coordinates. This is all the Teensy needs
to determine when to light up a particular note’s LED and
when to expect the user to play that note.

Originally we had the RPI forward the MIDI file to the
Teensy, which would reparse. But this was wasteful, and we
had trouble getting the RPI and Teensy to parse the file
similarly, so we stuck to just 1 parser.

3) LED Control

The Teensy stores a “note schedule” indicating when
particular notes should be played or released. As the Teensy
executes in the USER EXPERIENCE state, it compares the
current time to entries in the note schedule to see if it is time
for a note to be played or released. Once the particular note is
determined from the note schedule, the corresponding LED
position is determined by indexing into a static mapping
relating notes to LED positions on the fretboard.

C. Electronic Hardware Subsystem

The interaction between the Raspberry Pi, the Teensy, the
guitar, and the user is provided by a series of hardware
components. These consist of sensing components to take in
information from the environment, components that provide
user feedback, and various power and data interconnects. A
block diagram overview of the hardware components is shown
in Fig. 10.

18-500 Final Project Report: Team A2 SuperFret 12/15/2023

15
Al
s R
i
S | 12812 pratpoara Frotoara | | Frotboara |
rotocol PCE PCB PCB
|- NeoPixel [NeoPixel] [NeoPixel]
Raspberry Clock LEDs e LEDs - LEDs
Pi 4B and Data - n
e
Dirlve Fret Drive Fret * Used o indicate
o open sifings i
— |
Toeriey 41 Voltages on Guitar Strings
oltage Stimulus
Guitar Pick]
= >
I P N
sl Buck LiPo
Converter Battery
_ kS vy
E————/
Fig. 10. Zoomed-in crop of block diagram in Appendix Figure I, focusing

on the electronic hardware.

1) Strum Detection

The system must determine when the guitar is strummed to
know if the user played the desired note correctly. To
accomplish this, we originally designed a circuit to take in the
guitar's audio signal and output a digital signal indicating
when the guitar is strummed.

This system used the piezoelectric sensor integrated into the
guitar rather than an external microphone to reduce external
interference. This sensor converts the mechanical motion of
the guitar strings into a voltage.

Piezoelectric Signal Envelope Teensy 4.1
[Pickup ’ Amplifier Detector ’ Cumparalor’ ‘ Interrupt]

Fig. 11.

Block diagram of the strum detection circuitry

The block diagram planned for the strum detection is shown
in Fig. 11. The schematic corresponding to this block diagram
is shown in Fig. 12

Fig. 12.

Physical implementation of the strum detection circuit

This circuit analyzes the audio amplitude and generates a
digital output if it is over a set level. Various changes were
made to the circuit, such as including a differentiator circuit to
look for sharp jumps in audio amplitude, but we ultimately
changed approaches. We found that audio-based detection was
not reliable enough to meet our accuracy requirements, as it
often picked up on external noises or extraneous noises made
by the user.

The selected solution was to drive a guitar pick to 3.3V and
to then read off the voltage on each string, similar to how the
finger placement sensors function. This solution has the added
benefit of detecting which string is strummed, without having
to Fourier transform the guitar audio. This solution requires a
custom metal guitar pick with a wire running to it in order to
drive the pick to 3.3V when desired.

Fig. 13. Guitar picks with metal electrodes. The left pick has an electrode
on both sides,, while the right pick only has an electrode on one side.
They can be easily interchanged to match the user’s preference.

2) Fretboard PCBs

To connect the addressable LEDs and drive each fret to
3.3V individually, our system integrates a fretboard PCB next
to each guitar fret. The addressable LEDs require 5V, ground,
and a data-in pin. They also have a data-out pin that connects
to the data-in of the next LED in the series. There is a 0.1pF
capacitor across the power rails next to each LED to ensure
proper LED functionality. The LEDs used are SK6812
NeoPixel LEDs, which support write speeds of up to 800kHz.
For 60 LEDs, this corresponds to around 2ms to write to all
the LEDs. Each fretboard PCB has a D-flip-flop, forming one
large shift register across all the fretboard PCBs. The output of
a D-flip-flop is connected to the adjacent fret of the guitar.
While we originally planned on using a direct connection
between each flip-flop, we found that the propagation time of
the signal between adjacent frets caused timing violations, so a
low-pass filter was added on the data lines to allow the clock
signal to arrive at the next flip-flop first.

Using the Teensy, a logical high can be clocked into the first
fretboard PCB, which can be shifted to the next PCB, allowing
each fret to be driven high one at a time. A 3.3kQ resistor and
forward-biased diode connect the D-Flip-Flop and a fret to
limit the current that could flow to 1mA. While a fret is driven
high, the voltage on each guitar string is read, allowing the
Teensy to determine which strings were contacting the fret
being driven high. The diode prevents any issues relating to
one fretboard PCB trying to drive a string low while another
drives it high. Using a diode, the string would be driven high
in this case.

