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 Abstract  —Traditional  guitar  training  tools  can  show  an  image 
 of  note  fingering  to  users,  but  going  from  this  image  to  actually 
 placing  the  fingers  on  the  strings  can  be  difficult.  With  the 
 SuperFret  system,  LEDs  on  the  guitar  fretboard  will  show  users 
 exactly  where  to  place  their  fingers  on  the  guitar.  The  system  will 
 also  detect  where  the  user’s  fingers  are  located  and  when  they 
 strum  the  guitar,  allowing  the  system  to  determine  if  the  user 
 plays  the  correct  note.  This  will  allow  users  to  learn  the  guitar 
 more rapidly and engagingly. 

 Index  Terms  —Fretboard,  fret,  guitar,  metronome,  MIDI  file, 
 strum,  NeoPixel  (addressable  LED),  Raspberry  Pi,  string,  Teensy 
 4.1 (microcontroller), web app. 

 I.  I  NTRODUCTION 

 T  HIS  project  aims  to  create  a  more  intuitive  guitar  training 

 tool  for  beginners.  When  first  learning  the  guitar,  beginners 
 often  struggle  with  translating  an  image  of  how  to  play  a  note 
 to  an  actual  finger  placement  on  the  fretboard,  the  part  of  the 
 guitar  where  users  place  their  fingers  to  change  the  pitch  of 
 notes.  Traditional  tools  show  beginners  tabs  or  images  of 
 where  to  put  their  fingers,  which  they  must  first  interpret,  then 
 look  at  the  fretboard  to  place  their  fingers.  For  new  guitar 
 players,  this  increases  the  complexity  of  learning  the  guitar. 
 Since  beginners  are  already  looking  at  the  fretboard  when 
 playing  a  note,  indicating  where  to  put  their  fingers  directly  on 
 the  fretboard  makes  sense.  By  using  LEDs,  or  light-emitting 
 diodes,  to  indicate  to  users  where  to  place  their  fingers,  the 
 process  of  playing  new  notes  and  songs  is  expedited  and  made 
 more natural for beginners. 

 While  more  advanced  guitar  players  can  learn  to  sight-read 
 guitar  tabs  and  images  of  notes,  these  skills  take  time  to 
 develop  and  build  muscle  memory.  When  learning  guitar, 
 jumping  straight  into  reading  tabs  and  notes  can  be 
 overwhelming  when  learning  guitar.  The  SuperFret  system 
 targets  absolute  beginner  guitar  players  trying  to  pick  up  a 
 guitar  and  play  for  the  first  time.  Indicating  to  beginners  where 
 to  put  their  fingers  will  enable  them  to  build  finger  dexterity 
 and  the  skills  to  play  notes  without  being  inundated  with 
 foreign  guitar  notation.  This  removes  one  of  the  major  hurdles 
 beginner  guitar  players  face,  making  playing  the  guitar  more 
 approachable and enjoyable. 

 The  SuperFret  system  will  also  detect  the  position  of  the 
 user’s  fingers  and  when  they  strum,  allowing  the  user  to 
 receive  real-time  feedback  to  ensure  they  are  playing  the 
 correct  notes  and  strumming  at  the  right  time.  A  web  app  will 
 display  that  feedback  to  the  user,  allowing  them  to  see  their 

 progress and determine where to improve. 
 Guitar  training  resources  are  not  a  novel  idea,  with  private 

 teachers,  training  apps,  and  accessories  being  commonplace. 
 Private  teachers  are  costly,  running  around  $40-$90  an  hour 
 [1].  This  results  in  many  individuals  favoring  personal  training 
 tools,  such  as  apps  showing  them  where  to  put  their  fingers 
 and  listen  to  their  playing.  While  tools  like  this  are  affordable, 
 they  require  users  to  look  at  a  screen  to  determine  what  note  to 
 play  and  then  try  to  match  their  fingers  to  the  image  on  the 
 screen.  They  also  require  quiet  environments  to  analyze  the 
 user’s  playing  and  cannot  provide  feedback  until  the  user 
 strums.  By  integrating  LEDs  on  the  fretboard,  the  SuperFret 
 system  makes  it  easier  for  users  to  place  their  fingers  in  the 
 correct location. 

 A  handful  of  existing  training  tools  integrate  LEDs  onto  the 
 fretboard,  but  these  systems  also  require  quiet  environments  to 
 analyze  the  user’s  finger  location.  The  SuperFret  system  will 
 directly  detect  the  user’s  finger  locations,  thus  enabling  a  more 
 accurate analysis of the user’s playing. 

 Overall,  the  SuperFret  system  should  allow  beginner  guitar 
 players  to  quickly  learn  to  play  notes  and  basic  songs.  The 
 system  will  determine  if  the  user  is  playing  correctly  and 
 provide  feedback  and  control  over  the  system  through  a  web 
 app interface 

 II.  U  SE  -C  ASE  R  EQUIREMENTS 

 The  target  users  of  the  SuperFret  system  are  beginner  guitar 
 players  looking  to  improve  their  skills  and  play  basic  songs. 
 As  such,  the  use  case  requirements  are  informed  with 
 beginners  in  mind.  Beginner  guitar  players  should  find  the 
 overall  experience  of  the  web  app  and  hardware  intuitive,  as 
 the  goal  of  the  project  is  to  remove  barriers  to  entry.  From 
 picking  up  the  system  to  strumming  notes,  users  should  only 
 need  around  5  minutes  to  get  started  with  the  system.  Users 
 shall  be  able  to  upload  MIDI  files  (file  format  for  representing 
 music)  for  songs  they  want  to  practice.  The  system  should  also 
 support  selecting  various  other  training  activities,  such  as 
 playing finger exercises and scales. 

 The  system  shall  handle  notes  down  to  1/8  th  notes  at  100 
 beats  per  minute  (BPM).  This  corresponds  to  200  notes  per 
 minute  maximum,  or  around  3  notes  a  second,  faster  than  most 
 beginner  guitar  players  can  handle.  The  system  should  be  able 
 to  identify  the  user’s  finger  placement  and  strumming  with 
 99%  accuracy,  corresponding  to  approximately  1-2  missed 
 notes  per  minute  by  the  system.  This  will  likely  be  far  lower 
 than  the  number  of  mistakes  made  by  the  user,  so  this 
 accuracy will be sufficient for the system. 
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 III.  A  RCHITECTURE  AND  P  RINCIPLE  OF  O  PERATION 

 Fig. 1.  A depiction of the physical system. Guitar image from [2] 

 The  overall  system  is  shown  in  Fig.  1.  The  user  interacts 
 with  the  system  through  their  personal  computer  by  accessing 
 a  web  app.  They  upload  songs  and  choose  scales  to  practice 
 on.  When  ready  to  practice,  they  click  “Start”  on  the  screen, 
 place  their  fingers  on  the  lit-up  LEDs,  and  strum.  Statistics 
 about  their  progress  are  aggregated  and  displayed  on  the  web 
 app. 

 Fig. 2.  High-level Architecture Block Diagram. 

