
 18-500 Design Project Report: Team A2 SuperFret 08/13/2023 1

 SuperFret
 Owen Ball, Ashwin Godura, and Tushaar Jain

 Department of Electrical and Computer Engineering, Carnegie Mellon University

 Abstract —Traditional guitar training tools can show an image
 of note fingering to users, but going from this image to actually
 placing the fingers on the strings can be difficult. With the
 SuperFret system, LEDs on the guitar fretboard will show users
 exactly where to place their fingers on the guitar. The system will
 also detect where the user’s fingers are located and when they
 strum the guitar, allowing the system to determine if the user
 plays the correct note. This will allow users to learn the guitar
 more rapidly and engagingly.

 Index Terms —Fretboard, fret, guitar, metronome, MIDI file,
 strum, NeoPixel (addressable LED), Raspberry Pi, string, Teensy
 4.1 (microcontroller), web app.

 I. I NTRODUCTION

 T HIS project aims to create a more intuitive guitar training

 tool for beginners. When first learning the guitar, beginners
 often struggle with translating an image of how to play a note
 to an actual finger placement on the fretboard, the part of the
 guitar where users place their fingers to change the pitch of
 notes. Traditional tools show beginners tabs or images of
 where to put their fingers, which they must first interpret, then
 look at the fretboard to place their fingers. For new guitar
 players, this increases the complexity of learning the guitar.
 Since beginners are already looking at the fretboard when
 playing a note, indicating where to put their fingers directly on
 the fretboard makes sense. By using LEDs, or light-emitting
 diodes, to indicate to users where to place their fingers, the
 process of playing new notes and songs is expedited and made
 more natural for beginners.

 While more advanced guitar players can learn to sight-read
 guitar tabs and images of notes, these skills take time to
 develop and build muscle memory. When learning guitar,
 jumping straight into reading tabs and notes can be
 overwhelming when learning guitar. The SuperFret system
 targets absolute beginner guitar players trying to pick up a
 guitar and play for the first time. Indicating to beginners where
 to put their fingers will enable them to build finger dexterity
 and the skills to play notes without being inundated with
 foreign guitar notation. This removes one of the major hurdles
 beginner guitar players face, making playing the guitar more
 approachable and enjoyable.

 The SuperFret system will also detect the position of the
 user’s fingers and when they strum, allowing the user to
 receive real-time feedback to ensure they are playing the
 correct notes and strumming at the right time. A web app will
 display that feedback to the user, allowing them to see their

 progress and determine where to improve.
 Guitar training resources are not a novel idea, with private

 teachers, training apps, and accessories being commonplace.
 Private teachers are costly, running around $40-$90 an hour
 [1]. This results in many individuals favoring personal training
 tools, such as apps showing them where to put their fingers
 and listen to their playing. While tools like this are affordable,
 they require users to look at a screen to determine what note to
 play and then try to match their fingers to the image on the
 screen. They also require quiet environments to analyze the
 user’s playing and cannot provide feedback until the user
 strums. By integrating LEDs on the fretboard, the SuperFret
 system makes it easier for users to place their fingers in the
 correct location.

 A handful of existing training tools integrate LEDs onto the
 fretboard, but these systems also require quiet environments to
 analyze the user’s finger location. The SuperFret system will
 directly detect the user’s finger locations, thus enabling a more
 accurate analysis of the user’s playing.

 Overall, the SuperFret system should allow beginner guitar
 players to quickly learn to play notes and basic songs. The
 system will determine if the user is playing correctly and
 provide feedback and control over the system through a web
 app interface

 II. U SE -C ASE R EQUIREMENTS

 The target users of the SuperFret system are beginner guitar
 players looking to improve their skills and play basic songs.
 As such, the use case requirements are informed with
 beginners in mind. Beginner guitar players should find the
 overall experience of the web app and hardware intuitive, as
 the goal of the project is to remove barriers to entry. From
 picking up the system to strumming notes, users should only
 need around 5 minutes to get started with the system. Users
 shall be able to upload MIDI files (file format for representing
 music) for songs they want to practice. The system should also
 support selecting various other training activities, such as
 playing finger exercises and scales.

 The system shall handle notes down to 1/8 th notes at 100
 beats per minute (BPM). This corresponds to 200 notes per
 minute maximum, or around 3 notes a second, faster than most
 beginner guitar players can handle. The system should be able
 to identify the user’s finger placement and strumming with
 99% accuracy, corresponding to approximately 1-2 missed
 notes per minute by the system. This will likely be far lower
 than the number of mistakes made by the user, so this
 accuracy will be sufficient for the system.

 2
 18-500 Design Project Report: Team A2 SuperFret 08/13/2023

 III. A RCHITECTURE AND P RINCIPLE OF O PERATION

 Fig. 1. A depiction of the physical system. Guitar image from [2]

 The overall system is shown in Fig. 1. The user interacts
 with the system through their personal computer by accessing
 a web app. They upload songs and choose scales to practice
 on. When ready to practice, they click “Start” on the screen,
 place their fingers on the lit-up LEDs, and strum. Statistics
 about their progress are aggregated and displayed on the web
 app.

 Fig. 2. High-level Architecture Block Diagram.

