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Abstract—Traditional guitar training tools can show an image
of note fingering to users, but going from this image to actually
placing the fingers on the strings can be difficult. With the
SuperFret system, LEDs on the guitar fretboard will show users
exactly where to place their fingers on the guitar. The system will
also detect where the user’s fingers are located and when they
strum the guitar, allowing the system to determine if the user
plays the correct note. This will allow users to learn the guitar
more rapidly and engagingly.

Index Terms—Fretboard, fret, guitar, metronome, MIDI file,
strum, NeoPixel (addressable LED), Raspberry Pi, string, Teensy
4.1 (microcontroller), web app.

1. INTRODUCTION

THIS project aims to create a more intuitive guitar training

tool for beginners. When first learning the guitar, beginners
often struggle with translating an image of how to play a note
to an actual finger placement on the fretboard, the part of the
guitar where users place their fingers to change the pitch of
notes. Traditional tools show beginners tabs or images of
where to put their fingers, which they must first interpret, then
look at the fretboard to place their fingers. For new guitar
players, this increases the complexity of learning the guitar.
Since beginners are already looking at the fretboard when
playing a note, indicating where to put their fingers directly on
the fretboard makes sense. By using LEDs, or light-emitting
diodes, to indicate to users where to place their fingers, the
process of playing new notes and songs is expedited and made
more natural for beginners.

While more advanced guitar players can learn to sight-read
guitar tabs and images of notes, these skills take time to
develop and build muscle memory. When learning guitar,
jumping straight into reading tabs and notes can be
overwhelming when learning guitar. The SuperFret system
targets absolute beginner guitar players trying to pick up a
guitar and play for the first time. Indicating to beginners where
to put their fingers will enable them to build finger dexterity
and the skills to play notes without being inundated with
foreign guitar notation. This removes one of the major hurdles
beginner guitar players face, making playing the guitar more
approachable and enjoyable.

The SuperFret system will also detect the position of the
user’s fingers and when they strum, allowing the user to
receive real-time feedback to ensure they are playing the
correct notes and strumming at the right time. A web app will
display that feedback to the user, allowing them to see their

progress and determine where to improve.

Guitar training resources are not a novel idea, with private
teachers, training apps, and accessories being commonplace.
Private teachers are costly, running around $40-$90 an hour
[1]. This results in many individuals favoring personal training
tools, such as apps showing them where to put their fingers
and listen to their playing. While tools like this are affordable,
they require users to look at a screen to determine what note to
play and then try to match their fingers to the image on the
screen. They also require quiet environments to analyze the
user’s playing and cannot provide feedback until the user
strums. By integrating LEDs on the fretboard, the SuperFret
system makes it easier for users to place their fingers in the
correct location.

A handful of existing training tools integrate LEDs onto the
fretboard, but these systems also require quiet environments to
analyze the user’s finger location. The SuperFret system will
directly detect the user’s finger locations, thus enabling a more
accurate analysis of the user’s playing.

Overall, the SuperFret system should allow beginner guitar
players to quickly learn to play notes and basic songs. The
system will determine if the user is playing correctly and
provide feedback and control over the system through a web
app interface

II. USE-CASE REQUIREMENTS

The target users of the SuperFret system are beginner guitar
players looking to improve their skills and play basic songs.
As such, the use case requirements are informed with
beginners in mind. Beginner guitar players should find the
overall experience of the web app and hardware intuitive, as
the goal of the project is to remove barriers to entry. From
picking up the system to strumming notes, users should only
need around 5 minutes to get started with the system. Users
shall be able to upload MIDI files (file format for representing
music) for songs they want to practice. The system should also
support selecting various other training activities, such as
playing finger exercises and scales.

The system shall handle notes down to 1/8™ notes at 100
beats per minute (BPM). This corresponds to 200 notes per
minute maximum, or around 3 notes a second, faster than most
beginner guitar players can handle. The system should be able
to identify the user’s finger placement and strumming with
99% accuracy, corresponding to approximately 1-2 missed
notes per minute by the system. This will likely be far lower
than the number of mistakes made by the user, so this
accuracy will be sufficient for the system.
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I11. ARCHITECTURE AND PRINCIPLE OF OPERATION

Fretboard PCBs

Fig. 1. A depiction of the physical system. Guitar image from [2]

The overall system is shown in Fig. 1. The user interacts
with the system through their personal computer by accessing
a web app. They upload songs and choose scales to practice
on. When ready to practice, they click “Start” on the screen,
place their fingers on the lit-up LEDs, and strum. Statistics
about their progress are aggregated and displayed on the web

app.
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Fig. 2. High-level Architecture Block Diagram.

Overall, the system is composed of 3 parts — the web
application (“web-app”’) hosted on a Raspberry Pi 4B (“RPi”),
a Teensy 4.1 microcontroller, which is the brain of the
embedded system, and the electronic hardware on the guitar.
The wuser interacts with the system through the web
application, which allows them to upload songs they want to
learn, choose scales to practice, and receive statistics on their
playing. The user uploads songs as MIDI files, which encode
note and timing information for the song. The MIDI file is
passed from the web app to the Teensy, which uses the file as a
reference to guide the user to play the correct notes. LEDs on
the fretboard guide finger placement, and the Teensy lights
them according to the target note it parses from the MIDI file.
The LEDs reside on Printed Circuit Boards (PCBs) along the
fretboard. The PCBs also contain circuitry for determining
which note the user has fingered on the fretboard. Other
electronic hardware on the guitar includes a piezoelectric
sensor and accompanying circuitry for strum detection. By
detecting which note the user’s fingers are on and when they
strum it, the Teensy can determine deviations from the notes
and timing information specified in the MIDI file and send

aggregated statistics back to the RPi for display on the web
app.
A. Web Application