 Overall,  the  system  is  composed  of  3  parts  –  the  web 
 application  (“web-app”)  hosted  on  a  Raspberry  Pi  4B  (“RPi”), 
 a  Teensy  4.1  microcontroller,  which  is  the  brain  of  the 
 embedded  system,  and  the  electronic  hardware  on  the  guitar. 
 The  user  interacts  with  the  system  through  the  web 
 application,  which  allows  them  to  upload  songs  they  want  to 
 learn,  choose  scales  to  practice,  and  receive  statistics  on  their 
 playing.  The  user  uploads  songs  as  MIDI  files,  which  encode 
 note  and  timing  information  for  the  song.  The  MIDI  file  is 
 passed  from  the  web  app  to  the  Teensy,  which  uses  the  file  as  a 
 reference  to  guide  the  user  to  play  the  correct  notes.  LEDs  on 
 the  fretboard  guide  finger  placement,  and  the  Teensy  lights 
 them  according  to  the  target  note  it  parses  from  the  MIDI  file. 
 The  LEDs  reside  on  Printed  Circuit  Boards  (PCBs)  along  the 
 fretboard.  The  PCBs  also  contain  circuitry  for  determining 
 which  note  the  user  has  fingered  on  the  fretboard.  Other 
 electronic  hardware  on  the  guitar  includes  a  piezoelectric 
 sensor  and  accompanying  circuitry  for  strum  detection.  By 
 detecting  which  note  the  user’s  fingers  are  on  and  when  they 
 strum  it,  the  Teensy  can  determine  deviations  from  the  notes 
 and  timing  information  specified  in  the  MIDI  file  and  send 

 aggregated  statistics  back  to  the  RPi  for  display  on  the  web 
 app. 

 A.  Web Application 
 As  shown  in  the  high-level  block  diagram  (Fig.  2),  the  RPi 

 hosts  both  the  web  app  and  communicates  with  the  Teensy 
 microcontroller.  The  web  app  is  written  in  Python  using  the 
 Django  web  framework,  which  combines  the  frontend, 
 backend,  and  the  database  into  one  Model-View-Controller 
 design  pattern  (Fig.  3)  to  create  web  endpoints  that  the  user 
 can  access  via  a  web  browser.  There  are  3  communication 
 “streams”  between  the  RPi  and  the  Teensy  to  relay 
 information  from  the  user  to  the  Teensy:  bidirectional 
 communication  with  the  Teensy  over  UART  accounts  for  2 
 streams,  and  the  third  is  for  interrupt  signals  that  control  the 
 state machine (Fig. 9) inside the Teensy. 

 Fig. 3.  Django Web Frame Work Implements Model-View-Controller 

 B.  Teensy and Embedded System 
 Besides  the  3  previous  streams,  the  Teensy  communicates 

 with  the  electronic  hardware  on  the  right  side  of  Fig.  2  through 
 4 streams. 

 First,  the  Teensy  specifies  the  color  of  each  NeoPixel  LED 
 on  the  fretboard  through  the  protocol  for  WS2812  LEDs, 
 which is the chipset the NeoPixel implements. 

 The  Teensy  determines  where  on  the  fretboard  the  user  has 
 pressed  on  a  string  by  detecting  the  electrical  contact  between 
 each  of  the  4  strings  with  14  frets.  This  is  done  by  applying  a 
 voltage  stimulus  to  one  of  the  14  frets  and  then  reading  the 
 voltage  on  each  of  the  4  strings.  A  high  reading  on  a  string 
 indicates  that  the  string  is  pressed  down  against  the  fret  on 
 which  the  voltage  stimulus  is  being  applied.  By  putting 
 D-Flip-Flops  between  each  fret,  the  voltage  stimulus  is 
 clocked  “down”  the  fretboard  as  if  the  D-Flip-Flops  formed  a 
 shift  register.  This  way,  only  2  signals  are  required  for  creating 
 the  voltage  stimuli  for  the  frets,  as  opposed  to  having  14 
 signals, with one per fret. 

 The  Teensy  also  detects  when  the  note  is  strummed  by 
 monitoring  an  interrupt  produced  by  the  Strum  Detection 
 circuitry. 

 C.  Electronic Hardware 
 Each  fret  is  associated  with  a  PCB,  which  contains  4  LEDs, 

 one  per  string.  The  PCB  also  has  a  D-Flip-Flop  to  receive  the 
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 voltage  stimulus  from  the  previous  PCB,  apply  the  stimulus  to 
 the current fret, and forward the stimulus to the next PCB. 

 The  Strum  Detection  circuitry  is  analog  and  takes  the 
 electrical  signal  from  the  piezoelectric  pickup  integrated  into 
 the  guitar  as  an  input.  The  signal  is  put  through  several  signal 
 processing  stages,  ultimately  generating  a  digital  value 
 indicating  whether  the  guitar  was  strummed.  This  digital 
 signal  serves  as  an  interrupt  for  the  Teensy  and  is  used  as  a 
 control  signal  to  the  internal  state  machine  running  on  the 
 Teensy. 

 IV.  D  ESIGN  R  EQUIREMENTS 

 To  meet  the  use-case  requirements,  several  critical  design 
 specifications  have  been  established  for  both  the  hardware  and 
 firmware  components,  as  well  as  the  web  application  of  the 
 SuperFret  system.  For  the  hardware  and  firmware,  achieving  a 
 latency  of  less  than  50ms  from  strum  detection  to  LED 
 response  (the  threshold  of  human  visual  perception)  is 
 paramount  to  provide  users  with  real-time  feedback  during 
 practice  sessions.  Additionally,  the  system  must  support  down 
 to  1/8th  notes  at  100  BPM  to  accommodate  different  tempos, 
 and  it  should  indicate  the  target  tempo  at  a  minimum  volume 
 of  70  dB,  ensuring  the  signal  is  audible.  The  feedback 
 mechanism  is  designed  to  provide  visual  and  audible  cues  for 
 in-time  playing  accuracy  with  a  response  time  of  at  most  less 
 than  100ms,  ensuring  that  the  user  can  practice  with  a 
 consistent tempo. 

 The  fretboard  must  incorporate  56  individually  addressable 
 LEDs  to  offer  detailed  visual  guidance  for  different  notes  and 
 scales.  The  rest  of  the  board  is  unnecessary,  as  beginner  users 
 rarely  use  the  upper  portion  of  the  guitar.  Since  scales  require 
 most  of  the  board  to  be  lit  up  at  the  same  time,  the  system 
 should  allow  2/3  of  the  fretboard  to  be  illuminated  at  half 
 brightness,  striking  a  balance  between  visibility,  convenience, 
 and safety. 

 Safety  is  a  key  consideration,  as  the  guitar  strings  will  be 
 driven  to  3.3V.  According  to  IEC  TS  60479-1,  currents  below 
 500μA  through  the  body  are  imperceptible  and  safe. 
 Therefore,  the  current  that  flows  through  the  user  under 
 normal  operating  conditions  should  be  under  500μA.  Under 
 abnormal  operating  conditions,  such  as  if  the  system  gets  wet 
 while  being  used,  the  current  through  the  body  should  not 
 exceed  1mA  (the  maximum  current  that  can  pass  through  a 
 human body without impacting the user’s muscles) [3]. 

