
Team A2: SuperFret
Owen Ball, Ashwin Godura, Tushaar Jain

2

Use Case Requirements

Functional Requirements

● ‘Training’ and ‘Performance’
modes

● ≥14 frets (~2.5 octaves)
● Support 1GB of user’s MIDI files
● Audible Metronome for tempo

User Experience

● Intuitive web app
(<5 minutes to get acclimated)

● Electronics don’t interfere
● LEDs are visible and effective
● System is responsive

3

Solution Approach

4

Overall Block Diagram

5

Public Demonstration Solution

6

Public Demonstration Solution

● Customize song options

● Fill in the gaps

● Listen to the actual file

● View playing statistics

7

Testing, Verification, and Validation

Latency
Hardware: Use oscilloscope to measure delay between stimuli, such as time from
strumming to LEDs being updated
Webapp: Measure one-way latency using high frame-rate video

Accuracy

Strums: Play 200 notes at various BPMs on each string and record % correct
Finger Placement: Place a finger on each combination of string and fret position,
verify correct LED underneath is illuminated
LEDs: Load various MIDI files on guitar and verify that the proper notes are
illuminated

User
Experience

Have users evaluate categories on scales from 1 to 10 to create a quantitative metric

Webapp: Intuitive interface, easy to read statistics, intuitive uploading of songs, etc
Hardware: Comfort, effectiveness of LEDs, volume and pitch of metronome

8

Design Requirements
Metric Target Actual

MIDI to fretboard LED conversion accuracy 100% 100%

Finger placement detection accuracy ≥99% 100%

Strums per minute supported ≥200 300

Strum detection accuracy ≥99% 99%

Latency from strum to LEDs updating in response ≤50ms 1.85ms

Latency from strum to web app updating in response ≤250ms 215ms

Average current through body possible ≤1mA 5.37µA

Total system current with all LEDs at ½ brightness <4.5A 0.96A

9

Use Case Testing
Website:

● How intuitive is the interface? - 8.5
● How responsive is the website? - 10
● How aesthetic is the website? - 7

Guitar:
● How intrusive are our modifications? - 10
● How visible are the LEDs? - 10
● How Responsive is the guitar? - 9

How cohesive is the entire experience? - 10

Meaningful Comments:
● Some note placement timing can be tricky
● Power adapter is bulky

10

Engineering Tradeoffs
MIDI Parsing

Parsing on RPi and Teensy Only parsing on the RPi

Benefits
- Teensy gets musical information
- Decouple Teensy & RPi

development

- Simpler Teensy software
- Easier to maintain

Drawbacks - Complex Teensy software
- Code duplication

- Teensy doesn’t get musical information
- Couples Teensy & RPi development

11

Engineering Tradeoffs
Audio/Piezoelectric vs Pick-Based Strum Detection

Audio/Piezoelectric Electrode on Pick

Benefits
- Non-intrusive
- Can play without pick

- Extremely fast response time (~1.5ms)
- Immune to external noise and vibrations
- Allows detection of which string strummed

Drawbacks

- Sensitive to external noise
- Slow response time (~50ms)
- Complex to calibrate
- Relatively inaccurate (~90%)

- Requires playing with a custom guitar pick
- More intrusive to user

Tested solution for audio-based detection Pick with metal electrode

12

Project Management

Fretboard PCB
Design

Fretboard PCBs
Arrive

Pi Hat
Design

Pi Hat PCBs
Arrive

Updated Fretboard
PCBs Arrive

Revising
Fretboard PCBs

PCB
Testing

Strum
Detection

PCB
Assembly

Control
NeoPixel LEDs

Set Up
Pi

Teensy State
Machine

Reading
UART from Pi

Testing Fretboard
PCBs

Reading Song
Data From Pi

‘Training’
Mode

Run Basic
Web App

Upload
Songs

Send Teensy
Interrupts

Sending
UART data

Reading Data
from Teensy

On Screen
Guitar

Finalizing
Project Scope

All systems connected
and in testing

Mechanical Design
& Assembly

System
Testing

Full Pi
Integration

‘Performance’
Mode

Displaying
Statistics

Integration Demo
Prep

Team

Owen

Tushaar

Ashwin

