Carnegie Mellon University

TS

Team A2: SuperFret

Owen Ball, Ashwin Godura, Tushaar Jain

T I TIIIs

Use Case

When trying to learn guitar, beginners face challenges trying to learn how to
finger notes and maintain rhythm

The SuperFret system shall:

1. Visually indicate notes

2. Detect finger positions

3. Facilitate learning scales

4. Provide feedback

5. Be intuitive to use
Carnegie
Mellon

University

Desigh Requirements

Hardware
e > 56 individually addressable LEDs (14 frets, 4 strings).

© “Visually indicate notes”

e Can light up % of LEDs at half brightness

o “Facilitate learning scales”

e Audibly (~60bB) indicate target tempo

o “Be intuitive to use”

e <1 mA through body max (based on IEC 60479-1)
Firmware

e <50ms latency from strum to LED response
o “Visually indicate notes & Provide feedback”

e Support 100 beats per minute and down to 1/8th notes

Carnegie
Mellon
University

Desigh Requirements

Web Application:

e Start and stop routines on the guitar
e Add up to 1GB of user’'s own MIDI files

e Display practice statistics (rhythm score, accuracy score)
o “Provide feedback”

e <0.25second network delay
System Accuracy
e 99% accuracy for detecting finger placement and strumming

o “Detect finger positions”
e 100% accuracy for lighting up the correct LED(s) for a note or scale

Carnegie
Mellon
University

Solution Approach

Carnegie
Mellon
University

Overall Block Diagram

p

/Raspberry Pi 4B\

Django Web
Server

‘ MIDI Parsing |

‘ Teensy Comm. |

A

UART Interrupts

A4 \4
/ Teensy 4.1 \

| NeoPixel Library |

| Reading Frets |

Reading Strums

Determining

\k Accuracy /

Custom PCB (Pi Hat)

Power

Distribution

Buzzer for
Metronome

Strum Detection
Analog Circuit

~_Voltages on Strings

14
\ A
- R
\|’3V32812| Fretboard Fretboard
rotocol | pep PCB
e
Clock LEDs e =
and Data_ e Eiip-Fiop to Flip-Flop to
Drive Fret Drive Fret
L —

Audio Signal

-
Electret Microphone
+ Amplifier
-
EY

Software

[Hardware

Custom Purchased
Made Component

Carnegie
Mellon
University

Custom PCB (Pi Hat)

ws2812

Pretocol Fretboard Fretboard
PCB PCB
I - < Power o -
Distribution [ixel] [leoPixel]
= Clock LEDs o e
and Data Flip-Flop to Flip-Flop to
Drive Fret Drive Fret

Voltages on Strings

Audio Signal Electret
+Amplifier
KE

Hardware Custom Purchased
Made Component

Teensy 4.1

NeoPixel Library
Reading Frets

C 0 O 127.0.018

Determining
Accura

Software

Welcome to Superfret

Scales List Songs List Controller
Search Scale List Search Song List A
&
N

C sharp major m Don't stop me now @ 6:5‘
g
Aminor [Start | Twinkle Twinkle [Start | z
. -3

View
Add a fl
N, o
User

Carnegie
Mellon
University

Implementation - Microcontroller

Custom PCB (Pi Hat)

Raspberry Pi 4B
i Power

Distribution

Server

MIDI Parsing
[Teensy Comm. |

00 00 00 06

00 01 (format 1 = one or more simultaneous tracks)
00 03 (3 tracks)

01 80 (0x180 = 384 ticks/quarter note)

00 00 01 D2 (Chunk length 0x01D2 = 466 bytes follow)

00
FF 58 04 BB (time signature)
00
FF 5103 AE (tempo = 0x0852AE = 545,454 us/beat = 2.1812 seconds /
measure == 110 BPM)
00

FF 03 15 45 6C 65 63 2E 20 50 69 61 6E 6F 20 28 43 6C 61 73 73 69 63 29 (Elec.
Piano (Classic)) - sky blue
00
CO0 00 (Program Change on ch 0)
00 (0 delta MIDI ticks)
90 3C 32 (0x90 = Note ON event, 0x3C = Note 60 (C4), 0x32 = 50 velocity)
81 40 (Variable length encoding 10001 0100| = 0000001 =192 ticks)
80 3C 00 (0x80 = Note OFF event, 0x3C = Note 60 (C4))

0O {
NUM_BYTES = sizeof(MIDI);

parsed_MThd = fal
bytes_in_MThd_header =
parsed_bytes_in_MThd_header =
parsed_bytes_in_MTrk_header =
parsed_ticks_per_quarter_note =

parsed_MTrk =

bytes_in_MTrk_header

NUM_NOTES_FOUND =
MICROSECONDS_PER_BEAT = 500'
TICKS_PER_QUARTER_NOTE =

done

pi_start

Received
Song

€0s,

done & pause

User
Experience

pi_starto

Teensy 4.1

[NeoPixel Library |
[Reading Frets |

Determining
Accurac

Buzzer for
Metronome

Strum Detection
Analog Circuit

strum_& restart

Paused

e2812 (Fretooard Fretboard
PCB PCB
[NeoPixel] [NeoPixel]
Clock LEDs LEDs
and Data_| —rropto Fiip-Fiop to
Drive Fret Drive Fret