 The  web  application's  design  requirements  focus  on 
 enabling  the  user  to  control  the  guitar  and  pause  songs.  The 
 file  upload  capability  should  support  up  to  1GB  of  users'  MIDI 
 files  for  a  personalized  learning  experience.  The  display  of 
 practice  statistics,  rhythm  and  accuracy  scores,  and  song 
 upload  must  respond  to  user  input  within  0.25  seconds,  given 
 a reasonably functioning network. 

 These  design  specifications  ensure  SuperFret  meets  the 
 defined use-case requirements. 

 The quantitative specifications are summarized: 
 Specification  Value 

 Strum to LED latency  <50ms 

 Total system  100 beats per minute support 

 LEDs  > 56 individually addressable LEDs 

 Safety  < 1 mA through body 

 File storage  1GB 

 Network delay  < 0.25 second 

 Finger placement Detection  99% accuracy 

 lighting up the correct LED(s)  100% accuracy 

 V.  D  ESIGN  T  RADE  S  TUDIES 

 A.  Single-Board Computer vs Microcontroller 
 The  main  computer  selected  for  the  project  was  the 

 Raspberry  Pi  4B.  The  processing  tasks  associated  with  this 
 project  consist  of  running  a  web  app,  controlling  the  fretboard 
 LEDs,  reading  from  the  fret  sensors,  and  processing  statistics. 
 Both  a  single-board  computer  (SBC)  and  a  WiFi-equipped 
 microcontroller  could  perform  these  tasks.  Single-board 
 computers  are  typically  worse  at  handling  real-time  interaction 
 with  their  environment  because  the  processor  also  handles  the 
 overhead  of  running  the  computer's  operating  system. 
 Additionally,  the  hosting  of  the  web  app  can  introduce  delays 
 that  will  result  in  not  meeting  input  and  output  (I/O)  latency 
 requirements.  Running  the  system  off  a  WiFi-equipped 
 microcontroller  like  the  ESP32S3  would  enable  high-speed 
 I/O.  However,  running  the  web  app  in  parallel  to  this  on  the 
 microcontroller  would  be  challenging  due  to  the 
 single-threaded  nature  of  most  microcontrollers.  Running  the 
 system  off  a  microcontroller  would  also  introduce  significant 
 restrictions  on  the  web  interface's  functionality  due  to  the 
 microcontrollers'  limited  memory.  For  these  reasons,  we  chose 
 to  pursue  a  split  architecture,  with  an  SBC  running  the 
 high-level  control  of  the  system,  namely  running  the  web  app, 
 storing  user-uploaded  music,  and  coordinating  the  system's 
 overall  state.  A  microcontroller  will  run  the  real-time  I/O 
 without  worrying  about  hosting  a  web  app,  allowing  the  target 
 latencies  to  be  achieved.  The  SBC  chosen  was  the  Raspberry 
 Pi  4B  due  to  its  widespread  documentation  and  support,  and 
 the  microcontroller  chosen  was  the  Teensy  4.1  due  to  its 
 plentiful GPIO pins and high clock speed. 

 B.  Microcontroller Choice 
 Members  of  the  group  were  already  familiar  with  using 

 several  microcontrollers  typically  used  in  electronic  projects, 
 and  familiarity  was  the  main  driving  force  behind  selecting  a 
 microcontroller.  We  considered  the  Arduino  UNO,  Arduino 
 Mega,  Raspberry  Pi  Pico,  Teensy  4.0,  and  Teensy  4.1.  Of 
 these,  we  wanted  a  microcontroller  with  fast  clock  speed  to 
 enable  multiple  tasks  and  enough  memory  to  store  a  MIDI 
 file’s worth of data. 

 We  found  a  benchmark  that  showed  the  Teensy  class  of 
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 microcontrollers  were  the  fastest  computers  of  the  ones  we 
 were familiar with: 

 Fig. 4.  The “CoreMark” CPU Performance Benchmark [4], [5] 

 We  conservatively  estimated  the  typical  training  song  would 
 be  2  minutes,  with  up  to  200  notes  per  minute,  and  each  note 
 would  take  5  bytes  to  specify  in  the  MIDI  format  (2  for  the 
 duration  in  “delta  ticks”  and  3  for  the  event).  Thus,  we 
 required  a  microcontroller  with  at  least  2kB  of  memory.  We 
 eliminated  the  Arduino  UNO,  which  only  has  2kB  of  SRAM 
 [6]. 

 After  considering  the  degree  of  prior  experience,  CPU 
 performance,  memory,  and  availability,  we  selected  the  Teensy 
 4.1  because  it  was  strong  across  each  desired  trait,  and  we 
 already had access to it, making it the cheapest option. 

 C.  Fret-Sensing Implementation 
 To  determine  the  user’s  finger  placement,  the  system  uses 

 the  ‘switch’  formed  when  the  user  presses  a  string  into  a  fret. 
 GPIO  pins  on  microcontrollers  are  limited,  and  wires  interfere 
 with  the  experience  of  the  guitar.  To  reduce  pin  and  wire 
 count,  a  switch  array  can  be  employed.  By  driving  each  fret  to 
 3.3V  one  by  one  and  then  reading  the  voltage  on  each  string, 
 the  detection  of  any  strings  touching  the  3.3V  fret  can  be 
 performed.  This  requires  18  GPIO  pins  -  4  for  the  strings  and 
 14  for  the  frets.  This  still  requires  14  wires  to  be  run  from  each 
 fret  to  the  microcontroller.  Since  a  switch  array  necessitates 
 that  each  fret  is  driven  to  3.3V  one  at  a  time,  the  GPIO  count 
 can be reduced to 

 4 Strings + ceiling(log  2  (14)) = 8  (1) 

 pins using a decoder circuit. However, this would require 
 decoding circuitry next to each fret, which would take up the 
 limited space available. By using a “shift-register” style 
 approach, with each fret requiring only a single D-flip-flop, 
 the system can use only 6 GPIO pins, 4 for the strings, 1 clock 
 line, and 1 data line. This solution, shown in Fig. 5, requires 
 only 2 wires between each fret, a shared clock line, and the 
 data outputted by the previous fret’s D-flip-flop. The only 
 tradeoff of this implementation is that each fret needs a 
 D-flip-flop, but this drastically outweighs requiring 14 
 individual wires for each fret. 

 Fig. 5.  A 6 GPIO method for reading finger positions 

 D.  Fretboard PCB Design 
 Due  to  the  finger  placement  sensing  implementation  making 

 use  of  a  D-flip-flop  next  to  each  fret,  and  the  design  requiring 
 4  addressable  LEDs  per  fret,  implementing  a  PCB  to  mount 
 these  components  is  the  ideal  solution.  It  would  be  possible  to 
 use  commercial  off-the-shelf  (COTS)  LED  strips  and  run  a 
 separate  wire  to  each  fret,  but  it  is  not  possible  to  buy  LED 
 strips  with  the  exact  spacing  needed  for  the  guitar  strings,  as 
 this would require many wires, as discussed previously. 