The fretboard PCB design is shown in Fig. 14. The top half
of the board contains the 4 addressable LEDs, D1-D4, and the
bottom half contains the D-flip-flop and supporting passive
components. The pads on the right side of the board and the
bottom left of the board enable the boards to be daisy-chained
together, which reduces wiring complexity. Since the string
spacing of a guitar changes slightly between each fret, we
created two different sizes of PCB. While 14 different sizes
would be optimal to ensure the LEDs line up perfectly with
the strings at low production quantities, this drastically
increases the price and complexity of assembly. As such, we
chose to use two different sizes of fretboard PCBs. 8 of the
boards have LEDs that are slightly closer together and are
used for the open string indication and for the frets at the end
of the guitar. 7 of the boards have a wider LED spacing and
are used for the frets closer to the guitar's body.

18-500 Final Project Report: Team A2 SuperFret 12/15/2023

Fig. 14. The small fretboard PCB (top) and large fretboard PCB (bottom).

To prevent users from being able to touch the metal pads on
the fretboard PCBs, and to prevent the fretboard from having
an uncomfortable feel, we created covers for each of the
fretboard PCBs.

3) Pi Hat PCB

The RPi and Teensy require numerous connections for
UART and interrupts, external power, and various input and
output devices. To implement these connections, a Pi “Hat” is
used. A Pi-Hat is a PCB that plugs directly into the 40-pin
header on the RPi, as shown on the right side of the board in
Fig. 15.

The Pi-Hat filters any noise in the 5V power supply
connected to the Hat via a barrel jack and distributes this to
the Teensy, RPi, and fretboard PCBs. The Pi-Hat also connects
the Teensy and RPi with 10 I/O lines and a UART channel so
they can communicate.

The Pi-Hat has a number of I/O ports on the left side that
are connected to the fretboard PCBs, LEDs, and strings. For
the LEDs, a logic level converter is used to convert the 3.3V
signal from the Teensy to a 5V signal for the LEDs.

An active buzzer acts as a metronome by beeping in short
pulses to indicate the target tempo to the user while they are
playing. Active buzzers can be driven by simply pulling an
output pin on the Teensy, either high or low, making this
design for the metronome simple to implement on the
firmware side.

Pi Header

Barrel Jack Teensy

Logic Level
Converter

/O Pins

4,

.

Q0

Buzzer

Fig. 15. Pi-Hat PCB layout

4) Power Supply

The system is powered using a 5V DC wall adapter, which
connects to the Pi Hat using a Smm barrel jack connector. The
total expected current draw is 2.0A for the Pi, 0.15A for the
Teensy and flip-flops, and 1.5A for the LEDs at half
brightness. This sums to 3.65A, so a SA power supply was
chosen for the project. For user convenience, the system can
also be powered by a battery. An 11.4V 2200mAh lithium
polymer battery is connected to a 5SA 5V buck converter,
which then connects to the 5V power rail of the Pi-Hat PCB

VII. TESTING, VERIFICATION, AND VALIDATION

To wvalidate our solution and design requirements,
comprehensive tests were conducted. The aim was to
scrutinize the real-time responsiveness of the SuperFret
system and its ability to handle diverse playing conditions.
Refer to Table I for a summary of the test results.

A. Results for Latency

An oscilloscope was utilized to precisely measure the time
delay between initiating a strumming action and the
corresponding LEDs being written to. After multiple
measurements, we determined the latency to be 1.85ms which
was well under our target. This test held critical significance
as it directly addressed the design requirement of achieving a
latency of less than 50 milliseconds, ensuring that the system
provides instantaneous feedback to the user to prevent the
guitar from feeling sluggish during practice sessions.

Simultaneously, the web app’s network delay test evaluated
the responsiveness of the web application and the ability of the
virtual guitar to stay up-to-date with the physical guitar. The
test involved high frame rate video (240 frames per second) to
capture the delay through the entire system from the user
strum to the website updating. After rewatching 12 iterations
of the test, we aggregated the data to get an average total delay
of 215ms which was under our target of 250ms. This result
ensures that users experience a smooth and responsive
interface when interacting with the web application, aligning
with the design specifications and user expectations.

B. Results for Accuracy

For accuracy testing, a strum identification test was
designed to assess the system's ability to identify strums
accurately. We quantified the system's ability to correctly
identify strums by performing 200 1/8th note strums at up to
300 BPM on each string. The success criteria for this test were
determined by calculating the percentage of correctly
identified strums, directly addressing the accuracy
requirements outlined in the design specifications. At 300
BPM, we achieved 99% accuracy for this test, clearly
indicating the system's competency in identifying and
responding to strumming actions.