Voltages on Strings

Audio Signal Electret
+Amplifier
KE

s Custom Purchased
Made Component

Software

Carnegie
Mellon
University

Custom PCB (Pi Ha

ws2812

Fretboard Fretboard
° Raspberry Pi 41 Protocol PCB PCB
Django Web o NeoPixel NeoPixel
mplementation - Hardware) =
and Data | ~FipFiop o Fiip-Flop o
Drive Fret Drive Fret

Voltages on Strings
UART | Interrupts

Teensy 4.1
i Audio Signal Electret
NeoPixel Library rerc iy
Reading Frets L Metronome

K KE!
Determining Strum Del?cticn
+3.3V Accuracy Seslop il Software [Hardwarej [Cﬁz’em] [5:,’:;‘2::‘"’.]
+3.3V
M L u1
o
B el 74LVC1679
o= 2 D_IN 1y 8 ol D_OUT
>)
S g-m Conn_oixoila_PmGND1 £33V =
0 S cs5
© A 2 T R1
v 3 CLK ' - 5 - 3.3k
4 D_IN —— < bt Z
FRET
M)
Fret c 0)1304 Pi GND1 i in
e e = iGN DT BV
| 2
3 CLK GND1
an o p.out +5V +5V +5V +5v
[] n +5V 1 |
- Conn,Oiins,Pm
g :_/l “) 8]
§ TR 3 D1 3 D2 3 D3 3 D4
= > > ol -
4 LED_IN 40in pourh2ws28128 40 Dout|2¥s28128 408 pouT|2¥s28128 40N Dour|2¥s28128 LED_OUT
0y 0y 0y A
:::_TEDGEBT L LK L e LK alic3 Lk - Ch >(n§z
Au ™) Au M) 1u gl - %)
~
GND GND GND GND

Carnegie
Mellon
University

Testing, Verification, and Validation

10

Latency

Hardware: Oscilloscope to measure delay between stimuli, such time from
strumming to LEDs being written to
Webapp: Measure one-way latency using time stamped requests

Accuracy

Strums: Play 100 1/8th notes at 100 BPM on each string and record the ambient
sound level.

Finger Placement: Place a finger on each combination of string and fret position and
monitor serial port.

LEDs: Light up each LED white and verify that the proper LED lights up. Verify
current when illuminating all LEDs white at 50% brightness is <1.5A

User
Experience

Have users evaluate categories on scales from 1 to 5 to create a quantitative metric

Webapp: Intuitive interface, easy to read statistics, intuitive uploading of songs, etc
Hardware: Comfortability, effectiveness of LEDs, volume and pitch of metronome

11

Risks Mitigated

e Lack of web app experience. Switching from Flask to Django
e Understanding MIDI files

New Challenges

e Detecting open strings

O There is no fret-string contact
e Multiple ways to play the same note

O How to choose where to instruct the user to play?

L 1 2 q 10 |
'#/ [&

5
= e o PR R e BT E 2 IE
L L A o
° mmdlt w Carnegie

. Fl
(&) C 0D e Mellon

University

Project Management

18500

¥ General
Fall Break
Thanksgiving Break
Website Setup
Proposal Slides
Order Guitar
Design Presentation
Design Report
Final Presentation
Final Report
Public Demo

Integration Time

¥ Electrical
Design schematic + PCB for fretboard LEDs
Design circuit for detecting guitar strums
Fine tune values for strum circuit and test on guitar
Begin preliminary schematic/layout for Pi-hat
Test LED functionality of PCBs
Verify functionality of finger position sensors
Revise fretboard PCBs
Finalize design of Pi Hat PCB
Assemble fretboard PCBs
Assembly and testing of Pi Hat PCB

Mechanical modifications to guitar

OCT 2023 NOV 2023

10 17 24 1 8 15 2 29 5 12 19 26

()

|
@l oven
@l oven
D Owen
l:] Owen

{0 owen, Tushaar

Owen, Tushaar
Owen

{1}, owen
O Owen
] owen
C] Owen

3

v Firmware
Able to individually address LEDs using Teensy
Establish plan for state machine/program flow
Create main Teensy loop and control signals
Able to read finger placement sensors on fretboard PCBs
UART communication between Pi and Teensy established
Read in song data from Pi
Pi able to use interrupts to control Teensy state machine
Teensy able to send data back to Pi
Teensy able to light up LEDs in rhythm with MIDI song
Teensy able to detect if finger position is right at time of strum

Metronome via speaker

v Software
Set up Pi with Django
Create basic webserver hosted on Pi
Able to upload files to Pi via webapp
Pi able to set GPIO pins in response to webapp
UART communication with Teensy
Pi able to send song data to Teensy
Webapp able to send control signals to Teensy
Able to receive data from Teensy
Webapp able to display statistics

Debugging integration/communication with Teensy

OCT 2023 NOV 2023

24 1 8 15 2 29 5 12 19 26

@
B Tushear
]] Tushaar

Tushaar

() Tushaar

{7y Ashwin, Tushaar

[: Ashwin, Tushaar
[:] Ashwin, Tushaar
) Tushaar
[Tushaar
@ Tushaar
[Tushaar

Ashwin

Ashwin
LT___‘] Ashwin
{0, Ashwin
(I} Ashwin
{0 Ashwin
{T7) Ashwin

Ashwin
Ashwin

(@ Ashwin

12