 There  are  a  handful  of  ways  to  implement  PCBs  along  the 
 fretboard.  The  first  way  is  to  remove  and  replace  the  guitar's 
 fretboard  with  a  single  PCB.  This  would  completely  eliminate 
 the  need  for  external  wires  along  the  fretboard  but  would 
 introduce  mechanical  challenges.  Since  the  fretboard  holds  the 
 frets  in  place,  we  would  need  to  devise  a  new  way  of 
 mounting  the  frets  securely,  and  we  would  need  to  perfectly 
 match  the  spacing  of  the  original  fretboard  to  keep  the  guitar 
 in  tune.  Additionally,  this  would  require  completely  removing 
 the  guitar's  fretboard,  which  can  be  challenging  to  perform  due 
 to  the  glue  between  the  fretboard  and  the  rest  of  the  guitar. 
 These  factors  increase  the  risk  associated  with  the  project,  so 
 we chose not to pursue removing the fretboard. 

 The  other  two  implementations  involve  creating  individual 
 PCBs  mounted  next  to  each  fret.  This  approach  allows  the 
 fretboard  to  remain  mounted  to  the  guitar  and  removes  the 
 need  to  perfectly  replicate  the  spacing  between  the  frets  on  a 
 PCB.  These  PCBs  can  be  mounted  on  the  fretboard  or  placed 
 in  carved-out  channels  next  to  each  fret.  The  advantage  of 
 placing  the  PCBs  on  top  of  the  fretboard  is  that  no  mechanical 
 modification  to  the  guitar  fretboard  is  necessary.  The 
 disadvantages  of  this  approach  are  that  the  fretboard  is  curved, 
 as  shown  in  Fig.  6,  and  that  the  frets  only  extend  above  the 
 fretboard by 1.5mm. 

 Fig. 6.  Cross  section  of  a  guitar  fretboard.  The  fretboard  surface  is  curved, 
 making PCB mounting difficult [7]. 

 The  curved  surface  of  the  fretboard  makes  mounting  rigid 
 PCBs  directly  to  the  fretboard  difficult.  A  flexible  PCB  would 
 resolve  this  issue  by  allowing  the  PCB  to  conform  to  the  shape 
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 of  the  fretboard.  However,  since  the  frets  only  protrude  from 
 the  fretboard  by  around  1.5mm,  the  total  height  of  the  LEDs 
 and  the  PCB  cannot  exceed  around  1mm.  The  addressable 
 LEDs  being  used  have  a  height  of  1.6mm,  so  to  ensure  these 
 do  not  get  in  the  way  while  the  user  plays  the  guitar,  the  PCBs 
 will  have  to  sit  in  recessed  channels  in  the  fretboard.  These 
 channels  can  be  flat  on  the  bottom,  meaning  flexible  PCBs  are 
 no  longer  necessary.  Due  to  the  higher  costs  and  lead  times 
 associated  with  flexible  PCBs,  we  pursued  14  rigid  PCBs, 
 each placed into carved-out channels next to the frets. 

 VI.  S  YSTEM  I  MPLEMENTATION 

 Appendix  Table  I  has  a  more  detailed  technical  block 
 diagram  of  the  system  as  a  whole,  beyond  what  was  shown  in 
 Fig.  1.  The  system  consists  of  three  main  subsystems  –  the 
 user  frontend  hosted  using  the  RPi,  the  physical  hardware  used 
 to  interface  with  the  guitar  and  user,  and  the  microcontroller 
 system directly interacting with this hardware. 

 A.  Raspberry Pi Subsystem 

 Fig. 7.  Block  diagram  for  the  RPi.  Zoomed-in  crop  of  block  diagram  in 
 Appendix Table I. 

 1)  Django Web Server 
 The  RPi  hosts  a  web  server  powered  by  Python’s  Django 

 Web  Framework.  This  server  creates  a  local  endpoint 
 reachable  via  a  browser  that  responds  with  an  HTML  page 
 containing  all  the  functionality  needed  for  the  user  to 
 communicate  with  the  guitar.  Specifically,  the  web  server 
 implements these endpoints: 

 http://a2superfret.wifi.local.cmu.edu:8000/ 
 -  home - retrieves the home page 
 -  addfile - uploads a file to 
 -  deletefile/{songname} - deletes a file 
 -  startfile/{songname} - tells guitar to start song 
 -  stopFile - tells guitar to stop song 
 -  getStats - get the user’s statistics of previous songs 

 A  SQL  database  will  house  all  the  file  and  user  information  to 
 achieve  a  consistent  state  for  the  server.  Each  entry  in  the 
 database will represent a song and contain: 

 -  name: name of the song/file 
 -  file:  the  file  path  to  the  MIDI  (actual  file  will  be 

 stored in a separate folder) 
 -  active:  a  boolean  to  store  if  the  song  is  currently 

 being played 
 -  type: either a song or scale 

 2)  MIDI Pre-Processing 
 A  MIDI  file  is  organized  into  1  header  section  and  at  least  1 

 “Track”  section.  The  header  specifies  timing  information  to 
 determine  some  timing  info  and  the  number  of  track  sections 
 that  follow.  Each  track  section  specifies  a  tempo,  notes,  and 
 duration information. 

 Before  forwarding  the  user’s  MIDI  file  to  the  Teensy,  the 
 RPi  lightly  pre-processes  it  so  the  Teensy  is  not  burdened  with 
 parsing  through  information  it  does  not  need.  For  example,  the 
 MIDI  Header  and  Track  sections  contain  byte  counts,  the 
 instrument's  name,  and  other  preamble  that  the  Teensy  does 
 not  need.  So,  the  RPi  can  strip  that  extraneous  information  out 
 and  send  an  “abridged”  MIDI  file,  so  the  Teensy  only  needs  to 
 parse the essential tempo, timing, and note information. 

 3)  Teensy Communication 
 The  RPi  will  run  a  UART  communicator  process  to 

 establish  and  maintain  a  connection  between  the  Teensy  and 
 the  Pi  over  a  specified  port.  Its  job  will  be  to  receive  user 
 requests  from  the  web  server  and  convert  them  into  signals, 
 which  can  then  be  sent  to  the  teensy  and  vice-versa.  Upon  a 
 start  request  from  the  user,  the  web  server  will  tell  the  UART 
 communicator  to  send  a  specific  file  to  the  microcontroller  by 
 first  sending  a  “file_transmission”  (Fig.  9)  interrupt,  followed 
 by  all  the  file  data.  One  idea  was  to  send  the  file  one  packet  at 
 a  time  as  needed,  but  this  was  abandoned  due  to  network 
 latency  concerns.  When  a  fileStop  command  is  issued,  the 
 UART  communicator  will  interrupt  the  Teensy  by  raising  its 
 PAUSE  GPIO  pin  to  high.  Any  other  communication  needed 
 will look very similar. 