In addition to strum identification, a finger placement test
was conducted to evaluate the system's accuracy in detecting
the placement of fingers on different string and fret positions.
This involved systematically placing a finger on each fret and
string location and using code to light up the LED under the

18-500 Final Project Report: Team A2 SuperFret 12/15/2023

pressed location. We verified that the LED came on under
each finger position. We then repeated this process multiple
times and calculated the percentage accuracy, which quantified
the system's precision in detecting finger placement. Using
this method, we achieved 100% finger placement accuracy,
since under no conditions did the system not register a finger
press or misidentify a press. This test directly validated the
accuracy requirements for finger placement detection as
specified in the design specifications. Overall, these tests were
crucial in ensuring that the SuperFret system not only met the
theoretical design trade-offs but also demonstrated robust
performance aligned with the specific use-case requirements
for the project.

Accuracy for the LEDs was verified by displaying patterns
on the fretboard to ensure all LEDs were indexed properly. We
then loaded a variety of MIDI files into the system via the RPi
and played them on the guitar. We used a tuning tool to verify
that the system always instructed the user to play the correct
note as indicated in the MIDI file. One important note is that
the system may shift notes up or down an octave if the
provided MIDI file falls outside the guitar’s range.

C. Safety

As per IEC TS 60479-1, humans can not perceive currents
below 500pA, and currents below 1mA do not impact muscles
[3]. We used a lab bench ammeter capable of measuring down
to 0.01pA to verify this. Under normal conditions, participants
would contact the 3.3V guitar string with 1 hand and a ground
signal with the other. A 10kQ2 potentiometer would be between
the 3.3V source and the string, and the potentiometer would
initially start at 10kQ. While monitoring the current, the
potentiometer’s resistance was turned to 0Q, and the current
was recorded. If the current ever reached 1mA while lowering
the potentiometer resistance, the test would be stopped. We
found that the current passing through a user was at most
0.80pA. To test the maximum current the strings carry, we
used the ammeter to connect the fret to a string and verify that
no more than ImA flows. Our results showed that the
maximum average current through a short circuit in the system
was only 5.37 pA. This is an average since each fret is driven
high for only 10us out of a loop time of 1555us. Using an
oscilloscope and a series shunt resistor, we found the current
spiked to 0.762mA for 10us, which is below our required
value.

D. User Experience

For user experience evaluation, subjective tests were
conducted to gather feedback on the web application and
hardware components. The questions assessed the users'
perception of the system's usability and effectiveness. Refer to
Appendix Table II for the specific questions asked and a
summary of the results.

Users were asked to interact with the web application and
provide ratings on a scale of 1 to 10 for categories such as the
intuitiveness of the interface, readability of statistics, and
responsiveness of the virtual guitar. These subjective
evaluations were averaged to create a quantitative metric for

the overall user experience with the web application. For
example, a user-friendly interface is crucial to the system's
success, as it directly impacts the accessibility and satisfaction
of the users.

Similarly, users were requested to evaluate the hardware
components, considering factors like comfortability, LEDs'
effectiveness, and the metronome's volume and pitch. Ratings
on a scale of 1 to 10 for each category were averaged to
provide a quantitative measure of the overall user satisfaction
with the physical components. Comfortability is vital for
sustained practice sessions, while the effectiveness of LEDs
and the metronome directly impact the user's ability to follow
guidance and maintain rhythm during practice.

The system's success in meeting the user-centric design
goals was quantified by aggregating the user ratings. The
results of our test showed that the physical components were
very well built and that the guitar was very responsive and
effective at showing users where to play. However, it also
showed there was room for improvement in the look of the
website. These user experience evaluations were essential for
obtaining qualitative and quantitative insights into the
effectiveness and user-friendliness of the SuperFret system.
The feedback gathered from users was invaluable in making
iterative improvements to enhance the overall user experience,
ensuring that the SuperFret system fulfilled the technical
specifications and was well-received by its target audience of
beginner guitar players.