 Overall, the system is composed of 3 parts – the web
 application (“web-app”) hosted on a Raspberry Pi 4B (“RPi”),
 a Teensy 4.1 microcontroller, which is the brain of the
 embedded system, and the electronic hardware on the guitar.
 The user interacts with the system through the web
 application, which allows them to upload songs they want to
 learn, choose scales to practice, and receive statistics on their
 playing. The user uploads songs as MIDI files, which encode
 note and timing information for the song. The MIDI file is
 passed from the web app to the Teensy, which uses the file as a
 reference to guide the user to play the correct notes. LEDs on
 the fretboard guide finger placement, and the Teensy lights
 them according to the target note it parses from the MIDI file.
 The LEDs reside on Printed Circuit Boards (PCBs) along the
 fretboard. The PCBs also contain circuitry for determining
 which note the user has fingered on the fretboard. Other
 electronic hardware on the guitar includes a piezoelectric
 sensor and accompanying circuitry for strum detection. By
 detecting which note the user’s fingers are on and when they
 strum it, the Teensy can determine deviations from the notes
 and timing information specified in the MIDI file and send

 aggregated statistics back to the RPi for display on the web
 app.

 A. Web Application
 As shown in the high-level block diagram (Fig. 2), the RPi

 hosts both the web app and communicates with the Teensy
 microcontroller. The web app is written in Python using the
 Django web framework, which combines the frontend,
 backend, and the database into one Model-View-Controller
 design pattern (Fig. 3) to create web endpoints that the user
 can access via a web browser. There are 3 communication
 “streams” between the RPi and the Teensy to relay
 information from the user to the Teensy: bidirectional
 communication with the Teensy over UART accounts for 2
 streams, and the third is for interrupt signals that control the
 state machine (Fig. 9) inside the Teensy.

 Fig. 3. Django Web Frame Work Implements Model-View-Controller

 B. Teensy and Embedded System
 Besides the 3 previous streams, the Teensy communicates

 with the electronic hardware on the right side of Fig. 2 through
 4 streams.

 First, the Teensy specifies the color of each NeoPixel LED
 on the fretboard through the protocol for WS2812 LEDs,
 which is the chipset the NeoPixel implements.

 The Teensy determines where on the fretboard the user has
 pressed on a string by detecting the electrical contact between
 each of the 4 strings with 14 frets. This is done by applying a
 voltage stimulus to one of the 14 frets and then reading the
 voltage on each of the 4 strings. A high reading on a string
 indicates that the string is pressed down against the fret on
 which the voltage stimulus is being applied. By putting
 D-Flip-Flops between each fret, the voltage stimulus is
 clocked “down” the fretboard as if the D-Flip-Flops formed a
 shift register. This way, only 2 signals are required for creating
 the voltage stimuli for the frets, as opposed to having 14
 signals, with one per fret.

 The Teensy also detects when the note is strummed by
 monitoring an interrupt produced by the Strum Detection
 circuitry.

 C. Electronic Hardware
 Each fret is associated with a PCB, which contains 4 LEDs,

 one per string. The PCB also has a D-Flip-Flop to receive the

 3
 18-500 Design Project Report: Team A2 SuperFret 08/13/2023

 voltage stimulus from the previous PCB, apply the stimulus to
 the current fret, and forward the stimulus to the next PCB.

 The Strum Detection circuitry is analog and takes the
 electrical signal from the piezoelectric pickup integrated into
 the guitar as an input. The signal is put through several signal
 processing stages, ultimately generating a digital value
 indicating whether the guitar was strummed. This digital
 signal serves as an interrupt for the Teensy and is used as a
 control signal to the internal state machine running on the
 Teensy.

 IV. D ESIGN R EQUIREMENTS

 To meet the use-case requirements, several critical design
 specifications have been established for both the hardware and
 firmware components, as well as the web application of the
 SuperFret system. For the hardware and firmware, achieving a
 latency of less than 50ms from strum detection to LED
 response (the threshold of human visual perception) is
 paramount to provide users with real-time feedback during
 practice sessions. Additionally, the system must support down
 to 1/8th notes at 100 BPM to accommodate different tempos,
 and it should indicate the target tempo at a minimum volume
 of 70 dB, ensuring the signal is audible. The feedback
 mechanism is designed to provide visual and audible cues for
 in-time playing accuracy with a response time of at most less
 than 100ms, ensuring that the user can practice with a
 consistent tempo.

 The fretboard must incorporate 56 individually addressable
 LEDs to offer detailed visual guidance for different notes and
 scales. The rest of the board is unnecessary, as beginner users
 rarely use the upper portion of the guitar. Since scales require
 most of the board to be lit up at the same time, the system
 should allow 2/3 of the fretboard to be illuminated at half
 brightness, striking a balance between visibility, convenience,
 and safety.

 Safety is a key consideration, as the guitar strings will be
 driven to 3.3V. According to IEC TS 60479-1, currents below
 500μA through the body are imperceptible and safe.
 Therefore, the current that flows through the user under
 normal operating conditions should be under 500μA. Under
 abnormal operating conditions, such as if the system gets wet
 while being used, the current through the body should not
 exceed 1mA (the maximum current that can pass through a
 human body without impacting the user’s muscles) [3].

 The web application's design requirements focus on
 enabling the user to control the guitar and pause songs. The
 file upload capability should support up to 1GB of users' MIDI
 files for a personalized learning experience. The display of
 practice statistics, rhythm and accuracy scores, and song
 upload must respond to user input within 0.25 seconds, given
 a reasonably functioning network.

 These design specifications ensure SuperFret meets the
 defined use-case requirements.