As shown in the high-level block diagram (Fig. 2), the RPi
hosts both the web app and communicates with the Teensy
microcontroller. The web app is written in Python using the
Django web framework, which combines the frontend,
backend, and the database into one Model-View-Controller
design pattern (Fig. 3) to create web endpoints that the user
can access via a web browser. There are 3 communication
“streams” between the RPi and the Teensy to relay
information from the user to the Teensy: bidirectional
communication with the Teensy over UART accounts for 2
streams, and the third is for interrupt signals that control the
state machine (Fig. 9) inside the Teensy.
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Fig. 3. Django Web Frame Work Implements Model-View-Controller

B.  Teensy and Embedded System

Besides the 3 previous streams, the Teensy communicates
with the electronic hardware on the right side of Fig. 2 through
4 streams.

First, the Teensy specifies the color of each NeoPixel LED
on the fretboard through the protocol for WS2812 LEDs,
which is the chipset the NeoPixel implements.

The Teensy determines where on the fretboard the user has
pressed on a string by detecting the electrical contact between
each of the 4 strings with 14 frets. This is done by applying a
voltage stimulus to one of the 14 frets and then reading the
voltage on each of the 4 strings. A high reading on a string
indicates that the string is pressed down against the fret on
which the voltage stimulus is being applied. By putting
D-Flip-Flops between each fret, the voltage stimulus is
clocked “down” the fretboard as if the D-Flip-Flops formed a
shift register. This way, only 2 signals are required for creating
the voltage stimuli for the frets, as opposed to having 14
signals, with one per fret.

The Teensy also detects when the note is strummed by
monitoring an interrupt produced by the Strum Detection
circuitry.

C. Electronic Hardware

Each fret is associated with a PCB, which contains 4 LEDs,
one per string. The PCB also has a D-Flip-Flop to receive the
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voltage stimulus from the previous PCB, apply the stimulus to
the current fret, and forward the stimulus to the next PCB.

The Strum Detection circuitry is analog and takes the
electrical signal from the piezoelectric pickup integrated into
the guitar as an input. The signal is put through several signal
processing stages, ultimately generating a digital value
indicating whether the guitar was strummed. This digital
signal serves as an interrupt for the Teensy and is used as a
control signal to the internal state machine running on the
Teensy.

IV. DESIGN REQUIREMENTS

To meet the use-case requirements, several critical design
specifications have been established for both the hardware and
firmware components, as well as the web application of the
SuperFret system. For the hardware and firmware, achieving a
latency of less than 50ms from strum detection to LED
response (the threshold of human visual perception) is
paramount to provide users with real-time feedback during
practice sessions. Additionally, the system must support down
to 1/8th notes at 100 BPM to accommodate different tempos,
and it should indicate the target tempo at a minimum volume
of 70 dB, ensuring the signal is audible. The feedback
mechanism is designed to provide visual and audible cues for
in-time playing accuracy with a response time of at most less
than 100ms, ensuring that the user can practice with a
consistent tempo.

The fretboard must incorporate 56 individually addressable
LEDs to offer detailed visual guidance for different notes and
scales. The rest of the board is unnecessary, as beginner users
rarely use the upper portion of the guitar. Since scales require
most of the board to be lit up at the same time, the system
should allow 2/3 of the fretboard to be illuminated at half
brightness, striking a balance between visibility, convenience,
and safety.

Safety is a key consideration, as the guitar strings will be
driven to 3.3V. According to IEC TS 60479-1, currents below
500pA  through the body are imperceptible and safe.
Therefore, the current that flows through the user under
normal operating conditions should be under 500pA. Under
abnormal operating conditions, such as if the system gets wet
while being used, the current through the body should not
exceed ImA (the maximum current that can pass through a
human body without impacting the user’s muscles) [3].

The web application's design requirements focus on
enabling the user to control the guitar and pause songs. The
file upload capability should support up to 1GB of users' MIDI
files for a personalized learning experience. The display of
practice statistics, rhythm and accuracy scores, and song
upload must respond to user input within 0.25 seconds, given
a reasonably functioning network.

These design specifications ensure SuperFret meets the
defined use-case requirements.

The quantitative specifications are summarized:

Specification Value

Strum to LED latency <50ms

Total system
LEDs
Safety

100 beats per minute support

> 56 individually addressable LEDs
< 1 mA through body

1GB

<0.25 second

File storage

Network delay

Finger placement Detection  [99% accuracy

lighting up the correct LED(s) | 100% accuracy

V. DEsIGN TRADE STUDIES

A. Single-Board Computer vs Microcontroller

The main computer selected for the project was the
Raspberry Pi 4B. The processing tasks associated with this
project consist of running a web app, controlling the fretboard
LEDs, reading from the fret sensors, and processing statistics.
Both a single-board computer (SBC) and a WiFi-equipped
microcontroller could perform these tasks. Single-board
computers are typically worse at handling real-time interaction
with their environment because the processor also handles the
overhead of running the computer's operating system.
Additionally, the hosting of the web app can introduce delays
that will result in not meeting input and output (I/O) latency
requirements. Running the system off a WiFi-equipped
microcontroller like the ESP32S3 would enable high-speed
I/O. However, running the web app in parallel to this on the
microcontroller would be challenging due to the
single-threaded nature of most microcontrollers. Running the
system off a microcontroller would also introduce significant
restrictions on the web interface's functionality due to the
microcontrollers' limited memory. For these reasons, we chose
to pursue a split architecture, with an SBC running the
high-level control of the system, namely running the web app,
storing user-uploaded music, and coordinating the system's
overall state. A microcontroller will run the real-time I/O
without worrying about hosting a web app, allowing the target
latencies to be achieved. The SBC chosen was the Raspberry
Pi 4B due to its widespread documentation and support, and
the microcontroller chosen was the Teensy 4.1 due to its
plentiful GPIO pins and high clock speed.

