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Use Case Requirements

Functional Requirements

● ‘Training’ and ‘Performance’ 
modes

● ≥14 frets (~2.5 octaves)
● Support 1GB of user’s MIDI files
● Audible Metronome for tempo

User Experience

● Intuitive web app
(<5 minutes to get acclimated)

● Electronics don’t interfere
● LEDs are visible and effective
● System is responsive
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Solution Approach
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Overall Block Diagram
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Public Demonstration Solution
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Public Demonstration Solution

● Customize song options

● Fill in the gaps

● Listen to the actual file

● View playing statistics
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Testing, Verification, and Validation

Latency
Hardware: Use oscilloscope to measure delay between stimuli, such as time from 
strumming to LEDs being updated
Webapp: Measure one-way latency using high frame-rate video

Accuracy

Strums: Play 200 notes at various BPMs on each string and record % correct
Finger Placement: Place a finger on each combination of string and fret position, 
verify correct LED underneath is illuminated
LEDs: Load various MIDI files on guitar and verify that the proper notes are 
illuminated 

User 
Experience

Have users evaluate categories on scales from 1 to 10 to create a quantitative metric

Webapp: Intuitive interface, easy to read statistics, intuitive uploading of songs, etc
Hardware: Comfort, effectiveness of LEDs, volume and pitch of metronome 
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Design Requirements
Metric Target Actual

MIDI to fretboard LED conversion accuracy 100% 100%

Finger placement detection accuracy ≥99% 100%

Strums per minute supported ≥200 300

Strum detection accuracy ≥99% 99%

Latency from strum to LEDs updating in response ≤50ms 1.85ms

Latency from strum to web app updating in response ≤250ms 215ms

Average current through body possible ≤1mA 5.37µA

Total system current with all LEDs at ½ brightness <4.5A 0.96A
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Use Case Testing
Website:

● How intuitive is the interface?   - 8.5
● How responsive is the website? - 10
● How aesthetic is the website? - 7

Guitar:
● How intrusive are our modifications? - 10
● How visible are the LEDs? - 10
● How Responsive is the guitar? - 9

How cohesive is the entire experience? - 10

Meaningful Comments:
● Some note placement timing can be tricky
● Power adapter is bulky
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Engineering Tradeoffs
MIDI Parsing

Parsing on RPi and Teensy Only parsing on the RPi

Benefits
- Teensy gets musical information
- Decouple Teensy & RPi 

development 

- Simpler Teensy software
- Easier to maintain

Drawbacks - Complex Teensy software
- Code duplication

- Teensy doesn’t get musical information
- Couples Teensy & RPi development 
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Engineering Tradeoffs
Audio/Piezoelectric vs Pick-Based Strum Detection

Audio/Piezoelectric Electrode on Pick

Benefits
- Non-intrusive
- Can play without pick 

- Extremely fast response time (~1.5ms)
- Immune to external noise and vibrations
- Allows detection of which string strummed

Drawbacks

- Sensitive to external noise
- Slow response time (~50ms) 
- Complex to calibrate
- Relatively inaccurate (~90%)

- Requires playing with a custom guitar pick 
- More intrusive to user

Tested solution for audio-based detection Pick with metal electrode
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