 The quantitative specifications are summarized:
 Specification Value

 Strum to LED latency <50ms

 Total system 100 beats per minute support

 LEDs > 56 individually addressable LEDs

 Safety < 1 mA through body

 File storage 1GB

 Network delay < 0.25 second

 Finger placement Detection 99% accuracy

 lighting up the correct LED(s) 100% accuracy

 V. D ESIGN T RADE S TUDIES

 A. Single-Board Computer vs Microcontroller
 The main computer selected for the project was the

 Raspberry Pi 4B. The processing tasks associated with this
 project consist of running a web app, controlling the fretboard
 LEDs, reading from the fret sensors, and processing statistics.
 Both a single-board computer (SBC) and a WiFi-equipped
 microcontroller could perform these tasks. Single-board
 computers are typically worse at handling real-time interaction
 with their environment because the processor also handles the
 overhead of running the computer's operating system.
 Additionally, the hosting of the web app can introduce delays
 that will result in not meeting input and output (I/O) latency
 requirements. Running the system off a WiFi-equipped
 microcontroller like the ESP32S3 would enable high-speed
 I/O. However, running the web app in parallel to this on the
 microcontroller would be challenging due to the
 single-threaded nature of most microcontrollers. Running the
 system off a microcontroller would also introduce significant
 restrictions on the web interface's functionality due to the
 microcontrollers' limited memory. For these reasons, we chose
 to pursue a split architecture, with an SBC running the
 high-level control of the system, namely running the web app,
 storing user-uploaded music, and coordinating the system's
 overall state. A microcontroller will run the real-time I/O
 without worrying about hosting a web app, allowing the target
 latencies to be achieved. The SBC chosen was the Raspberry
 Pi 4B due to its widespread documentation and support, and
 the microcontroller chosen was the Teensy 4.1 due to its
 plentiful GPIO pins and high clock speed.

 B. Microcontroller Choice
 Members of the group were already familiar with using

 several microcontrollers typically used in electronic projects,
 and familiarity was the main driving force behind selecting a
 microcontroller. We considered the Arduino UNO, Arduino
 Mega, Raspberry Pi Pico, Teensy 4.0, and Teensy 4.1. Of
 these, we wanted a microcontroller with fast clock speed to
 enable multiple tasks and enough memory to store a MIDI
 file’s worth of data.

 We found a benchmark that showed the Teensy class of

 4
 18-500 Design Project Report: Team A2 SuperFret 08/13/2023

 microcontrollers were the fastest computers of the ones we
 were familiar with:

 Fig. 4. The “CoreMark” CPU Performance Benchmark [4], [5]

 We conservatively estimated the typical training song would
 be 2 minutes, with up to 200 notes per minute, and each note
 would take 5 bytes to specify in the MIDI format (2 for the
 duration in “delta ticks” and 3 for the event). Thus, we
 required a microcontroller with at least 2kB of memory. We
 eliminated the Arduino UNO, which only has 2kB of SRAM
 [6].

 After considering the degree of prior experience, CPU
 performance, memory, and availability, we selected the Teensy
 4.1 because it was strong across each desired trait, and we
 already had access to it, making it the cheapest option.

 C. Fret-Sensing Implementation
 To determine the user’s finger placement, the system uses

 the ‘switch’ formed when the user presses a string into a fret.
 GPIO pins on microcontrollers are limited, and wires interfere
 with the experience of the guitar. To reduce pin and wire
 count, a switch array can be employed. By driving each fret to
 3.3V one by one and then reading the voltage on each string,
 the detection of any strings touching the 3.3V fret can be
 performed. This requires 18 GPIO pins - 4 for the strings and
 14 for the frets. This still requires 14 wires to be run from each
 fret to the microcontroller. Since a switch array necessitates
 that each fret is driven to 3.3V one at a time, the GPIO count
 can be reduced to

 4 Strings + ceiling(log 2 (14)) = 8 (1)

 pins using a decoder circuit. However, this would require
 decoding circuitry next to each fret, which would take up the
 limited space available. By using a “shift-register” style
 approach, with each fret requiring only a single D-flip-flop,
 the system can use only 6 GPIO pins, 4 for the strings, 1 clock
 line, and 1 data line. This solution, shown in Fig. 5, requires
 only 2 wires between each fret, a shared clock line, and the
 data outputted by the previous fret’s D-flip-flop. The only
 tradeoff of this implementation is that each fret needs a
 D-flip-flop, but this drastically outweighs requiring 14
 individual wires for each fret.

 Fig. 5. A 6 GPIO method for reading finger positions

 D. Fretboard PCB Design
 Due to the finger placement sensing implementation making

 use of a D-flip-flop next to each fret, and the design requiring
 4 addressable LEDs per fret, implementing a PCB to mount
 these components is the ideal solution. It would be possible to
 use commercial off-the-shelf (COTS) LED strips and run a
 separate wire to each fret, but it is not possible to buy LED
 strips with the exact spacing needed for the guitar strings, as
 this would require many wires, as discussed previously.

 There are a handful of ways to implement PCBs along the
 fretboard. The first way is to remove and replace the guitar's
 fretboard with a single PCB. This would completely eliminate
 the need for external wires along the fretboard but would
 introduce mechanical challenges. Since the fretboard holds the
 frets in place, we would need to devise a new way of
 mounting the frets securely, and we would need to perfectly
 match the spacing of the original fretboard to keep the guitar
 in tune. Additionally, this would require completely removing
 the guitar's fretboard, which can be challenging to perform due
 to the glue between the fretboard and the rest of the guitar.
 These factors increase the risk associated with the project, so
 we chose not to pursue removing the fretboard.