B. Microcontroller Choice

Members of the group were already familiar with using
several microcontrollers typically used in electronic projects,
and familiarity was the main driving force behind selecting a
microcontroller. We considered the Arduino UNO, Arduino
Mega, Raspberry Pi Pico, Teensy 4.0, and Teensy 4.1. Of
these, we wanted a microcontroller with fast clock speed to
enable multiple tasks and enough memory to store a MIDI
file’s worth of data.

We found a benchmark that showed the Teensy class of
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microcontrollers were the fastest computers of the ones we
were familiar with:
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Fig. 4. The “CoreMark” CPU Performance Benchmark [4], [5]

We conservatively estimated the typical training song would
be 2 minutes, with up to 200 notes per minute, and each note
would take 5 bytes to specify in the MIDI format (2 for the
duration in “delta ticks” and 3 for the event). Thus, we
required a microcontroller with at least 2kB of memory. We
eliminated the Arduino UNO, which only has 2kB of SRAM
[6].

After considering the degree of prior experience, CPU
performance, memory, and availability, we selected the Teensy
4.1 because it was strong across each desired trait, and we
already had access to it, making it the cheapest option.

C. Fret-Sensing Implementation

To determine the user’s finger placement, the system uses
the ‘switch’ formed when the user presses a string into a fret.
GPIO pins on microcontrollers are limited, and wires interfere
with the experience of the guitar. To reduce pin and wire
count, a switch array can be employed. By driving each fret to
3.3V one by one and then reading the voltage on each string,
the detection of any strings touching the 3.3V fret can be
performed. This requires 18 GPIO pins - 4 for the strings and
14 for the frets. This still requires 14 wires to be run from each
fret to the microcontroller. Since a switch array necessitates
that each fret is driven to 3.3V one at a time, the GPIO count
can be reduced to

4 Strings + ceiling(log,(14)) = 8 (1)

pins using a decoder circuit. However, this would require
decoding circuitry next to each fret, which would take up the
limited space available. By using a “shift-register” style
approach, with each fret requiring only a single D-flip-flop,
the system can use only 6 GPIO pins, 4 for the strings, 1 clock
line, and 1 data line. This solution, shown in Fig. 5, requires
only 2 wires between each fret, a shared clock line, and the
data outputted by the previous fret’s D-flip-flop. The only
tradeoff of this implementation is that each fret needs a
D-flip-flop, but this drastically outweighs requiring 14
individual wires for each fret.

Data —p QP QP QP QP Q
CLK CLK CLK CLK CLK
Clock T ‘E T I[ T T[ T "E T
g g g g g
Strings ¢ L ¢ ¢ ¢
g C g 0 0
r r r r r
Frets
Fig. 5. A 6 GPIO method for reading finger positions

D. Fretboard PCB Design

Due to the finger placement sensing implementation making
use of a D-flip-flop next to each fret, and the design requiring
4 addressable LEDs per fret, implementing a PCB to mount
these components is the ideal solution. It would be possible to
use commercial off-the-shelf (COTS) LED strips and run a
separate wire to each fret, but it is not possible to buy LED
strips with the exact spacing needed for the guitar strings, as
this would require many wires, as discussed previously.

There are a handful of ways to implement PCBs along the
fretboard. The first way is to remove and replace the guitar's
fretboard with a single PCB. This would completely eliminate
the need for external wires along the fretboard but would
introduce mechanical challenges. Since the fretboard holds the
frets in place, we would need to devise a new way of
mounting the frets securely, and we would need to perfectly
match the spacing of the original fretboard to keep the guitar
in tune. Additionally, this would require completely removing
the guitar's fretboard, which can be challenging to perform due
to the glue between the fretboard and the rest of the guitar.
These factors increase the risk associated with the project, so
we chose not to pursue removing the fretboard.

The other two implementations involve creating individual
PCBs mounted next to each fret. This approach allows the
fretboard to remain mounted to the guitar and removes the
need to perfectly replicate the spacing between the frets on a
PCB. These PCBs can be mounted on the fretboard or placed
in carved-out channels next to each fret. The advantage of
placing the PCBs on top of the fretboard is that no mechanical
modification to the guitar fretboard is necessary. The
disadvantages of this approach are that the fretboard is curved,
as shown in Fig. 6, and that the frets only extend above the
fretboard by 1.5mm.

Fig. 6. Cross section of a guitar fretboard. The fretboard surface is curved,
making PCB mounting difficult [7].

The curved surface of the fretboard makes mounting rigid
PCBs directly to the fretboard difficult. A flexible PCB would
resolve this issue by allowing the PCB to conform to the shape
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of the fretboard. However, since the frets only protrude from
the fretboard by around 1.5mm, the total height of the LEDs
and the PCB cannot exceed around 1mm. The addressable
LEDs being used have a height of 1.6mm, so to ensure these
do not get in the way while the user plays the guitar, the PCBs
will have to sit in recessed channels in the fretboard. These
channels can be flat on the bottom, meaning flexible PCBs are
no longer necessary. Due to the higher costs and lead times
associated with flexible PCBs, we pursued 14 rigid PCBs,
each placed into carved-out channels next to the frets.