 B.  Teensy/Embedded Subsystem 

 Fig. 8.  Zoomed-in  crop  of  block  diagram  in  Appendix  Table  I.  The 
 Teensy  microcontroller  is  the  glue  between  the  User  Interface  and  the 
 electronic  hardware.  The  Teensy’s  software  is  structured  as  a  state 
 machine. 

 1)  State Machine 
 A  state  machine  controls  the  high-level  decisions  made  by 

 the  Teensy.  There  are  two  classes  of  inputs  to  the  state 
 machine  -  interrupts  generated  by  the  RPi  (shown  in  purple  in 
 Fig.  9),  which  are  based  on  the  user’s  interaction  with  the 
 system,  and  inputs  originating  from  the  operation  of  the 
 system itself (shown in red in Fig. 9). 
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 When  the  system  is  first  turned  on,  or  “idling,”  it  starts  in 
 the  “WAIT  TO  START”  state.  Once  the  user  selects  a  song  or 
 scale  on  the  web  app,  the  RPi  asserts  a  GPIO  pin  high,  causing 
 a  rising  edge  on  the  “file_transmission”  digital  pin  of  the 
 Teensy.  This  causes  the  Teensy  to  enter  the  “RECEIVING 
 SONG”  state  to  listen  to  the  RPi  over  UART  for  a  stream  of 
 bytes  constituting  the  MIDI  file.  Once  the  RPi  transmits  the 
 file,  it  asserts  the  same  pin  low,  and  the  Teensy  interprets  the 
 falling edge as the end of file transmission. 

 Having  received  the  MIDI  file,  the  Teensy  transitions  to  the 
 “WAIT  FOR  STRUM”  state,  where  it  parses  the  file  and  waits 
 for  the  user  to  start  playing  the  guitar  by  strumming.  The 
 strum  input  is  a  digital  signal  generated  by  the 
 strum-detection  circuitry  detailed  in  the  following  “  Electronic 
 Hardware  ”  section.  When  the  first  strum  is  sensed,  the  Teensy 
 enters  the  “USER  EXPERIENCE”  state,  where  it  lights  up 
 LEDs, reads frets, and continues detecting strums. 

 Once  the  user  finishes  playing  the  song  (the  end  of  the 
 MIDI  file  is  reached),  the  “WAIT  TO  START”  state  is  entered 
 again.  The  Teensy  enters  the  PAUSED  state  if  the  user  pauses 
 the  system  through  the  web  app.  The  Teensy  enters  the  initial 
 state  if  the  user  restarts  the  system  through  the  web  app. 
 Otherwise,  it  waits  until  a  strum  is  detected  to  resume  the  user 
 experience. 

 Fig. 9.  State Machine for the Teensy’s Software 

 2)  MIDI Parsing 
 The  “abridged”  MIDI  file  coming  from  the  RPi  only 

 contains  the  timing  and  note  information  the  Teensy  needs  to 
 determine  when  to  light  up  a  particular  note’s  LED  and  when 
 it should expect the user to play that note. 

 From  a  timing  perspective,  the  goal  is  to  find  the  number  of 
 seconds  to  wait  before  a  note  is  played  and  how  long  before 
 the  note  is  released.  However,  the  MIDI  file  specifies  such 
 information  as  “MIDI  ticks”  elapsed,  a  somewhat  arbitrary 
 time  unit.  MIDI  files  typically  specify  two  conversions  to 
 transform  ticks  into  seconds.  One  is  the  number  of  MIDI  Ticks 
 per  quarter  note  (TPQN),  and  the  other  is  microseconds  per 
 beat,  or  tempo.  Since  a  beat  is  defined  to  be  the  length  of  a 
 quarter note, the following formula holds: 

 (2) µ 𝑠     𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛    =  𝑀𝐼𝐷𝐼     𝑡𝑖𝑐𝑘     𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 
 𝑇𝑃𝑄𝑁 ×  𝑡𝑒𝑚𝑝𝑜 

 This  allows  conversion  of  durations  specified  in  terms  of 
 “MIDI  Ticks”  into  absolute  time  units  that  can  be  measured 
 and timed on the Teensy. 

 TPQN  is  specified  as  the  4th  line  in  the  MIDI  file  header 
 (Fig.  10).  The  tempo  is  specified  towards  the  beginning  of  the 
 “MTrk”  (Track)  portion  of  the  file  by  the  byte  sequence  FF 
 51  03  XX  XX  XX  .  “  XX  XX  XX”  is  the  hexadecimal 
 representation  of  the  number  of  microseconds  per  beat.  Since 
 1  beat  corresponds  to  a  quarter  note,  the  tempo  sets  the  length 
 of  a  quarter  note.  When  such  parameters  are  not  specified, 
 defaults  outlined  in  the  MIDI  file  standard  are  used  [8].  The 

 default  TPQN  is  48,  and  the  default  tempo  is  .  500 , 000    µ 𝑠 
 𝑏𝑒𝑎𝑡 

 The  following  formula  is  used  to  express  the  tempo  in  the 
 more familiar BPM [9]: 

    𝐵𝑃𝑀 =  60     𝑠𝑒𝑐𝑜𝑛𝑑𝑠 
 1     𝑚𝑖𝑛𝑢𝑡𝑒 ·  1 , 000 , 000    µ 𝑠    

 1     𝑠𝑒𝑐𝑜𝑛𝑑 ·  1 
 𝑡𝑒𝑚𝑝𝑜    

 Fig. 10.  MIDI  TPQN  and  tempo  parsing  example  for  an  excerpt  from  a 
 “Twinkle  Twinkle  Little  Star”  MIDI  file  [10].  Here,  the  TPQN  is  384, 
 and the tempo is 545,454 microseconds per beat. 

 The  “track”  portion  of  the  MIDI  specifies  events  such  as 
 playing  a  particular  note  (“Note  ON”  event)  and  releasing  a 
 note  (“Note  OFF”  event)  [11].  The  duration  to  hold  a  note  and 
 wait  before  playing  the  next  note  is  specified  in  terms  of  MIDI 
 ticks.  This  number  is  encoded  using  a  Variable  Length 
 Encoding  (VLE)  Format  [11]  [12].  Fig.  11  shows  an  example 
 of  parsing  the  variable  length  encoding  “  81  40  ”  into  a  tick 
 duration.  The  figure  also  shows  Note  ON  and  OFF  events  for 
 playing the note C4 twice. 

 Fig. 11.  MIDI  note  and  duration  parsing  example.  This  is  an  excerpt  from  a 
 Track portion of a MIDI file for Twinkle Twinkle Little Star [10]. 
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 3)  LED Control 
 The  Teensy  stores  a  “note  schedule”  indicating  when 

 particular  notes  should  be  played  or  released.  As  the  Teensy 
 executes  in  the  USER  EXPERIENCE  state,  it  compares  the 
 current  time  to  entries  in  the  note  schedule  to  see  if  it  is  time 
 for  a  note  to  be  played  or  released.  Once  the  particular  note  is 
 determined  from  the  note  schedule,  the  corresponding  LED 
 position  is  determined  by  indexing  into  a  static  mapping 
 relating notes to LED positions on the fretboard. 