 The other two implementations involve creating individual
 PCBs mounted next to each fret. This approach allows the
 fretboard to remain mounted to the guitar and removes the
 need to perfectly replicate the spacing between the frets on a
 PCB. These PCBs can be mounted on the fretboard or placed
 in carved-out channels next to each fret. The advantage of
 placing the PCBs on top of the fretboard is that no mechanical
 modification to the guitar fretboard is necessary. The
 disadvantages of this approach are that the fretboard is curved,
 as shown in Fig. 6, and that the frets only extend above the
 fretboard by 1.5mm.

 Fig. 6. Cross section of a guitar fretboard. The fretboard surface is curved,
 making PCB mounting difficult [7].

 The curved surface of the fretboard makes mounting rigid
 PCBs directly to the fretboard difficult. A flexible PCB would
 resolve this issue by allowing the PCB to conform to the shape

 5
 18-500 Design Project Report: Team A2 SuperFret 08/13/2023

 of the fretboard. However, since the frets only protrude from
 the fretboard by around 1.5mm, the total height of the LEDs
 and the PCB cannot exceed around 1mm. The addressable
 LEDs being used have a height of 1.6mm, so to ensure these
 do not get in the way while the user plays the guitar, the PCBs
 will have to sit in recessed channels in the fretboard. These
 channels can be flat on the bottom, meaning flexible PCBs are
 no longer necessary. Due to the higher costs and lead times
 associated with flexible PCBs, we pursued 14 rigid PCBs,
 each placed into carved-out channels next to the frets.

 VI. S YSTEM I MPLEMENTATION

 Appendix Table I has a more detailed technical block
 diagram of the system as a whole, beyond what was shown in
 Fig. 1. The system consists of three main subsystems – the
 user frontend hosted using the RPi, the physical hardware used
 to interface with the guitar and user, and the microcontroller
 system directly interacting with this hardware.

 A. Raspberry Pi Subsystem

 Fig. 7. Block diagram for the RPi. Zoomed-in crop of block diagram in
 Appendix Table I.

 1) Django Web Server
 The RPi hosts a web server powered by Python’s Django

 Web Framework. This server creates a local endpoint
 reachable via a browser that responds with an HTML page
 containing all the functionality needed for the user to
 communicate with the guitar. Specifically, the web server
 implements these endpoints:

 http://a2superfret.wifi.local.cmu.edu:8000/
 - home - retrieves the home page
 - addfile - uploads a file to
 - deletefile/{songname} - deletes a file
 - startfile/{songname} - tells guitar to start song
 - stopFile - tells guitar to stop song
 - getStats - get the user’s statistics of previous songs

 A SQL database will house all the file and user information to
 achieve a consistent state for the server. Each entry in the
 database will represent a song and contain:

 - name: name of the song/file
 - file: the file path to the MIDI (actual file will be

 stored in a separate folder)
 - active: a boolean to store if the song is currently

 being played
 - type: either a song or scale

 2) MIDI Pre-Processing
 A MIDI file is organized into 1 header section and at least 1

 “Track” section. The header specifies timing information to
 determine some timing info and the number of track sections
 that follow. Each track section specifies a tempo, notes, and
 duration information.

 Before forwarding the user’s MIDI file to the Teensy, the
 RPi lightly pre-processes it so the Teensy is not burdened with
 parsing through information it does not need. For example, the
 MIDI Header and Track sections contain byte counts, the
 instrument's name, and other preamble that the Teensy does
 not need. So, the RPi can strip that extraneous information out
 and send an “abridged” MIDI file, so the Teensy only needs to
 parse the essential tempo, timing, and note information.

 3) Teensy Communication
 The RPi will run a UART communicator process to

 establish and maintain a connection between the Teensy and
 the Pi over a specified port. Its job will be to receive user
 requests from the web server and convert them into signals,
 which can then be sent to the teensy and vice-versa. Upon a
 start request from the user, the web server will tell the UART
 communicator to send a specific file to the microcontroller by
 first sending a “file_transmission” (Fig. 9) interrupt, followed
 by all the file data. One idea was to send the file one packet at
 a time as needed, but this was abandoned due to network
 latency concerns. When a fileStop command is issued, the
 UART communicator will interrupt the Teensy by raising its
 PAUSE GPIO pin to high. Any other communication needed
 will look very similar.

 B. Teensy/Embedded Subsystem

 Fig. 8. Zoomed-in crop of block diagram in Appendix Table I. The
 Teensy microcontroller is the glue between the User Interface and the
 electronic hardware. The Teensy’s software is structured as a state
 machine.

 1) State Machine
 A state machine controls the high-level decisions made by

 the Teensy. There are two classes of inputs to the state
 machine - interrupts generated by the RPi (shown in purple in
 Fig. 9), which are based on the user’s interaction with the
 system, and inputs originating from the operation of the
 system itself (shown in red in Fig. 9).

 6
 18-500 Design Project Report: Team A2 SuperFret 08/13/2023

 When the system is first turned on, or “idling,” it starts in
 the “WAIT TO START” state. Once the user selects a song or
 scale on the web app, the RPi asserts a GPIO pin high, causing
 a rising edge on the “file_transmission” digital pin of the
 Teensy. This causes the Teensy to enter the “RECEIVING
 SONG” state to listen to the RPi over UART for a stream of
 bytes constituting the MIDI file. Once the RPi transmits the
 file, it asserts the same pin low, and the Teensy interprets the
 falling edge as the end of file transmission.

 Having received the MIDI file, the Teensy transitions to the
 “WAIT FOR STRUM” state, where it parses the file and waits
 for the user to start playing the guitar by strumming. The
 strum input is a digital signal generated by the
 strum-detection circuitry detailed in the following “ Electronic
 Hardware ” section. When the first strum is sensed, the Teensy
 enters the “USER EXPERIENCE” state, where it lights up
 LEDs, reads frets, and continues detecting strums.