VI. SYSTEM IMPLEMENTATION

Appendix Table 1 has a more detailed technical block
diagram of the system as a whole, beyond what was shown in
Fig. 1. The system consists of three main subsystems — the
user frontend hosted using the RPi, the physical hardware used
to interface with the guitar and user, and the microcontroller
system directly interacting with this hardware.

A. Raspberry Pi Subsystem

Raspberry Pi 4B

Django Web
Server

MIDI
Preprocessing

Fig. 7. Block diagram for the RPi. Zoomed-in crop of block diagram in
Appendix Table I.

1) Django Web Server

The RPi hosts a web server powered by Python’s Django
Web Framework. This server creates a local endpoint
reachable via a browser that responds with an HTML page
containing all the functionality needed for the user to
communicate with the guitar. Specifically, the web server
implements these endpoints:

http://a2superfret.wifi.local.cmu.edu:8000/
- home - retrieves the home page
- addfile - uploads a file to
- deletefile/{songname} - deletes a file
- startfile/{songname} - tells guitar to start song
- stopFile - tells guitar to stop song
- getStats - get the user’s statistics of previous songs

A SQL database will house all the file and user information to
achieve a consistent state for the server. Each entry in the
database will represent a song and contain:
- name: name of the song/file
- file: the file path to the MIDI (actual file will be
stored in a separate folder)
- active: a boolean to store if the song is currently
being played
- type: either a song or scale

2) MIDI Pre-Processing

A MIDI file is organized into 1 header section and at least 1
“Track” section. The header specifies timing information to
determine some timing info and the number of track sections
that follow. Each track section specifies a tempo, notes, and
duration information.

Before forwarding the user’s MIDI file to the Teensy, the
RPi lightly pre-processes it so the Teensy is not burdened with
parsing through information it does not need. For example, the
MIDI Header and Track sections contain byte counts, the
instrument's name, and other preamble that the Teensy does
not need. So, the RPi can strip that extraneous information out
and send an “abridged” MIDI file, so the Teensy only needs to
parse the essential tempo, timing, and note information.

3) Teensy Communication

The RPi will run a UART communicator process to
establish and maintain a connection between the Teensy and
the Pi over a specified port. Its job will be to receive user
requests from the web server and convert them into signals,
which can then be sent to the teensy and vice-versa. Upon a
start request from the user, the web server will tell the UART
communicator to send a specific file to the microcontroller by
first sending a “file transmission” (Fig. 9) interrupt, followed
by all the file data. One idea was to send the file one packet at
a time as needed, but this was abandoned due to network
latency concerns. When a fileStop command is issued, the
UART communicator will interrupt the Teensy by raising its
PAUSE GPIO pin to high. Any other communication needed
will look very similar.

B. Teensy/Embedded Subsystem

Teensy 4.1
| MIDI Parsing |

I NeoPixel Library |

| Reading Frets |

Reading Strums

Determining

\ Accuracy

Fig. 8. Zoomed-in crop of block diagram in Appendix Table 1. The
Teensy microcontroller is the glue between the User Interface and the
electronic hardware. The Teensy’s software is structured as a state
machine.

1) State Machine

A state machine controls the high-level decisions made by
the Teensy. There are two classes of inputs to the state
machine - interrupts generated by the RPi (shown in purple in
Fig. 9), which are based on the user’s interaction with the
system, and inputs originating from the operation of the
system itself (shown in red in Fig. 9).
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When the system is first turned on, or “idling,” it starts in
the “WAIT TO START” state. Once the user selects a song or
scale on the web app, the RPi asserts a GPIO pin high, causing
a rising edge on the “file transmission” digital pin of the
Teensy. This causes the Teensy to enter the “RECEIVING
SONG” state to listen to the RPi over UART for a stream of
bytes constituting the MIDI file. Once the RPi transmits the
file, it asserts the same pin low, and the Teensy interprets the
falling edge as the end of file transmission.

Having received the MIDI file, the Teensy transitions to the
“WAIT FOR STRUM?” state, where it parses the file and waits
for the user to start playing the guitar by strumming. The
strum input is a digital signal generated by the
strum-detection circuitry detailed in the following “Electronic
Hardware” section. When the first strum is sensed, the Teensy
enters the “USER EXPERIENCE” state, where it lights up
LEDs, reads frets, and continues detecting strums.

Once the user finishes playing the song (the end of the
MIDI file is reached), the “WAIT TO START” state is entered
again. The Teensy enters the PAUSED state if the user pauses
the system through the web app. The Teensy enters the initial
state if the user restarts the system through the web app.
Otherwise, it waits until a strum is detected to resume the user
experience.

file_transmission

file_transmission file_transmission

Receiving
Song

file_transmission

sfrum

strum & restart

done & pause

Experience done & pause

Fig. 9. State Machine for the Teensy’s Software

2) MIDI Parsing

The “abridged” MIDI file coming from the RPi only
contains the timing and note information the Teensy needs to
determine when to light up a particular note’s LED and when
it should expect the user to play that note.

From a timing perspective, the goal is to find the number of
seconds to wait before a note is played and how long before
the note is released. However, the MIDI file specifies such
information as “MIDI ticks” elapsed, a somewhat arbitrary
time unit. MIDI files typically specify two conversions to
transform ticks into seconds. One is the number of MIDI Ticks
per quarter note (TPQN), and the other is microseconds per
beat, or tempo. Since a beat is defined to be the length of a
quarter note, the following formula holds:

MIDI tick duration

us duration = TPON

X tempo 2)

This allows conversion of durations specified in terms of
“MIDI Ticks” into absolute time units that can be measured
and timed on the Teensy.