 C.  Electronic Hardware Subsystem 
 The  interaction  between  the  Raspberry  Pi,  the  Teensy,  the 

 guitar,  and  the  user  is  provided  by  a  series  of  hardware 
 components.  These  consist  of  sensing  components  to  take  in 
 information  from  the  environment,  components  that  provide 
 user feedback, and various power and data interconnects. 

 Fig. 12.  Zoomed-in  crop  of  block  diagram  in  Appendix  Table  I,  focusing 
 on the electronic hardware. 

 1)  Strum Detection 
 The  system  must  determine  when  the  guitar  is  strummed  to 

 know  if  the  user  played  the  desired  note  correctly.  To 
 accomplish  this,  a  circuit  takes  in  the  guitar's  audio  signal  and 
 outputs  a  digital  signal  indicating  when  the  guitar  is 
 strummed. 

 Rather  than  using  a  microphone  to  pick  up  the  sound 
 produced  by  the  guitar,  our  system  uses  a  piezoelectric  sensor 
 integrated  into  the  guitar.  This  sensor  converts  the  mechanical 
 motion  of  the  guitar  strings  into  a  voltage.  This  process  is 
 subject  to  significantly  less  noise  than  using  a  microphone, 
 which can be affected by ambient noise. 

 Fig. 13.  Block diagram of the strum detection circuitry 

 The  block  diagram  for  the  strum  detection  is  shown  in  Fig. 
 13.  The  physical  circuitry  corresponding  to  this  block  diagram 
 is shown in Fig. 14. 

 Fig. 14.  Physical implementation of the strum detection circuit 

 The  circuit  first  takes  in  an  audio  signal,  adds  a  DC  offset  of 
 around  1.5V,  and  then  buffers  it.  Then,  the  buffered  signal  is 
 amplified  about  its  mean  value.  The  amplified  and  shifted 
 signal  is  fed  into  an  envelope  detector,  which  converts  the 
 audio  waveform  into  a  signal  indicating  its  amplitude.  Finally, 
 this  signal  is  fed  into  a  comparator  whose  threshold  is  set  by  a 
 trim  potentiometer.  The  comparator  outputs  a  digital  signal 
 that  is  fed  to  an  input  pin  on  the  Teensy,  allowing  it  to  detect 
 when a strum has occurred. 

 2)  Fretboard PCBs 
 To  connect  the  addressable  LEDs  and  drive  each  fret  to 

 3.3V  individually,  our  system  integrates  a  PCB  next  to  each 
 guitar  fret.  The  addressable  LEDs  require  5V,  ground,  and  a 
 data-in  pin.  They  also  have  a  data-out  pin  that  connects  to  the 
 data-in  of  the  next  LED  in  the  series.  There  is  a  0.1μF 
 capacitor  across  the  power  rails  next  to  each  LED  to  ensure 
 proper  LED  functionality.  The  LEDs  used  are  SK6812 
 NeoPixel  LEDs,  which  support  write  speeds  of  up  to  800kHz. 
 For  ~56  LEDs,  this  corresponds  to  around  2ms  to  write  to  all 
 the LEDs. 

 Furthermore,  each  fretboard  PCB  has  a  D-flip-flop,  forming 
 one  large  shift  register  across  all  the  fretboard  PCBs.  The 
 output  of  a  D-flip-flop  is  connected  to  the  adjacent  fret  of  the 
 guitar.  Using  the  Teensy,  a  logical  high  can  be  clocked  into  the 
 first  PCB,  and  this  can  be  shifted  to  the  next  PCB,  allowing 
 each  fret  to  be  driven  high  one  at  a  time.  A  3.3kΩ  resistor 
 connects  the  D-Flip-Flop  and  a  fret  to  limit  the  current  that 
 could  flow  to  1mA.  While  a  fret  is  driven  high,  the  voltage  on 
 each  guitar  string  is  read,  allowing  the  Teensy  to  determine 
 which strings were contacting the fret being driven high. 

 The  PCB  design  is  shown  in  Fig.  15.  The  top  half  of  the 
 board  contains  the  4  addressable  LEDs,  D1-D4,  and  the 
 bottom  half  contains  the  D-flip-flop  and  current  limiting 
 resistor.  The  pads  on  the  right  side  of  the  board  and  the  bottom 
 left  of  the  board  enable  the  boards  to  be  daisy-chained 
 together,  which  reduces  wiring  complexity.  The  boards  will  be 
 conformal  coated  for  safety  and  to  prevent  accidental  shorting 
 occurring through the metal strings. 

 Fig. 15.  Fretboard PCB layout 
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 3)  Pi Hat PCB 
 The  RPi  and  Teensy  require  numerous  connections  for 

 UART  and  interrupts,  external  power,  and  various  input  and 
 output  devices.  To  implement  these  connections,  a  Pi  “Hat” 
 will  be  used.  This  is  a  PCB  that  plugs  directly  into  the  40 
 header  pins  on  the  RPi,  as  shown  on  the  right  side  of  the  board 
 in Fig. 16. 

 The  first  task  handled  by  the  Pi  Hat  is  filtering  any  noise  in 
 the  5V  power  supply  connected  to  the  Hat  via  a  barrel  jack 
 and distributing this to the Teensy, Pi, and fretboard PCBs. 

 The  second  task  of  the  Pi  Hat  is  to  connect  the  Teensy  and 
 RPi’s GPIO pins. 

 The  hat  will  also  take  the  3.3V  logic  signal  outputted  by  the 
 Teensy  for  the  NeoPixels  and  shift  it  to  a  5V  logic  signal  as 
 required by the LEDs. 

 We  plan  to  use  an  active  buzzer  as  a  metronome  to  indicate 
 the  target  tempo  to  the  user  while  they  are  playing.  This  will 
 beep  in  a  short  pulse  once  per  beat  of  the  music.  Active 
 buzzers  can  be  driven  by  simply  pulling  an  output  pin  on  the 
 Teensy,  either  high  or  low,  making  this  design  for  the 
 metronome easy to implement on the firmware side. 

 The  final  feature  of  the  Pi  Hat  will  be  sets  of  input  and 
 output  pins  on  the  board  that  will  enable  the  connection  of  the 
 various  peripheral  devices,  such  as  the  fretboard  PCB,  the 
 strum  detection  circuit,  and  the  electrical  connections  to  the 
 guitar's string. 

 Fig. 16.  Pi-Hat PCB layout (work in progress) 

 4)  Power Supply 
 The  system  will  be  powered  using  a  5V  DC  wall  adapter, 

 which  will  connect  to  the  Pi  Hat  using  a  5mm  barrel  jack 
 connector  and  be  distributed  to  the  various  components.  The 
 fretboard  PCB  D-flip-flops  operate  on  3.3V,  which  will  be 
 supplied  by  the  Teensy’s  internal  3.3V  linear  regulator.  The 
 total  expected  current  draw  is  2.5A  for  the  Pi,  0.15A  for  the 
 Teensy,  0.1A  for  the  strum  detection,  and  1.7A  for  the  LEDs  at 
 half  brightness.  This  sums  to  4.45A,  so  a  5A  power  supply 
 was chosen for the project. 