 Once the user finishes playing the song (the end of the
 MIDI file is reached), the “WAIT TO START” state is entered
 again. The Teensy enters the PAUSED state if the user pauses
 the system through the web app. The Teensy enters the initial
 state if the user restarts the system through the web app.
 Otherwise, it waits until a strum is detected to resume the user
 experience.

 Fig. 9. State Machine for the Teensy’s Software

 2) MIDI Parsing
 The “abridged” MIDI file coming from the RPi only

 contains the timing and note information the Teensy needs to
 determine when to light up a particular note’s LED and when
 it should expect the user to play that note.

 From a timing perspective, the goal is to find the number of
 seconds to wait before a note is played and how long before
 the note is released. However, the MIDI file specifies such
 information as “MIDI ticks” elapsed, a somewhat arbitrary
 time unit. MIDI files typically specify two conversions to
 transform ticks into seconds. One is the number of MIDI Ticks
 per quarter note (TPQN), and the other is microseconds per
 beat, or tempo. Since a beat is defined to be the length of a
 quarter note, the following formula holds:

 (2) µ 𝑠 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑀𝐼𝐷𝐼 𝑡𝑖𝑐𝑘 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 𝑇𝑃𝑄𝑁 × 𝑡𝑒𝑚𝑝𝑜

 This allows conversion of durations specified in terms of
 “MIDI Ticks” into absolute time units that can be measured
 and timed on the Teensy.

 TPQN is specified as the 4th line in the MIDI file header
 (Fig. 10). The tempo is specified towards the beginning of the
 “MTrk” (Track) portion of the file by the byte sequence FF
 51 03 XX XX XX . “ XX XX XX” is the hexadecimal
 representation of the number of microseconds per beat. Since
 1 beat corresponds to a quarter note, the tempo sets the length
 of a quarter note. When such parameters are not specified,
 defaults outlined in the MIDI file standard are used [8]. The

 default TPQN is 48, and the default tempo is . 500 , 000 µ 𝑠
 𝑏𝑒𝑎𝑡

 The following formula is used to express the tempo in the
 more familiar BPM [9]:

 𝐵𝑃𝑀 = 60 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
 1 𝑚𝑖𝑛𝑢𝑡𝑒 · 1 , 000 , 000 µ 𝑠

 1 𝑠𝑒𝑐𝑜𝑛𝑑 · 1
 𝑡𝑒𝑚𝑝𝑜

 Fig. 10. MIDI TPQN and tempo parsing example for an excerpt from a
 “Twinkle Twinkle Little Star” MIDI file [10]. Here, the TPQN is 384,
 and the tempo is 545,454 microseconds per beat.

 The “track” portion of the MIDI specifies events such as
 playing a particular note (“Note ON” event) and releasing a
 note (“Note OFF” event) [11]. The duration to hold a note and
 wait before playing the next note is specified in terms of MIDI
 ticks. This number is encoded using a Variable Length
 Encoding (VLE) Format [11] [12]. Fig. 11 shows an example
 of parsing the variable length encoding “ 81 40 ” into a tick
 duration. The figure also shows Note ON and OFF events for
 playing the note C4 twice.

 Fig. 11. MIDI note and duration parsing example. This is an excerpt from a
 Track portion of a MIDI file for Twinkle Twinkle Little Star [10].

 7
 18-500 Design Project Report: Team A2 SuperFret 08/13/2023

 3) LED Control
 The Teensy stores a “note schedule” indicating when

 particular notes should be played or released. As the Teensy
 executes in the USER EXPERIENCE state, it compares the
 current time to entries in the note schedule to see if it is time
 for a note to be played or released. Once the particular note is
 determined from the note schedule, the corresponding LED
 position is determined by indexing into a static mapping
 relating notes to LED positions on the fretboard.

 C. Electronic Hardware Subsystem
 The interaction between the Raspberry Pi, the Teensy, the

 guitar, and the user is provided by a series of hardware
 components. These consist of sensing components to take in
 information from the environment, components that provide
 user feedback, and various power and data interconnects.

 Fig. 12. Zoomed-in crop of block diagram in Appendix Table I, focusing
 on the electronic hardware.

 1) Strum Detection
 The system must determine when the guitar is strummed to

 know if the user played the desired note correctly. To
 accomplish this, a circuit takes in the guitar's audio signal and
 outputs a digital signal indicating when the guitar is
 strummed.

 Rather than using a microphone to pick up the sound
 produced by the guitar, our system uses a piezoelectric sensor
 integrated into the guitar. This sensor converts the mechanical
 motion of the guitar strings into a voltage. This process is
 subject to significantly less noise than using a microphone,
 which can be affected by ambient noise.

 Fig. 13. Block diagram of the strum detection circuitry

 The block diagram for the strum detection is shown in Fig.
 13. The physical circuitry corresponding to this block diagram
 is shown in Fig. 14.

 Fig. 14. Physical implementation of the strum detection circuit

 The circuit first takes in an audio signal, adds a DC offset of
 around 1.5V, and then buffers it. Then, the buffered signal is
 amplified about its mean value. The amplified and shifted
 signal is fed into an envelope detector, which converts the
 audio waveform into a signal indicating its amplitude. Finally,
 this signal is fed into a comparator whose threshold is set by a
 trim potentiometer. The comparator outputs a digital signal
 that is fed to an input pin on the Teensy, allowing it to detect
 when a strum has occurred.