TPQN is specified as the 4th line in the MIDI file header
(Fig. 10). The tempo is specified towards the beginning of the
“MTrk” (Track) portion of the file by the byte sequence FF
51 03 XX XX XX. “XX XX XX?” is the hexadecimal
representation of the number of microseconds per beat. Since
1 beat corresponds to a quarter note, the tempo sets the length
of a quarter note. When such parameters are not specified,
defaults outlined in the MIDI file standard are used [8]. The
default TPQN is 48, and the default tempo is %
The following formula is used to express the tempo in the
more familiar BPM [9]:

BPM = 60 seconds 1,000,000 ps 1
~ 1minute 1 second tempo
4D 54 68 64 (MThd)
00 00 00 06
00 01 (format 1 = one or more simultaneous tracks)
00 03 (3 tracks)

01 80 (0x180 = 384 ticks/quarter note)

00 00 01 D2 (Chunk length 0x01D2 = 466 bytes follow)

00
FF 58 04 [IEIBENIEIEE (time signature)

FF 51 03 08 52 AE (tempo = 0x0852AE = 545,454 us/beat = 2.1812 seconds /
measure == 110 BPM)

00

Fig. 10. MIDI TPQN and tempo parsing example for an excerpt from a
“Twinkle Twinkle Little Star” MIDI file [10]. Here, the TPQN is 384,
and the tempo is 545,454 microseconds per beat.

The “track” portion of the MIDI specifies events such as
playing a particular note (“Note ON” event) and releasing a
note (“Note OFF” event) [11]. The duration to hold a note and
wait before playing the next note is specified in terms of MIDI
ticks. This number is encoded using a Variable Length
Encoding (VLE) Format [11] [12]. Fig. 11 shows an example
of parsing the variable length encoding “81 40” into a tick
duration. The figure also shows Note ON and OFF events for
playing the note C4 twice.

00 (0 delta MIDI ticks)
90 3C 32 (0x90 = Note ON event, 0x3C = Note 60 (C4))
81 40 (1]000|0001 0]100{0000 = 000]0001|100j0000 = 192 ticks)
80 3C 00 (0x80 = Note OFF event, 0x3C = Note 60 (C4))
8140
90 3C 32
8140
80 3C 00

Fig. 11.  MIDI note and duration parsing example. This is an excerpt from a
Track portion of a MIDI file for Twinkle Twinkle Little Star [10].
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3) LED Control

The Teensy stores a “note schedule” indicating when
particular notes should be played or released. As the Teensy
executes in the USER EXPERIENCE state, it compares the
current time to entries in the note schedule to see if it is time
for a note to be played or released. Once the particular note is
determined from the note schedule, the corresponding LED
position is determined by indexing into a static mapping
relating notes to LED positions on the fretboard.

C. Electronic Hardware Subsystem

The interaction between the Raspberry Pi, the Teensy, the
guitar, and the user is provided by a series of hardware
components. These consist of sensing components to take in
information from the environment, components that provide
user feedback, and various power and data interconnects.

14

\ AL
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WS2812 Fretboard Fretboard
Power Protocol | PCB PCB
Distribution NeoPixel NeoPixel
Clock LEDs e LEDs
d Dat
anc e, | (Flip-Flop to Flip-Flop to
Drive Fret Drive Fret

Voltages on Strings

Audio Signal
g Piezo + Amplifier

Buzzer for
Metronome

Strum Detection
Analog Circuit

Fig. 12.  Zoomed-in crop of block diagram in Appendix Table I, focusing
on the electronic hardware.

1) Strum Detection

The system must determine when the guitar is strummed to
know if the user played the desired note correctly. To
accomplish this, a circuit takes in the guitar's audio signal and
outputs a digital signal indicating when the guitar is
strummed.

Rather than using a microphone to pick up the sound
produced by the guitar, our system uses a piezoelectric sensor
integrated into the guitar. This sensor converts the mechanical
motion of the guitar strings into a voltage. This process is
subject to significantly less noise than using a microphone,
which can be affected by ambient noise.

Piezoelectric Signal Envelope Comparator Teensy 4.1
Pickup Amplifier Detector P! Interrupt

Fig. 13.

Block diagram of the strum detection circuitry

The block diagram for the strum detection is shown in Fig.
13. The physical circuitry corresponding to this block diagram
is shown in Fig. 14.

e > T | > pa
5%,;" % Rk

Fig. 14.  Physical implementation of the strum detection circuit

The circuit first takes in an audio signal, adds a DC offset of
around 1.5V, and then buffers it. Then, the buffered signal is
amplified about its mean value. The amplified and shifted
signal is fed into an envelope detector, which converts the
audio waveform into a signal indicating its amplitude. Finally,
this signal is fed into a comparator whose threshold is set by a
trim potentiometer. The comparator outputs a digital signal
that is fed to an input pin on the Teensy, allowing it to detect
when a strum has occurred.

2) Fretboard PCBs

To connect the addressable LEDs and drive each fret to
3.3V individually, our system integrates a PCB next to each
guitar fret. The addressable LEDs require 5V, ground, and a
data-in pin. They also have a data-out pin that connects to the
data-in of the next LED in the series. There is a 0.1pF
capacitor across the power rails next to each LED to ensure
proper LED functionality. The LEDs used are SK6812
NeoPixel LEDs, which support write speeds of up to 800kHz.
For ~56 LEDs, this corresponds to around 2ms to write to all
the LEDs.

Furthermore, each fretboard PCB has a D-flip-flop, forming
one large shift register across all the fretboard PCBs. The
output of a D-flip-flop is connected to the adjacent fret of the
guitar. Using the Teensy, a logical high can be clocked into the
first PCB, and this can be shifted to the next PCB, allowing
each fret to be driven high one at a time. A 3.3kQ resistor
connects the D-Flip-Flop and a fret to limit the current that
could flow to 1mA. While a fret is driven high, the voltage on
each guitar string is read, allowing the Teensy to determine
which strings were contacting the fret being driven high.

