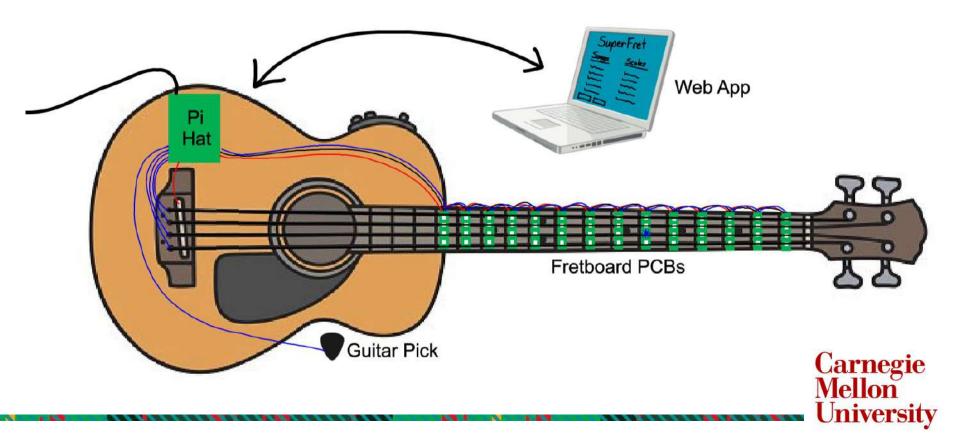
Carnegie Mellon University

Team A2: SuperFret

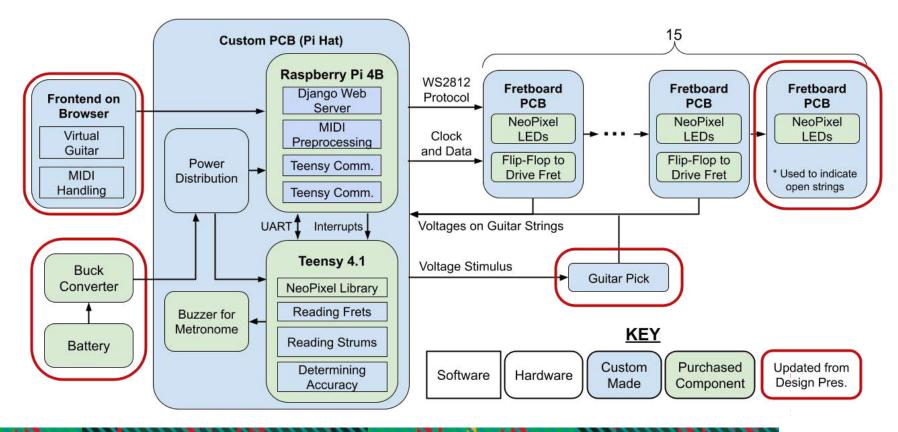
Owen Ball, Ashwin Godura, Tushaar Jain

Use Case Requirements

Functional Requirements

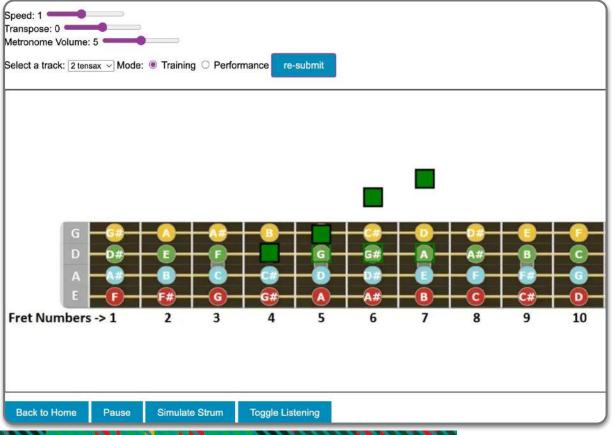

- 'Training' and 'Performance' modes
- ≥14 frets (~2.5 octaves)
- Support 1GB of user's MIDI files
- Audible Metronome for tempo

User Experience


- Intuitive web app (<5 minutes to get acclimated)
- Electronics don't interfere
- LEDs are visible and effective
- System is responsive

Solution Approach

Overall Block Diagram


Public Demonstration Solution

Public Demonstration Solution

- Customize song options
- Fill in the gaps
- Listen to the actual file
- View playing statistics