 2) Fretboard PCBs
 To connect the addressable LEDs and drive each fret to

 3.3V individually, our system integrates a PCB next to each
 guitar fret. The addressable LEDs require 5V, ground, and a
 data-in pin. They also have a data-out pin that connects to the
 data-in of the next LED in the series. There is a 0.1μF
 capacitor across the power rails next to each LED to ensure
 proper LED functionality. The LEDs used are SK6812
 NeoPixel LEDs, which support write speeds of up to 800kHz.
 For ~56 LEDs, this corresponds to around 2ms to write to all
 the LEDs.

 Furthermore, each fretboard PCB has a D-flip-flop, forming
 one large shift register across all the fretboard PCBs. The
 output of a D-flip-flop is connected to the adjacent fret of the
 guitar. Using the Teensy, a logical high can be clocked into the
 first PCB, and this can be shifted to the next PCB, allowing
 each fret to be driven high one at a time. A 3.3kΩ resistor
 connects the D-Flip-Flop and a fret to limit the current that
 could flow to 1mA. While a fret is driven high, the voltage on
 each guitar string is read, allowing the Teensy to determine
 which strings were contacting the fret being driven high.

 The PCB design is shown in Fig. 15. The top half of the
 board contains the 4 addressable LEDs, D1-D4, and the
 bottom half contains the D-flip-flop and current limiting
 resistor. The pads on the right side of the board and the bottom
 left of the board enable the boards to be daisy-chained
 together, which reduces wiring complexity. The boards will be
 conformal coated for safety and to prevent accidental shorting
 occurring through the metal strings.

 Fig. 15. Fretboard PCB layout

 8
 18-500 Design Project Report: Team A2 SuperFret 08/13/2023

 3) Pi Hat PCB
 The RPi and Teensy require numerous connections for

 UART and interrupts, external power, and various input and
 output devices. To implement these connections, a Pi “Hat”
 will be used. This is a PCB that plugs directly into the 40
 header pins on the RPi, as shown on the right side of the board
 in Fig. 16.

 The first task handled by the Pi Hat is filtering any noise in
 the 5V power supply connected to the Hat via a barrel jack
 and distributing this to the Teensy, Pi, and fretboard PCBs.

 The second task of the Pi Hat is to connect the Teensy and
 RPi’s GPIO pins.

 The hat will also take the 3.3V logic signal outputted by the
 Teensy for the NeoPixels and shift it to a 5V logic signal as
 required by the LEDs.

 We plan to use an active buzzer as a metronome to indicate
 the target tempo to the user while they are playing. This will
 beep in a short pulse once per beat of the music. Active
 buzzers can be driven by simply pulling an output pin on the
 Teensy, either high or low, making this design for the
 metronome easy to implement on the firmware side.

 The final feature of the Pi Hat will be sets of input and
 output pins on the board that will enable the connection of the
 various peripheral devices, such as the fretboard PCB, the
 strum detection circuit, and the electrical connections to the
 guitar's string.

 Fig. 16. Pi-Hat PCB layout (work in progress)

 4) Power Supply
 The system will be powered using a 5V DC wall adapter,

 which will connect to the Pi Hat using a 5mm barrel jack
 connector and be distributed to the various components. The
 fretboard PCB D-flip-flops operate on 3.3V, which will be
 supplied by the Teensy’s internal 3.3V linear regulator. The
 total expected current draw is 2.5A for the Pi, 0.15A for the
 Teensy, 0.1A for the strum detection, and 1.7A for the LEDs at
 half brightness. This sums to 4.45A, so a 5A power supply
 was chosen for the project.

 VII. T ESTING , V ERIFICATION , AND V ALIDATION

 To validate the hardware latency performance,
 comprehensive tests will be conducted. The aim is to
 scrutinize the real-time responsiveness of the SuperFret
 system under diverse playing conditions.

 A. Latency
 An oscilloscope will be utilized to precisely measure the

 time delay between the initiation of a strumming action and
 the corresponding LEDs being written to. This test holds
 critical significance as it directly addresses the design
 requirement of achieving a latency of less than 50
 milliseconds, ensuring that the system provides instantaneous
 feedback to the user during guitar practice sessions.

 Simultaneously, the web app’s network delay test will
 evaluate the responsiveness of the web application. The test
 will entail interaction with different features, such as song
 uploading and accessing practice statistics. The time taken for
 responses to be received and displayed will be measured to
 ascertain that the web application operates within the
 stipulated network delay of less than 0.25 seconds. This
 ensures that users experience a smooth and responsive
 interface when interacting with the web application, aligning
 with the design specifications and user expectations.

 B. Accuracy
 For accuracy testing, a strum identification test is designed

 to assess the system's ability to identify strums accurately. We
 will quantify the system's ability to correctly identify strums
 by performing 100 1/8th note strums at 100 BPM on each
 string and recording ambient sound levels. The success criteria
 for this test will be determined by calculating the percentage
 of correctly identified strums, directly addressing the accuracy
 requirements outlined in the design specifications. This
 quantitative measure clearly indicates the system's
 performance in identifying and responding to strumming
 actions.

 In addition to strum identification, a finger placement test
 will be conducted to evaluate the system's accuracy in
 detecting the placement of fingers on different string and fret
 positions. This involves systematically placing a finger on
 each combination and monitoring the serial port. Repeating
 this process multiple times and calculating the percentage
 accuracy will quantify the system's precision in detecting
 finger placement. This test directly validates the accuracy
 requirements for finger placement detection as specified in the
 design specifications. Overall, these tests are crucial in
 ensuring that the SuperFret system not only meets theoretical
 design trade-offs but also demonstrates robust performance
 aligned with the specific use-case requirements for the project.