VIIIL

A. Schedule

The Gantt chart in Appendix Figure II shows the project
timeline for the semester. The tasks are divided into Electrical,
Firmware, and Software, with Owen, Tushaar, and Ashwin
leading these categories. Scheduled weekly 2-hour meetings
between team members occur to perform integration between
systems and discuss design considerations to prevent
integration issues at the end of the semester. Time was
provided at the end of the semester for the final integration of
the systems, and team-wide tasks such as working on
presentations and reports are also listed. Highlighted bars
indicate progress on the listed task. One change to the
schedule was the addition of the virtual guitar since our team
decided to put more emphasis on its completion. Additionally,
we experienced some schedule delays due to previously
mentioned issues with the flip-flops. This resulted in pushing
back the ordering of both the fretboard and Pi-Hat PCBs and
delayed Tushaar’s ability to interface with the fretboard
sensors. Mechanical modifications to the guitar took longer
than expected as well, but this was compensated for by the
assembly and testing of the PCBs being ahead of schedule

PROJECT MANAGEMENT

B. Team Member Responsibilities

As shown in the schedule, the work was divided into 4 main
areas - overall project management, web app, firmware, and
electronics. All members were responsible for staying up to
date on the overall project timeline and keeping the timeline

18-500 Final Project Report: Team A2 SuperFret 12/15/2023

for their area on track.

Ashwin focused on the web app and wrote software on the
RPi to host it. He also wrote software to send MIDI files to the
Teensy and receive statistics on how the user is doing from
Teensy.

Owen designed the electronic hardware, which involved the
PCBs on the fretboard, the strum detection circuitry, and the
interface board that allowed signals to pass between the
Teensy and RPi.

Tushaar focused on the firmware, the glue between Ashwin
and Owen’s areas. This involved writing the Teensy’s software
for interfacing with the RPi and the electronic hardware that
Owen designed.

C. Bill of Materials and Budget

The total bill of materials used on this project totals to
$168.00. Appendix Table III shows the full breakdown of the
parts used on the system as well as some of the unused parts.
We acquired some of the more expensive components, such as
the RPi 4B and Teensy 4.1 from the ECE department and
Roboclub. The primary changes from the design report are a
more detailed breakdown of the components on the Pi-Hat
PCB, specific pricing for the revised fretboard PCBs, and the
addition of a LiPo battery and a buck converter for power. Due
to our change to a metal pick, we no longer needed the
microphone listed in the design report Appendix Table IV
indicates the reasons why components were not used.
Additionally, excess parts were ordered for some components
as spares and to hit Digikey price breaks. For example, excess
flip-flops were ordered since at one point we believed the
issues with the flip-flops may have been ESD damage or heat
damage caused when soldering.

D. Risk Management

Several critical risks were identified when planning the
project, each requiring careful consideration and mitigation
strategies to ensure a smooth design implementation.

One risk involved detecting which string the user strummed.
This is necessary for determining if the user put their fingers
in the correct position but strummed wrong. While we initially
planned on using audio amplitude to detect strums, we
realized that this would be insufficient for detecting which
string was played. While from the beginning we knew an
electrode based guitar pick would solve the issues, we hoped
to resolve this issue without using a pick, as this makes the
system more intrusive and limits how users can play. We
experimented with capacitive touch sensing on the strings, but
this method turned out to be too slow and could not function
alongside the finger placement sensing. We also investigated
inductive guitar pickups used on many electric guitars.
However, these systems combine the 4-6 strings of the guitar
into a single output, meaning that we would not be able to
detect which string is strummed. Finally, we looked at
performing an FFT of the guitar audio on the Teensy.
However, this proved to be too slow to meet our desired
latency requirements. We ultimately ended up switching to our
fall-back plan of an electrode-pick. This did have the added

10

benefit of removing the need for audio based strum detection,
which increased the accuracy of the system. The Pi-Hat was
designed with multiple free digital and analog I/O pins
however in case we found a sensor that could be used to
indicate which string was played.

The ambiguity in fret-string contact due to multiple ways to
play the same note posed another risk. Generally, we want
notes around the same time to be played around the same fret.
This prevents users from needing to move their arms rapidly
up and down the guitar. To address this, we developed an
algorithm to determine which alternative of the same note is
most appropriate to play. The algorithm would take in multiple
parameters such as the note value, the previous note value, and
the time since the previous note was played and compute a
(fret, string) tuple output which specifies to the system where
the next note will be played. However, we noticed the
algorithm was imperfect and generated valid but not
necessarily optimal outputs. So throughout the development
cycle, we adjusted the algorithm when we noticed
discrepancies by adding more edge-case handling and tiny
tweaks that helped improve the fingering on the guitar. The
constant maintenance of the algorithm helped translate the
MIDI file notes and guitar notes much more simply and
mitigate the component’s risk.