The PCB design is shown in Fig. 15. The top half of the
board contains the 4 addressable LEDs, D1-D4, and the
bottom half contains the D-flip-flop and current limiting
resistor. The pads on the right side of the board and the bottom
left of the board enable the boards to be daisy-chained
together, which reduces wiring complexity. The boards will be
conformal coated for safety and to prevent accidental shorting
occurring through the metal strings.

18500 F23
SuperfFret
Rev 1

Fig. 15.  Fretboard PCB layout
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3) Pi Hat PCB

The RPi and Teensy require numerous connections for
UART and interrupts, external power, and various input and
output devices. To implement these connections, a Pi “Hat”
will be used. This is a PCB that plugs directly into the 40
header pins on the RPi, as shown on the right side of the board
in Fig. 16.

The first task handled by the Pi Hat is filtering any noise in
the 5V power supply connected to the Hat via a barrel jack
and distributing this to the Teensy, Pi, and fretboard PCBs.

The second task of the Pi Hat is to connect the Teensy and
RPi’s GPIO pins.

The hat will also take the 3.3V logic signal outputted by the
Teensy for the NeoPixels and shift it to a 5V logic signal as
required by the LEDs.

We plan to use an active buzzer as a metronome to indicate
the target tempo to the user while they are playing. This will
beep in a short pulse once per beat of the music. Active
buzzers can be driven by simply pulling an output pin on the
Teensy, either high or low, making this design for the
metronome easy to implement on the firmware side.

The final feature of the Pi Hat will be sets of input and
output pins on the board that will enable the connection of the
various peripheral devices, such as the fretboard PCB, the
strum detection circuit, and the electrical connections to the
guitar's string.

Barrel Jack + Fitlering

LED Power + g
Level Shifter

LEDs

L)

Pi Header
Pins

A'A

N,

1/0 Pins

OO0

-I-;

L.A'A.A

Buzzer Teensy 4.1

Fig. 16.  Pi-Hat PCB layout (work in progress)

4) Power Supply

The system will be powered using a 5V DC wall adapter,
which will connect to the Pi Hat using a Smm barrel jack
connector and be distributed to the various components. The
fretboard PCB D-flip-flops operate on 3.3V, which will be
supplied by the Teensy’s internal 3.3V linear regulator. The
total expected current draw is 2.5A for the Pi, 0.15A for the
Teensy, 0.1A for the strum detection, and 1.7A for the LEDs at
half brightness. This sums to 4.45A, so a SA power supply
was chosen for the project.

VIL TESTING, VERIFICATION, AND V ALIDATION

To wvalidate the hardware latency performance,
comprehensive tests will be conducted. The aim is to
scrutinize the real-time responsiveness of the SuperFret
system under diverse playing conditions.

A. Latency

An oscilloscope will be utilized to precisely measure the
time delay between the initiation of a strumming action and
the corresponding LEDs being written to. This test holds
critical significance as it directly addresses the design
requirement of achieving a latency of less than 50
milliseconds, ensuring that the system provides instantaneous
feedback to the user during guitar practice sessions.

Simultaneously, the web app’s network delay test will
evaluate the responsiveness of the web application. The test
will entail interaction with different features, such as song
uploading and accessing practice statistics. The time taken for
responses to be received and displayed will be measured to
ascertain that the web application operates within the
stipulated network delay of less than 0.25 seconds. This
ensures that users experience a smooth and responsive
interface when interacting with the web application, aligning
with the design specifications and user expectations.

B. Accuracy

For accuracy testing, a strum identification test is designed
to assess the system's ability to identify strums accurately. We
will quantify the system's ability to correctly identify strums
by performing 100 1/8th note strums at 100 BPM on each
string and recording ambient sound levels. The success criteria
for this test will be determined by calculating the percentage
of correctly identified strums, directly addressing the accuracy
requirements outlined in the design specifications. This
quantitative measure clearly indicates the system's
performance in identifying and responding to strumming
actions.

In addition to strum identification, a finger placement test
will be conducted to evaluate the system's accuracy in
detecting the placement of fingers on different string and fret
positions. This involves systematically placing a finger on
each combination and monitoring the serial port. Repeating
this process multiple times and calculating the percentage
accuracy will quantify the system's precision in detecting
finger placement. This test directly validates the accuracy
requirements for finger placement detection as specified in the
design specifications. Overall, these tests are crucial in
ensuring that the SuperFret system not only meets theoretical
design trade-offs but also demonstrates robust performance
aligned with the specific use-case requirements for the project.

C. Safety

As per IEC TS 60479-1, humans can not perceive currents
below 500pA, and currents below 1mA do not impact muscles
[3]. We will use a lab bench ammeter capable of measuring
down to 0.1pA to verify this. Under normal conditions,
participants will contact the 3.3V guitar string with 1 hand and
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a ground signal with the other. A 10kQ potentiometer will be
between the 3.3V source and the string, and the potentiometer
will initially start at 10kQ). While monitoring the current, the
potentiometer’s resistance will be turned to 0Q, and the
current will be recorded. If the current ever reaches 1mA
while lowering the potentiometer resistance, the test will be
stopped. To test the maximum current the strings carry, we
will use the ammeter to connect the string to ground and verify
that no more than ImA flows. We will also use a lab bench
voltmeter capable of measuring down to 1V to verify that the
fretboard has no exposed 3.3V or 5V contacts other than the
3.3kQ current limited contact.