 C. Safety
 As per IEC TS 60479-1, humans can not perceive currents

 below 500μA, and currents below 1mA do not impact muscles
 [3]. We will use a lab bench ammeter capable of measuring
 down to 0.1μA to verify this. Under normal conditions,
 participants will contact the 3.3V guitar string with 1 hand and

 9
 18-500 Design Project Report: Team A2 SuperFret 08/13/2023

 a ground signal with the other. A 10kΩ potentiometer will be
 between the 3.3V source and the string, and the potentiometer
 will initially start at 10kΩ. While monitoring the current, the
 potentiometer’s resistance will be turned to 0Ω, and the
 current will be recorded. If the current ever reaches 1mA
 while lowering the potentiometer resistance, the test will be
 stopped. To test the maximum current the strings carry, we
 will use the ammeter to connect the string to ground and verify
 that no more than 1mA flows. We will also use a lab bench
 voltmeter capable of measuring down to 1μV to verify that the
 fretboard has no exposed 3.3V or 5V contacts other than the
 3.3kΩ current limited contact.

 D. User Experience
 For user experience evaluation, subjective tests will be

 conducted to gather feedback on the web application and
 hardware components. The tests are designed to assess the
 users' perception of the system's usability and effectiveness.

 Users will be asked to interact with the web application and
 provide ratings on a scale of 1 to 5 for categories such as the
 intuitiveness of the interface, readability of statistics, and ease
 of uploading songs. These subjective evaluations will be
 averaged to create a quantitative metric for the overall user
 experience with the web application. For instance, a
 user-friendly interface is crucial to the system's success, as it
 directly impacts the accessibility and satisfaction of the users.

 Similarly, users will be requested to evaluate the hardware
 components, considering factors like comfortability, LEDs'
 effectiveness, and the metronome's volume and pitch. Ratings
 on a scale of 1 to 5 for each category will be averaged to
 provide a quantitative measure of the overall user satisfaction
 with the physical components. Comfortability is vital for
 sustained practice sessions, while the effectiveness of LEDs
 and the metronome directly impact the user's ability to follow
 guidance and maintain rhythm during practice.

 These user experience evaluations are essential for
 obtaining qualitative insights into the effectiveness and
 user-friendliness of the SuperFret system. The system's
 success in meeting the user-centric design goals will be
 quantified by aggregating user ratings. The feedback gathered
 from users will be invaluable in making iterative
 improvements to enhance the overall user experience,
 ensuring that the SuperFret system fulfills technical
 specifications and is well-received by its target audience of
 beginner guitar players.

 VIII. P ROJECT M ANAGEMENT

 A. Schedule
 The Gantt chart in Appendix Table III shows the project

 timeline for the semester. The tasks are divided into Electrical,
 Firmware, and Software, with Owen, Tushaar, and Ashwin
 leading these categories. Scheduled weekly 2-hour meetings
 between team members occur to perform integration between
 systems and discuss design considerations to prevent
 integration issues at the end of the semester. Time is provided
 at the end of the semester for the final integration of the

 systems, and team-wide tasks such as working on
 presentations and reports are also listed. Highlighted bars
 indicate progress on the listed task.

 B. Team Member Responsibilities
 As shown in the schedule, the work is divided into 4 main

 areas - overall project management, web app, firmware, and
 electronics. All members are responsible for staying up to date
 on the overall project timeline and keeping the timeline for
 their area on track.

 Ashwin focuses on the web app and writes software on the
 RPi to host it. He also writes software to send MIDI files to
 the Teensy and receive statistics on how the user is doing from
 Teensy.

 Owen designs the electronic hardware, which involves the
 PCBs on the fretboard, the strum detection circuitry, and the
 interface board that allows signals to pass between the Teensy
 and RPi.

 Tushaar focuses on the firmware, the glue between Ashwin
 and Owen’s areas. This involves writing the Teensy’s software
 for interfacing with the RPi and the electronic hardware that
 Owen designs.

 C. Bill of Materials and Budget
 So far, we have spent $207.22. The ordered parts include

 the fretboard PCBs, their components, and the guitar.
 Appendix Table II shows the full breakdown of these orders.
 We have also acquired an RPi from the ECE department and
 parts such as the Teensy and hookup wire from Roboclub, of
 which Owen is a member. Appendix Table II also indicates the
 projected future costs, primarily consisting of two more PCB
 orders. The total expected cost of the project is currently
 $417.22, leaving $182.78 for additional components that are
 needed or for expedited shipping.

 D. Risk Mitigation Plans
 Several critical risks have been identified, each requiring

 careful consideration and mitigation strategies to ensure a
 smooth design implementation.

 One risk involves detecting open string strums when there is
 no direct contact between the fret and string. Mitigation
 strategies include removing this scenario from the use case by
 transposing all open strings up one semi-tone, making open
 strings impossible, or just trusting the user and assuming the
 right string was played when a strum is detected.

 The ambiguity in fret-string contact due to multiple ways to
 play the same note poses another risk. To address this, we may
 develop an algorithm to determine which alternative of the
 same note is most appropriate to play. The algorithm will take
 in recently played notes to determine which fret is physically
 closer.

 10
 18-500 Design Project Report: Team A2 SuperFret 08/13/2023

 IX. R ELATED W ORK

 Fret Zealot [13] is an existing product that is similar to ours.
 It is a guitar learning tool hosted on a website with features
 such as song tutorial videos and online guitar courses. They
 also sell a set of guitar LEDs that allow users to learn chords
 and scales, similar to our project.