A final risk we had to manage while working on the project
was the D-flip-flops. In our original design, we directly
connected the output of each flip-flop to the input of the next
flip-flop, as is typically done when creating a shift register.
However, during our testing, we discovered that on a single
clock edge, a signal could pass through up to 3 flip-flops. We
eventually discovered that this issue was caused by the
propagation time of the signals in the wires since we had used
high-speed flip-flops. The oscilloscope we wused while
debugging could not handle sub-nanosecond time steps,
making this issue difficult to locate. Although we eventually
located and resolved the issue, we formulated a backup plan
and instituted a date at which we would switch to the backup
plan. The plan was to run an individual wire to each fret
instead of using the flip-flops. Our final Pi-Hat PCB was
ordered before this issue was resolved, and as such, you can
see the numerous Teensy I/O that were broken out to pads in
case we switched to this plan.

IX. ETHicAL ISSUES

Although this product aims to help beginners learn to play
the guitar, this is also the population most susceptible to
problems arising from the misuse or failure of the project. In
terms of user safety, there is a very small risk of a shock.
While the system does have the user touching 3.3V, this is
through a current limiting resistor and poses no risk, as
explored previously. The only risk associated with the project
is the improper use of the wall power adapter, which could
introduce a safety hazard if the user improperly uses the
adapter or if the adapter fails. Besides the power supply, a
hardware failure of the system would not introduce any safety
risks but would rather hinder the training effectiveness of the

18-500 Final Project Report: Team A2 SuperFret 12/15/2023

project.

The user is also subject to the risks when using the web app
hosted on the Pi. While highly unlikely, it could be imagined
that if a malicious individual could gain access to the Pi and
manipulate the web app, they could acquire some information
from the user’s computer, such as browser session tokens and
cookies. In terms of misapplication, the Pi connects to the
internet. If the default Pi password is not properly changed,
the Pi can be hacked relatively easily and used to perform
some damage to the network it is connected to, depending on
the network's security.

When it comes to data, our project uses MIDI files that we
acquire from the internet. Ideally, these files would not contain
malicious information that would cause our system to become
a security threat. A thorough analysis of our system’s security
risks would be prudent.

X. RELATED WORK

Fret Zealot [8] is an existing product that is similar to ours.
It is a guitar learning tool hosted on a website with features
such as song tutorial videos and online guitar courses. They
also sell a set of guitar LEDs that allow users to learn chords
and songs, similar to our project.

However, this product lacks finger placement and strum
detection on the guitar and relies on a microphone. Thus, the
guitar cannot provide feedback regarding whether notes were
played correctly, rapidly, and accurately. Our product also
separates itself by collecting this data and displaying dynamic
songs moving at the user's pace. It also displays the timing and
accuracy information to the user, allowing them to observe
their skills increase over time. However, Fret Zealot’s
approach to guitar learning offers them distinct advantages.
The most prominent is that their LEDs are detachable, which
allows users to pick their own guitar for learning instead of us
deciding. Overall, our solution offers a more interactive
experience for the user.

XI. SUMMARY

The SuperFret project aimed to develop a system to assist
beginner guitar players in improving their skills and playing
basic songs. Learning new songs, practicing tempo, and
drilling finger exercises were made simple through our
interactive design, according to over 15 test users. Thus, we
met our design requirements.

The system's user-friendly interface, real-time feedback
through LEDs, and guidance enhance the learning experience.
The web application allows users to upload their favorite
songs for practice, promoting an enjoyable and tailored
learning journey. The system's ability to handle notes down to
1/8th at 100 BPM and accurately identify finger placement
and strumming with a 99% accuracy rate ensures a supportive
and effective practice environment.

However, the design of both our hardware and software
components limits the use of the guitar to single sequential
notes. This means that playing chords and sustaining notes is
not supported under our current architecture. Additionally,

11

communication between the website and the physical guitar is
severely unoptimized for low latency as it uses a simple http
protocol. This creates a small yet noticeable 215ms latency
between the virtual guitar and the physical one. Although the
Superfret system is a powerful tool for learning the guitar, it
could still benefit from more development, given these limits.

A. Future Work

Many more exciting enhancements could extend our
project’s use cases if given more time. Our team particularly
wanted to create an additional mode for displaying scales on
the guitar. This mode would display all the notes
corresponding to a scale (a subset of the possible 12 notes)
while allowing the user to practice only playing notes on a
scale. We think this could be a very effective tool for learning
the patterns that scales create on the fretboard. Additionally,
since our system already has finger sensing and strum
detection, we could implement a mode where a user can play
whatever they want on the guitar, and the resulting song will
be automatically recorded and stored in midi format for the
user to playback and edit. This could promote creativity in
users and entice them to explore the guitar further.

B. Lessons Learned

Throughout the development of this project, our team came
across some challenges that eventually turned into learning
experiences for us. The first challenge was carving out
channels across the wooden neck of the guitar to install our
PCB boards flush against the surface of the fretboard. We
initially did not plan for this to take long, but the process of
hand-grinding the channels took a day’s worth of time. We
underestimated the level of effort required to work with wood
which set us back in our schedule. For future projects that deal
with handling and modifying wood materials, we recommend
having a thorough plan in place with sufficient time in your
schedule dedicated to woodworking. It will take a lot of time
to complete, so one must ensure it is accounted for in their
team schedules.