 VII.  T  ESTING  , V  ERIFICATION  ,  AND  V  ALIDATION 

 To  validate  the  hardware  latency  performance, 
 comprehensive  tests  will  be  conducted.  The  aim  is  to 
 scrutinize  the  real-time  responsiveness  of  the  SuperFret 
 system under diverse playing conditions. 

 A.  Latency 
 An  oscilloscope  will  be  utilized  to  precisely  measure  the 

 time  delay  between  the  initiation  of  a  strumming  action  and 
 the  corresponding  LEDs  being  written  to.  This  test  holds 
 critical  significance  as  it  directly  addresses  the  design 
 requirement  of  achieving  a  latency  of  less  than  50 
 milliseconds,  ensuring  that  the  system  provides  instantaneous 
 feedback to the user during guitar practice sessions. 

 Simultaneously,  the  web  app’s  network  delay  test  will 
 evaluate  the  responsiveness  of  the  web  application.  The  test 
 will  entail  interaction  with  different  features,  such  as  song 
 uploading  and  accessing  practice  statistics.  The  time  taken  for 
 responses  to  be  received  and  displayed  will  be  measured  to 
 ascertain  that  the  web  application  operates  within  the 
 stipulated  network  delay  of  less  than  0.25  seconds.  This 
 ensures  that  users  experience  a  smooth  and  responsive 
 interface  when  interacting  with  the  web  application,  aligning 
 with the design specifications and user expectations. 

 B.  Accuracy 
 For  accuracy  testing,  a  strum  identification  test  is  designed 

 to  assess  the  system's  ability  to  identify  strums  accurately.  We 
 will  quantify  the  system's  ability  to  correctly  identify  strums 
 by  performing  100  1/8th  note  strums  at  100  BPM  on  each 
 string  and  recording  ambient  sound  levels.  The  success  criteria 
 for  this  test  will  be  determined  by  calculating  the  percentage 
 of  correctly  identified  strums,  directly  addressing  the  accuracy 
 requirements  outlined  in  the  design  specifications.  This 
 quantitative  measure  clearly  indicates  the  system's 
 performance  in  identifying  and  responding  to  strumming 
 actions. 

 In  addition  to  strum  identification,  a  finger  placement  test 
 will  be  conducted  to  evaluate  the  system's  accuracy  in 
 detecting  the  placement  of  fingers  on  different  string  and  fret 
 positions.  This  involves  systematically  placing  a  finger  on 
 each  combination  and  monitoring  the  serial  port.  Repeating 
 this  process  multiple  times  and  calculating  the  percentage 
 accuracy  will  quantify  the  system's  precision  in  detecting 
 finger  placement.  This  test  directly  validates  the  accuracy 
 requirements  for  finger  placement  detection  as  specified  in  the 
 design  specifications.  Overall,  these  tests  are  crucial  in 
 ensuring  that  the  SuperFret  system  not  only  meets  theoretical 
 design  trade-offs  but  also  demonstrates  robust  performance 
 aligned with the specific use-case requirements for the project. 

 C.  Safety 
 As  per  IEC  TS  60479-1,  humans  can  not  perceive  currents 

 below  500μA,  and  currents  below  1mA  do  not  impact  muscles 
 [3].  We  will  use  a  lab  bench  ammeter  capable  of  measuring 
 down  to  0.1μA  to  verify  this.  Under  normal  conditions, 
 participants  will  contact  the  3.3V  guitar  string  with  1  hand  and 
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 a  ground  signal  with  the  other.  A  10kΩ  potentiometer  will  be 
 between  the  3.3V  source  and  the  string,  and  the  potentiometer 
 will  initially  start  at  10kΩ.  While  monitoring  the  current,  the 
 potentiometer’s  resistance  will  be  turned  to  0Ω,  and  the 
 current  will  be  recorded.  If  the  current  ever  reaches  1mA 
 while  lowering  the  potentiometer  resistance,  the  test  will  be 
 stopped.  To  test  the  maximum  current  the  strings  carry,  we 
 will  use  the  ammeter  to  connect  the  string  to  ground  and  verify 
 that  no  more  than  1mA  flows.  We  will  also  use  a  lab  bench 
 voltmeter  capable  of  measuring  down  to  1μV  to  verify  that  the 
 fretboard  has  no  exposed  3.3V  or  5V  contacts  other  than  the 
 3.3kΩ current limited contact. 

 D.  User Experience 
 For  user  experience  evaluation,  subjective  tests  will  be 

 conducted  to  gather  feedback  on  the  web  application  and 
 hardware  components.  The  tests  are  designed  to  assess  the 
 users' perception of the system's usability and effectiveness. 

 Users  will  be  asked  to  interact  with  the  web  application  and 
 provide  ratings  on  a  scale  of  1  to  5  for  categories  such  as  the 
 intuitiveness  of  the  interface,  readability  of  statistics,  and  ease 
 of  uploading  songs.  These  subjective  evaluations  will  be 
 averaged  to  create  a  quantitative  metric  for  the  overall  user 
 experience  with  the  web  application.  For  instance,  a 
 user-friendly  interface  is  crucial  to  the  system's  success,  as  it 
 directly impacts the accessibility and satisfaction of the users. 

 Similarly,  users  will  be  requested  to  evaluate  the  hardware 
 components,  considering  factors  like  comfortability,  LEDs' 
 effectiveness,  and  the  metronome's  volume  and  pitch.  Ratings 
 on  a  scale  of  1  to  5  for  each  category  will  be  averaged  to 
 provide  a  quantitative  measure  of  the  overall  user  satisfaction 
 with  the  physical  components.  Comfortability  is  vital  for 
 sustained  practice  sessions,  while  the  effectiveness  of  LEDs 
 and  the  metronome  directly  impact  the  user's  ability  to  follow 
 guidance and maintain rhythm during practice. 

 These  user  experience  evaluations  are  essential  for 
 obtaining  qualitative  insights  into  the  effectiveness  and 
 user-friendliness  of  the  SuperFret  system.  The  system's 
 success  in  meeting  the  user-centric  design  goals  will  be 
 quantified  by  aggregating  user  ratings.  The  feedback  gathered 
 from  users  will  be  invaluable  in  making  iterative 
 improvements  to  enhance  the  overall  user  experience, 
 ensuring  that  the  SuperFret  system  fulfills  technical 
 specifications  and  is  well-received  by  its  target  audience  of 
 beginner guitar players. 

 VIII.  P  ROJECT  M  ANAGEMENT 

 A.  Schedule 
 The  Gantt  chart  in  Appendix  Table  III  shows  the  project 

 timeline  for  the  semester.  The  tasks  are  divided  into  Electrical, 
 Firmware,  and  Software,  with  Owen,  Tushaar,  and  Ashwin 
 leading  these  categories.  Scheduled  weekly  2-hour  meetings 
 between  team  members  occur  to  perform  integration  between 
 systems  and  discuss  design  considerations  to  prevent 
 integration  issues  at  the  end  of  the  semester.  Time  is  provided 
 at  the  end  of  the  semester  for  the  final  integration  of  the 

 systems,  and  team-wide  tasks  such  as  working  on 
 presentations  and  reports  are  also  listed.  Highlighted  bars 
 indicate progress on the listed task. 