 However, this product lacks finger placement and strum
 detection on the guitar and relies on a microphone. Thus, the
 guitar cannot provide feedback regarding if notes were played
 correctly as rapidly and accurately. Our product also separates
 itself by collecting this data and displaying dynamic songs
 moving at the user's pace. It also displays the timing and
 accuracy information to the user, allowing them to observe
 their skills increase over time. However, Fret Zealot’s
 approach to guitar learning offers them distinct advantages.
 The most prominent is that their LEDs are detachable, which
 allows users to pick their own guitar for learning instead of us
 deciding. Overall, our solution offers greater interactability.

 X. S UMMARY

 The SuperFret project aims to develop a system to assist
 beginner guitar players in improving their skills and playing
 basic songs. Learning new songs and chords, practicing
 tempo, and drilling finger exercises are made simple through
 our interactive design. Our product comprises a web
 application hosted on an RPi, a Teensy microcontroller as the
 embedded system's brain, and electronic hardware on the
 guitar, including LEDs on the fretboard and a microphone for
 strum detection. Users interact with the system through the
 web app, uploading MIDI files for practice. The LEDs on the
 fretboard guide users on finger placement and strumming
 based on the uploaded files.

 The system's user-friendly interface, real-time feedback
 through LEDs, and guidance enhance the learning experience.
 The web application allows users to upload their favorite
 songs for practice, promoting an enjoyable and tailored
 learning journey. The system's ability to handle notes down to
 1/8th at 100 BPM and accurately identify finger placement
 and strumming with a 99% accuracy rate ensures a supportive
 and effective practice environment.

 Anticipated challenges in implementation and meeting
 requirements include detecting open strings without direct
 contact and addressing ambiguity in fret-string contact. These
 challenges require careful consideration and mitigation
 strategies to ensure the system's robustness and alignment with
 user expectations. Additionally, refining the algorithm for the
 most appropriate notes and maintaining optimal latency are
 ongoing challenges crucial to effectively meeting the system's
 use-case requirements. Overall, addressing these challenges
 will be key to the success of the SuperFret project and its
 positive impact on beginner guitar players.

 G LOSSARY OF A CRONYMS

 BPM – Beats per Minute
 COTS – Commercial Off-The-Shelf
 GPIO – General Purpose Input Output
 I/O – Input and Output
 MIDI – Musical Instrument Digital Interface
 PCB – Printed Circuit Board
 RPi – Raspberry Pi
 SBC – Single Board Computer
 TQPN - Ticks per Quarter Note

 R EFERENCES

 [1] “Live online guitar lessons: Learn guitar online,” Lesson With You,
 https://lessonwithyou.com/guitar-lessons/ (accessed Oct. 13, 2023).

 [2] “Acoustic bass guitar stock clipart: Royalty-free,” Freeimages,
 https://www.freeimages.com/premium-clipart/acoustic-bass-guitar-4992
 596?ref=clipartlogo (accessed Sep. 28, 2023).

 [3] “IEC TS 60479-1” International Electrotechnical Commission. (2018).
 IEC 60479-1:2018 Effects of current on human beings and livestock
 (accessed Sep. 23, 2023)

 [4] P. Stoffregen. “Teensy® 4.1 Development Board.”
 https://www.pjrc.com/store/teensy41.html (accessed Sept. 28, 2023)

 [5] P. Stoffregen. “CoreMark - CPU Performance Benchmark.”
 https://github.com/PaulStoffregen/CoreMark#coremark---cpu-performan
 ce-benchmark (accessed Sept. 28, 2023)

 [6] “Arduino Memory Guide”
 https://docs.arduino.cc/learn/programming/memory-guide (accessed Oct.
 10, 2023)

 [7] A. Matthies, “Guitar neck shapes & fretboard radius explained,”
 Guitar Gear Finder,
 https://guitargearfinder.com/guides/guitar-neck-shapes/ (accessed Oct.
 12, 2023).

 [8] M. Colli. “MIDI Beat Time Considerations.”
 https://majicdesigns.github.io/MD_MIDIFile/page_timing.html
 (accessed Oct. 3, 2023)

 [9] “The MIDI file format's Tempo Meta-Event”
 http://midi.teragonaudio.com/tech/midifile/ppqn.htm (accessed Oct. 3,
 2023)

 [10] “Twinkle Twinkle Little Star” MIDI Download.
 https://onlinesequencer.net/1815844# (accessed Oct. 3, 2023)

 [11] “Standard MIDI-File Format Spec. 1.1, updated”,
 https://www.cs.cmu.edu/~music/cmsip/readings/Standard-MIDI-file-for

 [12] “Variable-length quantity”
 https://en.wikipedia.org/wiki/Variable-length_quantity (accessed Oct. 8,
 2023)

 [13] “Best way to learn guitar: How to learn guitar at home,” Fret Zealot,
 https://www.fretzealot.com/ (accessed Oct. 13, 2023).

https://www.pjrc.com/store/teensy41.html
https://majicdesigns.github.io/MD_MIDIFile/page_timing.html
http://midi.teragonaudio.com/tech/midifile/ppqn.htm
https://www.cs.cmu.edu/~music/cmsip/readings/Standard-MIDI-file-format-updated.pdf

 11
 18-500 Design Project Report: Team A2 SuperFret 08/13/2023

 12
 18-500 Design Project Report: Team A2 SuperFret 08/13/2023