Another learning lesson came when trying to implement
synchronization between the virtual guitar and the physical
guitar. Upon the addition of the virtual guitar, it was obvious
that it had to remain synchronized at all times with the
physical guitar. The complexity of our solution quickly blew
up as the front-end simulator had to request an update from the
RPi, which requested an update from the Teensy
microcontroller and then sent a response back. We suddenly
had to keep track of the state of three different system
environments, which was proving hard to do. We settled with
a slightly messy information pipeline that could have been
more optimized. With 20/20 vision, the lesson that we learned
from this was just how different the programming for
distributed computing is. A more thoughtful approach from a
distributed systems philosophy would have helped streamline
the communication protocols and make the code cleaner and
easier to reason with. For future teams that require distributed
computing for their project, we highly recommend researching
appropriate communication protocols that serve their projects'

18-500 Final Project Report: Team A2 SuperFret 12/15/2023

needs instead of trying to develop their own (for us, Remote
Procedure Calls would have worked very well). A good
framework could even abstract out a lot of the complexity of
this problem.

GLOSSARY OF ACRONYMS

BPM — Beats per Minute

COTS — Commercial Off-The-Shelf

GPIO — General Purpose Input Output

I/0 — Input and Output

MIDI — Musical Instrument Digital Interface
PCB - Printed Circuit Board

RPi — Raspberry Pi

SBC — Single Board Computer

REFERENCES

[1] “Live online guitar lessons: Learn guitar online,” Lesson With You,
https://lessonwithyou.com/guitar-lessons/ (accessed Oct. 13, 2023).

[2] “Acoustic bass guitar stock clipart: Royalty-free,” Freeimages,
https://www.freeimages.com/premium-clipart/acoustic-bass-guitar-4992
5967ref=clipartlogo (accessed Sep. 28, 2023).

[3] “IEC TS 60479-1” International Electrotechnical Commission. (2018).
IEC 60479-1:2018 Effects of current on human beings and livestock
(accessed Sep. 23, 2023)

[4] P. Stoffregen. “Teensy® 4.1 Development Board.”
https://www.pjrc.com/store/teensy41.html (accessed Sept. 28, 2023)

[5]1 P. Stoffregen. “CoreMark - CPU Performance Benchmark.”
https://github.com/PaulStoffregen/CoreMark#coremark---cpu-performan
ce-benchmark (accessed Sept. 28, 2023)

[6] “Arduino Memory Guide”
https://docs.arduino.cc/learn/programming/memory-guide (accessed Oct.
10, 2023)

[71 A. Matthies, “Guitar neck shapes & fretboard radius explained,”
Guitar Gear Finder,
https://guitargearfinder.com/guides/guitar-neck-shapes/ (accessed Oct.
12, 2023).

[8] “Best way to learn guitar: How to learn guitar at home,” Fret Zealot,
https://www.fretzealot.com/ (accessed Oct. 13, 2023).

[91 “Model View Controller”, Open Genuis IQ,
https://iq.opengenus.org/model-view-controller-django/ (accessed Dec.
152023)

[10] “pretty midi”, Craffel, https://craffel.github.io/pretty-midi/ (accessed

Dec. 15 2023)

12

https://www.pjrc.com/store/teensy41.html

13
18-500 Final Project Report: Team A2 SuperFret 12/15/2023

APPENDIX

Figure I: System Block Diagram

- Custom PCB (Pi Hat) N 15
N <
Frontend on Browser Raspberry Pi 4B :
WS2812 [Erethoard Fretboard Fretboard)
Virtual Guitar l Django Web Server I Protocol 5| PCB PCB PCB
MNeoPixel NeoPixel MNeoPixel
Sl > ‘ MIDI Preprocessing | Clock L [LEDs] B [LEDs]
- : d Data
MID! Displaying e e e{ [Fiip-Fiop o Flip-Flop to
: : — | Teensy Communication I Drive Fret « sed i indicats
Displaying Statistics | Aggregating Statistics | openstrings
i I
UARTz inlerruptsl Voltages on Guitar Strings
Bl Teensy 4.1 Voltage Stimulus rT o
- itar Pic
Converter NeoPixel Library a :
Buzzer for Reading Frets
Metronome EY
Reading Strums
= Custom Purchased
Determining Software [Hardware] Made J[Component]