D. User Experience

For user experience evaluation, subjective tests will be
conducted to gather feedback on the web application and
hardware components. The tests are designed to assess the
users' perception of the system's usability and effectiveness.

Users will be asked to interact with the web application and
provide ratings on a scale of 1 to 5 for categories such as the
intuitiveness of the interface, readability of statistics, and ease
of uploading songs. These subjective evaluations will be
averaged to create a quantitative metric for the overall user
experience with the web application. For instance, a
user-friendly interface is crucial to the system's success, as it
directly impacts the accessibility and satisfaction of the users.

Similarly, users will be requested to evaluate the hardware
components, considering factors like comfortability, LEDs'
effectiveness, and the metronome's volume and pitch. Ratings
on a scale of 1 to 5 for each category will be averaged to
provide a quantitative measure of the overall user satisfaction
with the physical components. Comfortability is vital for
sustained practice sessions, while the effectiveness of LEDs
and the metronome directly impact the user's ability to follow
guidance and maintain rhythm during practice.

These user experience evaluations are essential for
obtaining qualitative insights into the effectiveness and
user-friendliness of the SuperFret system. The system's
success in meeting the user-centric design goals will be
quantified by aggregating user ratings. The feedback gathered

from wusers will be invaluable in making iterative
improvements to enhance the overall user experience,
ensuring that the SuperFret system fulfills technical

specifications and is well-received by its target audience of
beginner guitar players.

VIIL.

A. Schedule

The Gantt chart in Appendix Table III shows the project
timeline for the semester. The tasks are divided into Electrical,
Firmware, and Software, with Owen, Tushaar, and Ashwin
leading these categories. Scheduled weekly 2-hour meetings
between team members occur to perform integration between
systems and discuss design considerations to prevent
integration issues at the end of the semester. Time is provided
at the end of the semester for the final integration of the

PROJECT MANAGEMENT

systems, and team-wide tasks such as working on
presentations and reports are also listed. Highlighted bars
indicate progress on the listed task.

B. Team Member Responsibilities

As shown in the schedule, the work is divided into 4 main
areas - overall project management, web app, firmware, and
electronics. All members are responsible for staying up to date
on the overall project timeline and keeping the timeline for
their area on track.

Ashwin focuses on the web app and writes software on the
RPi to host it. He also writes software to send MIDI files to
the Teensy and receive statistics on how the user is doing from
Teensy.

Owen designs the electronic hardware, which involves the
PCBs on the fretboard, the strum detection circuitry, and the
interface board that allows signals to pass between the Teensy
and RPi.

Tushaar focuses on the firmware, the glue between Ashwin
and Owen’s areas. This involves writing the Teensy’s software
for interfacing with the RPi and the electronic hardware that
Owen designs.

C. Bill of Materials and Budget

So far, we have spent $207.22. The ordered parts include
the fretboard PCBs, their components, and the guitar.
Appendix Table II shows the full breakdown of these orders.
We have also acquired an RPi from the ECE department and
parts such as the Teensy and hookup wire from Roboclub, of
which Owen is a member. Appendix Table II also indicates the
projected future costs, primarily consisting of two more PCB
orders. The total expected cost of the project is currently
$417.22, leaving $182.78 for additional components that are
needed or for expedited shipping.

D. Risk Mitigation Plans

Several critical risks have been identified, each requiring
careful consideration and mitigation strategies to ensure a
smooth design implementation.

One risk involves detecting open string strums when there is
no direct contact between the fret and string. Mitigation
strategies include removing this scenario from the use case by
transposing all open strings up one semi-tone, making open
strings impossible, or just trusting the user and assuming the
right string was played when a strum is detected.

The ambiguity in fret-string contact due to multiple ways to
play the same note poses another risk. To address this, we may
develop an algorithm to determine which alternative of the
same note is most appropriate to play. The algorithm will take
in recently played notes to determine which fret is physically
closer.
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IX. RELATED WORK

Fret Zealot [13] is an existing product that is similar to ours.
It is a guitar learning tool hosted on a website with features
such as song tutorial videos and online guitar courses. They
also sell a set of guitar LEDs that allow users to learn chords
and scales, similar to our project.

However, this product lacks finger placement and strum
detection on the guitar and relies on a microphone. Thus, the
guitar cannot provide feedback regarding if notes were played
correctly as rapidly and accurately. Our product also separates
itself by collecting this data and displaying dynamic songs
moving at the user's pace. It also displays the timing and
accuracy information to the user, allowing them to observe
their skills increase over time. However, Fret Zealot’s
approach to guitar learning offers them distinct advantages.
The most prominent is that their LEDs are detachable, which
allows users to pick their own guitar for learning instead of us
deciding. Overall, our solution offers greater interactability.

X. SUMMARY

The SuperFret project aims to develop a system to assist
beginner guitar players in improving their skills and playing
basic songs. Learning new songs and chords, practicing
tempo, and drilling finger exercises are made simple through
our interactive design. Our product comprises a web
application hosted on an RPi, a Teensy microcontroller as the
embedded system's brain, and electronic hardware on the
guitar, including LEDs on the fretboard and a microphone for
strum detection. Users interact with the system through the
web app, uploading MIDI files for practice. The LEDs on the
fretboard guide users on finger placement and strumming
based on the uploaded files.

The system's user-friendly interface, real-time feedback
through LEDs, and guidance enhance the learning experience.
The web application allows users to upload their favorite
songs for practice, promoting an enjoyable and tailored
learning journey. The system's ability to handle notes down to
1/8th at 100 BPM and accurately identify finger placement
and strumming with a 99% accuracy rate ensures a supportive
and effective practice environment.