Testing, Verification, and Validation

Latency	<u>Hardware:</u> Use oscilloscope to measure delay between stimuli, such as time from strumming to LEDs being updated <u>Webapp:</u> Measure one-way latency using high frame-rate video
Accuracy	Strums: Play 200 notes at various BPMs on each string and record % correct Finger Placement: Place a finger on each combination of string and fret position, verify correct LED underneath is illuminated LEDs: Load various MIDI files on guitar and verify that the proper notes are illuminated
User Experience	Have users evaluate categories on scales from 1 to 10 to create a quantitative metric <u>Webapp:</u> Intuitive interface, easy to read statistics, intuitive uploading of songs, etc <u>Hardware:</u> Comfort, effectiveness of LEDs, volume and pitch of metronome

A LE CALENDARD C

Design Requirements

Metric	Target	Actual
MIDI to fretboard LED conversion accuracy	100%	100%
Finger placement detection accuracy	≥99%	100%
Strums per minute supported	≥200	300
Strum detection accuracy	≥99%	99%
Latency from strum to LEDs updating in response	≤50ms	1.85ms
Latency from strum to web app updating in response	≤250ms	215ms
Average current through body possible	≤1mA	5.37µA
Total system current with all LEDs at ¹ / ₂ brightness	<4.5A	0.96A

Use Case Testing

Website:

- How intuitive is the interface?
- How responsive is the website?
- How aesthetic is the website? 7

Guitar:

- How intrusive are our modifications? 10
- How visible are the LEDs? 10
- How Responsive is the guitar? 9

How cohesive is the entire experience? - 10

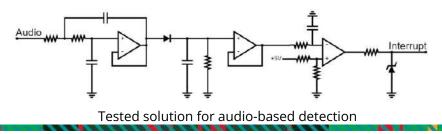
Meaningful Comments:

- Some note placement timing can be tricky
- Power adapter is bulky

Carnegie Mellon University

Engineering Tradeoffs

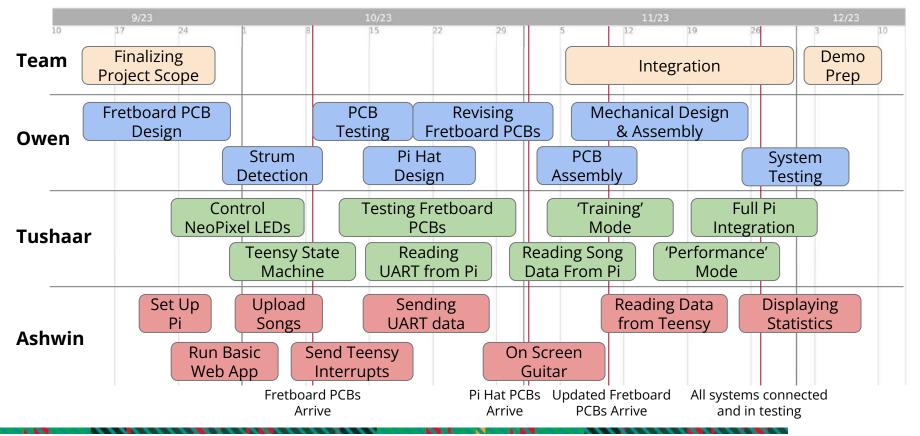
MIDI Parsing


	Parsing on RPi and Teensy	Only parsing on the RPi
Benefits	 Teensy gets <i>musical</i> information Decouple Teensy & RPi development 	Simpler Teensy softwareEasier to maintain
Drawbacks	Complex Teensy softwareCode duplication	 Teensy doesn't get <i>musical</i> information Couples Teensy & RPi development

Engineering Tradeoffs

Audio/Piezoelectric vs Pick-Based Strum Detection

	Audio/Piezoelectric	Electrode on Pick
Benefits	Non-intrusiveCan play without pick	 Extremely fast response time (~1.5ms) Immune to external noise and vibrations Allows detection of which string strummed
Drawbacks	 Sensitive to external noise Slow response time (~50ms) Complex to calibrate Relatively inaccurate (~90%) 	 Requires playing with a custom guitar pick More intrusive to user


Pick with metal electrode

11

Carnegie Mellon

University

Project Management