Accura
4

Table I: Test Results

Metric Target Actual
MIDI to fretboard LED conversion accuracy 100% 100%
Finger placement detection accuracy 299% 100%
Strums per minute supported =200 300
Strum detection accuracy 299% 99%
Latency from strum to LEDs updating in response =50ms 1.85ms
Latency from strum to web app updating in response =250ms 215ms
Average current through body possible =1mA 5.37puA
Total system current with all LEDs at ¥ brightness =4 5A 0.96A

Table II: User Survey Results

Question Average Rating (1-10) | Sample Size
How intuitive is the web app interface? 9.3 8
How responsive is the web app? 10.0 8
How effective if the on-screen guitar at guiding you? 9.0 4
How aesthetically appealing is the web app? 7.0 4
How effective are the LEDs at indicating finger placement? 10.0 8
How non-intrusive are the guitar modifications? 9.9 8
How responsive is the guitar hardware? 95 8
How effective is the system at teaching you to play basic songs? 9.5 4
How would you rate the overall system experience? 9.8 8

18-500 Final Project Report: Team A2 SuperFret 12/15/2023

Table I11: Bill of Materials

14

Item Description Part Number Manufacturer Quantity Used | Quantity Bought | Unit Cost
Raspberry Pi 48 Single board computer, 1.5GHz, 4 Core, 4GB RAM SC0194(9) RPi Foundation 1 0 -
Teensy 4.1 Microcontrolier ARM Cortex-M7 600MHz microconirolier DEV-16771 PJRC 1 0 -
Pi Hat PCB Breakout PCB for Teensy and RPi 48 Custom JLCPCB 1 5 $0.40
Barrel Jack 5.5x2.1mm barrel jack connector 54-00133 Tensility Intl. 1 2 $1.05
Logic Level Converter Bidirectional voltage level translator, SOT23-6 SNT4LVC1TASDBVT Texas Instruments 1 5 $1.27
& SMD Schottky Diade Schottky diode, 40V, 1A, SOD123FL DSS514U SMC Diode Solutions 1 20 $0.15
E 0.1uF Capacitor 0.1uF ceramic capacitor 50V 0805 CL21B104KBFNNNE Samsung 3 0 $0.02
B8pF Capacitor BBpF ceremic capacitor 50V Radial KB80J15COGF5TLZ \ishay Beyschlag 1 '] -
< SMD Diode General purpose diode, 75V, 150mA, 0805 TS4148 RBG Taiwan Semiconductor 1 1] -
% 3.3K Resistor 3.3K Ohm 1% 1/8W 0805 RCOB0SFR-07 120RL YAGEQ 5 0 $0.02
% 100R Resistor 100 Ohm 0805 - - 1 o -
OR Resistor 0 Ohm Jumper 1/8W 0B0S RMCFD805ZTORDO Stackpole 1 10 $0.02
Active Buzzer 2kHz active piezoeleciric buzzer - B 1 1] =
Male Headers 0.1" male header pins. 1x24 - - 2 o -
Female Headers 0.1" female header pins, 1x24 - - 2 0 -
Female Headers 0.1" female header pins, 2x20 - - 1 0 -
- Fretboard PCB Small Custom PCBs for frethoad, small size Custom JLCPCB [} 20 $0.26
2 Fretboard PCB Large Custom PCBs for fretboad, large size Custom JLCPCB 7 20 $0.26
E NeoPixel LEDs Addressable NeoPixel RGE LEDs (10 Pack) 1655 Adafruit & 1 $4.50
2 D-Flip-Flop D-flip-flop SOT23-5 IC, 1 bit, rising edge, non-inveried SNT4LVC1GTIDBVR Texas Instruments 15 50 $0.33
) 3.3K Resistor 3.3K Ohm 1% 1/8W 0805 RCOBOSFR-07 120RL YAGEO 15 50 $0.02
B 10K Resistor 10K Ohm 1% 1/8W 0805 RMCFOB05FT 10KD Stackpole 15 25 $0.02
E SMD Diode General purpose diode, 75V, 150mA, 0805 TS4148 RBG Taiwan Semiconductor 15 0 -
B 0.1uF Capacitor 0.1uF ceramic capacitor 50V 0805 CL21B104KBFNNNE Samsung 75 125 002
20pF Capacitor 20pF ceramic capacitor 50V 0805 CO805C200JSHACTBO00 KEMET 15 0 -
SV/SA Wall Adapter AC/DC wall adapter 5V/5A 5.5x2.1 bamel plug PPL3GU-050 Phihong USA Corp. 1 1 $17.15
B Buck Converer 5A DC-DC buck converter, 5V-30V YH110598 - 1 0 -
§ LiPo Batery Floureon 351P 2200mAn lithium polymer battery - 1 0 -
XTB0 Connectors XTB0 maleffemale connecion pair - - 1 0 -
Acoustic Bass Guitar Full size 4 string acoustic bass guitar BOO3HBMX OO Best Choice Products 1 1 $100.99
26 AWG Hookup Wire Stranded 24AWG wire for connecting PCBs 15FT OFT
30 AWG Hookup Wire Solid core 3DAWG wire-wrap wire for connecting PCBs 12FT OFT
E IHeat Shrink 5mm 31 heat shrink 2FT 0FT
g Wire Sleeving 1/4” Expandable wire sleeving . 1FT OFT .
Male Buliet Connector 2mm gold buliet connector, male . 10 0
Female Buliet Connector 2mm goid bullel connector, female . . 10 0 .
Op-Amps BDIP CMOS rail 1o rall op-amps MCP802-E/P Microchip Technology 0 3 $0.82
Schottky Diode Schottky diode, 40V, 0.5A, 0805 SDO805S040S0RS KYOCERA AVX 0 25 50.31
‘s 20K Resistor 20K Ohm 1% 1/8W 0805 RMCFOBOSFT20K0 Stackpole 0 25 $0.02
= Conlormal Coating 422C-55MLCA 422C-55MLCA MG Chemicals 0 1 $23.04
Female Header 0.1" female header pins, 20 pos 2 row PPPC102LFBN-RC Sulling Connector 0 1 §1.28
Fretboard PCB Initial Rev Custom PCBs for fretboad, initial version Custom JLCPCB 0 10 50,50
é Fretboard PCB Stencil Initial Stencll for initial version of fretboard PCBs Custom JLCPCB 1] 1 $7.00
& |Fretboard PCB Stencil Smail Stencil for small version of fretboard PCBs Custom JLCPCB o 1 §7.00
% Fretboard PCB Stencil Large Stencil for large version of fretboard PCBs Custom JLCPCB 0 1 $7.00
§ Main PCB Stencil Stendil for main PCB Custom JLCPCB 0 1 $7.00
Total Bought
(wio Shipping) | 328285
Total Used $168.00