 B.  Team Member Responsibilities 
 As  shown  in  the  schedule,  the  work  is  divided  into  4  main 

 areas  -  overall  project  management,  web  app,  firmware,  and 
 electronics.  All  members  are  responsible  for  staying  up  to  date 
 on  the  overall  project  timeline  and  keeping  the  timeline  for 
 their area on track. 

 Ashwin  focuses  on  the  web  app  and  writes  software  on  the 
 RPi  to  host  it.  He  also  writes  software  to  send  MIDI  files  to 
 the  Teensy  and  receive  statistics  on  how  the  user  is  doing  from 
 Teensy. 

 Owen  designs  the  electronic  hardware,  which  involves  the 
 PCBs  on  the  fretboard,  the  strum  detection  circuitry,  and  the 
 interface  board  that  allows  signals  to  pass  between  the  Teensy 
 and RPi. 

 Tushaar  focuses  on  the  firmware,  the  glue  between  Ashwin 
 and  Owen’s  areas.  This  involves  writing  the  Teensy’s  software 
 for  interfacing  with  the  RPi  and  the  electronic  hardware  that 
 Owen designs. 

 C.  Bill of Materials and Budget 
 So  far,  we  have  spent  $207.22.  The  ordered  parts  include 

 the  fretboard  PCBs,  their  components,  and  the  guitar. 
 Appendix  Table  II  shows  the  full  breakdown  of  these  orders. 
 We  have  also  acquired  an  RPi  from  the  ECE  department  and 
 parts  such  as  the  Teensy  and  hookup  wire  from  Roboclub,  of 
 which  Owen  is  a  member.  Appendix  Table  II  also  indicates  the 
 projected  future  costs,  primarily  consisting  of  two  more  PCB 
 orders.  The  total  expected  cost  of  the  project  is  currently 
 $417.22,  leaving  $182.78  for  additional  components  that  are 
 needed or for expedited shipping. 

 D.  Risk Mitigation Plans 
 Several  critical  risks  have  been  identified,  each  requiring 

 careful  consideration  and  mitigation  strategies  to  ensure  a 
 smooth design implementation. 

 One  risk  involves  detecting  open  string  strums  when  there  is 
 no  direct  contact  between  the  fret  and  string.  Mitigation 
 strategies  include  removing  this  scenario  from  the  use  case  by 
 transposing  all  open  strings  up  one  semi-tone,  making  open 
 strings  impossible,  or  just  trusting  the  user  and  assuming  the 
 right string was played when a strum is detected. 

 The  ambiguity  in  fret-string  contact  due  to  multiple  ways  to 
 play  the  same  note  poses  another  risk.  To  address  this,  we  may 
 develop  an  algorithm  to  determine  which  alternative  of  the 
 same  note  is  most  appropriate  to  play.  The  algorithm  will  take 
 in  recently  played  notes  to  determine  which  fret  is  physically 
 closer. 
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 IX.  R  ELATED  W  ORK 

 Fret  Zealot  [13]  is  an  existing  product  that  is  similar  to  ours. 
 It  is  a  guitar  learning  tool  hosted  on  a  website  with  features 
 such  as  song  tutorial  videos  and  online  guitar  courses.  They 
 also  sell  a  set  of  guitar  LEDs  that  allow  users  to  learn  chords 
 and scales, similar to our project. 

 However,  this  product  lacks  finger  placement  and  strum 
 detection  on  the  guitar  and  relies  on  a  microphone.  Thus,  the 
 guitar  cannot  provide  feedback  regarding  if  notes  were  played 
 correctly  as  rapidly  and  accurately.  Our  product  also  separates 
 itself  by  collecting  this  data  and  displaying  dynamic  songs 
 moving  at  the  user's  pace.  It  also  displays  the  timing  and 
 accuracy  information  to  the  user,  allowing  them  to  observe 
 their  skills  increase  over  time.  However,  Fret  Zealot’s 
 approach  to  guitar  learning  offers  them  distinct  advantages. 
 The  most  prominent  is  that  their  LEDs  are  detachable,  which 
 allows  users  to  pick  their  own  guitar  for  learning  instead  of  us 
 deciding. Overall, our solution offers greater interactability. 

 X.  S  UMMARY 

 The  SuperFret  project  aims  to  develop  a  system  to  assist 
 beginner  guitar  players  in  improving  their  skills  and  playing 
 basic  songs.  Learning  new  songs  and  chords,  practicing 
 tempo,  and  drilling  finger  exercises  are  made  simple  through 
 our  interactive  design.  Our  product  comprises  a  web 
 application  hosted  on  an  RPi,  a  Teensy  microcontroller  as  the 
 embedded  system's  brain,  and  electronic  hardware  on  the 
 guitar,  including  LEDs  on  the  fretboard  and  a  microphone  for 
 strum  detection.  Users  interact  with  the  system  through  the 
 web  app,  uploading  MIDI  files  for  practice.  The  LEDs  on  the 
 fretboard  guide  users  on  finger  placement  and  strumming 
 based on the uploaded files. 

 The  system's  user-friendly  interface,  real-time  feedback 
 through  LEDs,  and  guidance  enhance  the  learning  experience. 
 The  web  application  allows  users  to  upload  their  favorite 
 songs  for  practice,  promoting  an  enjoyable  and  tailored 
 learning  journey.  The  system's  ability  to  handle  notes  down  to 
 1/8th  at  100  BPM  and  accurately  identify  finger  placement 
 and  strumming  with  a  99%  accuracy  rate  ensures  a  supportive 
 and effective practice environment. 

 Anticipated  challenges  in  implementation  and  meeting 
 requirements  include  detecting  open  strings  without  direct 
 contact  and  addressing  ambiguity  in  fret-string  contact.  These 
 challenges  require  careful  consideration  and  mitigation 
 strategies  to  ensure  the  system's  robustness  and  alignment  with 
 user  expectations.  Additionally,  refining  the  algorithm  for  the 
 most  appropriate  notes  and  maintaining  optimal  latency  are 
 ongoing  challenges  crucial  to  effectively  meeting  the  system's 
 use-case  requirements.  Overall,  addressing  these  challenges 
 will  be  key  to  the  success  of  the  SuperFret  project  and  its 
 positive impact on beginner guitar players. 

 G  LOSSARY  OF  A  CRONYMS 

 BPM – Beats per Minute 
 COTS – Commercial Off-The-Shelf 
 GPIO – General Purpose Input Output 
 I/O – Input and Output 
 MIDI – Musical Instrument Digital Interface 
 PCB – Printed Circuit Board 
 RPi – Raspberry Pi 
 SBC – Single Board Computer 
 TQPN - Ticks per Quarter Note 
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