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Use Case

When trying to learn guitar, beginners face challenges trying to learn how to
finger notes and maintain rhythm

The SuperFret system shall:

1. Visually indicate notes

2. Detect finger positions

3. Facilitate learning scales

4. Provide feedback

5. Be intuitive to use
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Desigh Requirements

Hardware
e > 56 individually addressable LEDs (14 frets, 4 strings).

©  “Visually indicate notes”

e Can light up % of LEDs at half brightness

o “Facilitate learning scales”

e Audibly (~60bB) indicate target tempo

o “Be intuitive to use”

e <1 mA through body max (based on IEC 60479-1)
Firmware

e <50ms latency from strum to LED response
o “Visually indicate notes & Provide feedback”

e Support 100 beats per minute and down to 1/8th notes
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Desigh Requirements

Web Application:

e Start and stop routines on the guitar
e Add up to 1GB of user’'s own MIDI files

e Display practice statistics (rhythm score, accuracy score)
o  “Provide feedback”

e <0.25second network delay
System Accuracy
e 99% accuracy for detecting finger placement and strumming

o “Detect finger positions”
e 100% accuracy for lighting up the correct LED(s) for a note or scale
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Solution Approach
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Overall Block Diagram
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Custom PCB (Pi Hat)
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Implementation - Microcontroller

Custom PCB (Pi Hat)
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Custom PCB (Pi Ha

ws2812

Fretboard Fretboard
° Raspberry Pi 41 Protocol PCB PCB
Django Web o NeoPixel NeoPixel
mplementation - Hardware ) =
and Data | ~FipFiop o Fiip-Flop o
Drive Fret Drive Fret

Voltages on Strings
UART | Interrupts

Teensy 4.1
i Audio Signal Electret
NeoPixel Library rerc iy
Reading Frets L Metronome

K KE!
Determining Strum Del?cticn
+3.3V Accuracy Seslop il Software [Hardwarej [Cﬁz’em] [5:,’:;‘2::‘"’.]
+3.3V
M L u1
o
B el 74LVC1679
o= 2 D_IN 1y 8 ol D_OUT
> )
S g-m Conn_oixoila_PmGND1 £33V =
0 S cs5
© A 2 T R1
v 3 CLK ' - 5 - 3.3k
4 D_IN —— < bt Z
FRET
M)
Fret c 0)1304 Pi GND1 i in
e e = iGN DT BV
| 2
3 CLK GND1
an o p.out +5V +5V +5V +5v
[ ] n +5V 1 |
- Conn,Oiins,Pm
g :_/l “ ) 8 ]
§ TR 3 D1 3 D2 3 D3 3 D4
= > > ol -
4 LED_IN 40in pourh2ws28128 40 Dout|2¥s28128 408 pouT|2¥s28128 40N Dour|2¥s28128  LED_OUT
0y 0y 0y A
:::_TEDGEBT L LK L e LK alic3 Lk - Ch >(n§z
Au ™) Au M) 1u gl - %)
~
GND GND GND GND

Carnegie
Mellon
University



Testing, Verification, and Validation
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Latency

Hardware: Oscilloscope to measure delay between stimuli, such time from
strumming to LEDs being written to
Webapp: Measure one-way latency using time stamped requests

Accuracy

Strums: Play 100 1/8th notes at 100 BPM on each string and record the ambient
sound level.

Finger Placement: Place a finger on each combination of string and fret position and
monitor serial port.

LEDs: Light up each LED white and verify that the proper LED lights up. Verify
current when illuminating all LEDs white at 50% brightness is <1.5A

User
Experience

Have users evaluate categories on scales from 1 to 5 to create a quantitative metric

Webapp: Intuitive interface, easy to read statistics, intuitive uploading of songs, etc
Hardware: Comfortability, effectiveness of LEDs, volume and pitch of metronome
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Risks Mitigated

e Lack of web app experience. Switching from Flask to Django
e Understanding MIDI files

New Challenges

e Detecting open strings

O There is no fret-string contact
e Multiple ways to play the same note

O How to choose where to instruct the user to play?
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Project Management

18500

¥ General
Fall Break
Thanksgiving Break
Website Setup
Proposal Slides
Order Guitar
Design Presentation
Design Report
Final Presentation
Final Report
Public Demo

Integration Time

¥ Electrical
Design schematic + PCB for fretboard LEDs
Design circuit for detecting guitar strums
Fine tune values for strum circuit and test on guitar
Begin preliminary schematic/layout for Pi-hat
Test LED functionality of PCBs
Verify functionality of finger position sensors
Revise fretboard PCBs
Finalize design of Pi Hat PCB
Assemble fretboard PCBs
Assembly and testing of Pi Hat PCB

Mechanical modifications to guitar

OCT 2023 NOV 2023

10 17 24 1 8 15 2 29 5 12 19 26

()

|
@l oven
@l oven
D Owen
l:] Owen

{0 owen, Tushaar

Owen, Tushaar
Owen

{1}, owen
O Owen
] owen
C] Owen

3

v Firmware
Able to individually address LEDs using Teensy
Establish plan for state machine/program flow
Create main Teensy loop and control signals
Able to read finger placement sensors on fretboard PCBs
UART communication between Pi and Teensy established
Read in song data from Pi
Pi able to use interrupts to control Teensy state machine
Teensy able to send data back to Pi
Teensy able to light up LEDs in rhythm with MIDI song
Teensy able to detect if finger position is right at time of strum

Metronome via speaker

v Software
Set up Pi with Django
Create basic webserver hosted on Pi
Able to upload files to Pi via webapp
Pi able to set GPIO pins in response to webapp
UART communication with Teensy
Pi able to send song data to Teensy
Webapp able to send control signals to Teensy
Able to receive data from Teensy
Webapp able to display statistics

Debugging integration/communication with Teensy
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