Table I'V: Unused Components

Component Reason Unused
Op-Amps Switch to metal guitar pick instead of audio based
Schottky Diode The standard diodes from Roboclub worked well
20K Resistor Ordered for back-up flip-flop implementation

Conformal Coating

Made irrelevant by 3D printed fretboard PCE covers

Female Header

Wrong size, needed 40 pos 2 row

15

18-500 Final Project Report: Team A2 SuperFret 12/15/2023

Fail Break

* Electrical
Diesigh schomatic + PCE for fro@asid LEDs
Drrsig circuit for dotacting guitar strumrs.
Firso tune values for strum circiit and tost on guitar
Bogin proliminary schomasicAmyout for P-hat
Tost LED lunctionaity of PCRs.
Worily functionality of fingos position sonsors
Finakre design of B Ha PCR
Rewisa Fofhoard I
Assombly and losting of P Hat PCR
Assomblo iuiboard PCHs
Miachanical modification io guitar
Add baktury ba system
Esistutio ltenicy Lasting

= Firmware
Able to indiidually addrens LEDSs sing Toensy
Establish plan for state machine/program fiow
Creste main Teansy loap and contrel signals
Seale machne implementod and testod
UART communication batween P and Teensy establsh
Abke: 10 rend INger DlaCemEnt SENS0TS on Betbaard PC_
Ao 1 fedd in strum signal
‘Read in song data from P
1P 2l o Use INGEITUDES 10 COMIrol Teansy stle maching
Teonsy sble 1 5ght up LEDS i Myihm with MIDS song
Teoey sble 1o deloct f finger position i fight 2 ime o_
Teensy able 1o analyze playing and send faedback to P
Metronome via speakos
Toorsy sbie 1o send Es1a back to P

* Software:
Sat up P wath Diango
‘Croste basic wobsonar hosted on Fi
Abla to upload files ko Pi via wabapp
P bl fo set GPIO) pins in response o webapg
'UART communication with Teensy
Pl absler 0 sl 30ng data o Teansy
Webapp nbie i send contml signads ia Teensy
e with Tesensy
Abbe 10 Fecehe data fom Tecnsy
\Upiating graphical interface in sync with playing
‘Webapp abk: 1o displary stapstics

SERRRERERERE

PRRTRERIEEY

|

5555333888388 8

EEEREEERREE R MERRRRERRRERE)

§88338338883¢8

Figure II: Gantt Chart

SEP 3023 OCT 7033 DEC 3033

L w 2 1 L] w = = 5 w - * 3 = L

N Owen. Tushaar
= = - = e B
‘m
| Astwin
-
: Ashiny
e
' R Astin
B st
. e
"G e