Anticipated challenges in implementation and meeting
requirements include detecting open strings without direct
contact and addressing ambiguity in fret-string contact. These
challenges require careful consideration and mitigation
strategies to ensure the system's robustness and alignment with
user expectations. Additionally, refining the algorithm for the
most appropriate notes and maintaining optimal latency are
ongoing challenges crucial to effectively meeting the system's
use-case requirements. Overall, addressing these challenges
will be key to the success of the SuperFret project and its
positive impact on beginner guitar players.
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GLOSSARY OF ACRONYMS

BPM - Beats per Minute

COTS — Commercial Off-The-Shelf

GPIO — General Purpose Input Output

I/O — Input and Output

MIDI — Musical Instrument Digital Interface
PCB — Printed Circuit Board

RPi — Raspberry Pi

SBC — Single Board Computer

TQPN - Ticks per Quarter Note
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APPENDIX

Table I: System Block Diagram
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Table II: Bill of Materials and Budget
Item Description Model Number Manufacturer Quantity | Unit Cost | Tax & Shipping | Obtained
Fretboard PCB Custom PCB with NeoPixels and a D-Flip-Flop - JLCPCB 10 $0.50 $25.90
Fretboard Stencil Solder paste stencil for fretboard PCBs - JLCPCB 1 $7.00
NeoPixel LEDs Addressable NeoPixel RGB LEDs 1655 Adafruit 3 $4.50
Op-Amps 8DIP CMOS rall to rail op-amps MCP602-E/P IMicrochip Technology 3 $0.82
Barrel Jack 5.5x2.1mm barrel jack connector 54-00133 Tensility Intl 2 $1.05
SV/5A Wall Adapter AC/DC wall adapter 5V/5A 5.5x2 1 barrel plug PPL36U-050 Phihong USA Corp. 1 $17.15 $10.04
D-Flip-Flop D-flip-flop SOT23-5 IC, 1 bit, rising edge, non-inverted | SN74LVC1GT9DBVR | Texas Instruments 15 $0.33
3 3K Resistor 3.3K Ohm 1% 1/8W 0805 resistor RC0805FR-07120RL YAGEO 50 $0.02
0.1uF Capacitor 0.1uF ceramic capacitor 50V 0805 CL21B104KBFNNNE Samsung 125 $0.02
Acoustic Bass Guitar Full size 4 string acoustic bass guitar BOO3HBMXQQ  |Best Choice Products 1 $109.99 $6.60
Electret Microphone Electret microphone with MAX4466 amplifier BO7DRGF8C2 Hiletgo 1 $0.00 $0.00
Teensy 4.1 Wicrocontroller ARM Cortex-M7 B00MHz microcontroller DEWV-16771 PJRC 1 $0.00 $0.00
Raspberry Pi 4B Single board computer, 1.5GHz, 4 Core, 4GB RAM SC0194(9) RPi Foundation 1 $0.00 $0.00
24 AWG Hookup Wire Stranded 24AWG wire for connecting PCBs - - $0.00 $0.00
Fretboard PCB Full order of multiple sizes of custom Fretboard PCBs - JLCPCB 20 $0.50 $30.00 0
Fretboard Stencils Solder paste stencils for fretboard PCBs - JLCPCB 2 $7.00
Teensy and Pi Breakout PCB Custom PCB to connect Teensy, Pi, and 1/O - JLCPCB 5 $0.50 $30.00 0
Breakout PCB Stencils Solder paste stencils for breakout PCBs - JLCPCB 1 $7.00
NeoPixel LEDs Addressable NeoPixel RGB LEDs 1655 Adafruit 7 $4.50
D-Flip-Flop D-flip-flop SOT23-5 IC, 1 bit, rising edge, non-inverted | SN74LVC1G79DBVR | Texas Instruments 15 $0.33 $10.00 O
Breakout PCB Components Level shifters, buzzer, passives, diodes - - 1 $40
Conformal Coating Conformal coating to insulate the fretboard PCBs - - 1 $30 $0.00
Total $417.22
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¥ General
Fall Break
Thanksgiving Break
‘Website Setup
Proposal Slides
Order Guitar
Design Presentation
Design Report
Final Presentation
Final Report
Public Demo Prep

Integration Time

v Electrical
Design schematic + PCB for fretboard LEDs
Design circuit for detecting guitar strums
Fine tune values for strum circuit and test on guitar
Begin preliminary schematic/layout for Pi-hat
Test LED functionality of PCBs
Verify functionality of finger position sensors
Revise fretboard PCBs
Finalize design of Pi Hat PCB
Assemble fretboard PCBs
Assembly and testing of Pi Hat PCB

Mechanical modifications to guitar

~ Firmware
Able to individually address LEDs using Teensy
Establish plan for state machine/program flow
Create main Teensy loop and control signals
State machine implemented and tested
Able to read finger placement sensors on fretboard ...
UART communication between Pi and Teensy establ...
Able to read in strum signal
Read in song data from Pi
Pi able to use interrupts to control Teensy state mac...
Teensy able to send data back to Pi
Teensy able to light up LEDs in rhythm with MIDI song
Teensy able to detect if finger position is right at tim...

Metronome via speaker

¥ Software
Set up Piwith Django
Create basic webserver hosted on Pi
Able to upload files to Pi via webapp
Pi able to set GPIO pins in response to webapp
UART communication with Teensy
Pi able to send song data to Teensy
Webapp able to send control signals to Teensy
Able to receive data from Teensy
Webapp able to display statistics

Debugging integration/communication with Teensy

Table II1: Schedule
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