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Abstract—A system capable of wirelessly controlling
a mouse through a dedicated fail-safe sensor and com-
mon keystrokes on a laptop screen from afar. Improv-
ing upon existing technology such as computer mice
and remotes, the Mouscketool leverages variable resis-
tive sensors, an Inertial Measurement Unit utilizing the
Kalman filter, and Bluectooth to create a seamless ex-
perience and a rich gesture language for users to move,
click, and perform other keyboard actions. The project
aims to improve the experience of human-computer in-
teractions.

Index Terms— Wireless mouse, Inertial Measure-
ment Unit (IMU), Human-Computer Interaction, Blue-
tooth Low Energy, GUI, Wearable Technology, Embed-
ded Systems, Touch Sensors, Flex Sensors, Analog-
Digital Converter

1 INTRODUCTION

The field of human-computer interaction is constantly
evolving and is a critical part of our lives. Traditional
input devices like the mouse, keyvboard, and remote are
fundamental in how we interact with computers, but in
terms of accessibility, can be expanded on. Our product,
the Mouseketool. offers a solution that is more intuitive,
versatile, and accessible to interact with a computer. The
Mouseketool is essentially a glove embedded with sensors
that converts motion to mouse movements and touch to
keystrokes. Traditional input devices like a mouse can
cause discomfort with prolonged use, but the Mouseke-
tool eliminates the need for constant wrist and hand move-
ments, offering a comfortable and ergonomic alternative. It
can also be accessible and convenient for those with phys-
ical disabilities involving limited mobility. For certain ap-
plications requiring precise control, the Mouseketool can
increase efficiency and productivity, such as design, gam-
ing, and 3D modeling.

2 USE-CASE REQUIREMENTS
2.1 Accuracy:

We break down accuracy into two components: user
experience of accuracy and technical accuracy. For user
experience, we aim to have a test group of users rate our
devices an average score of 90% with regards to its usability
and how well they perceive it to pick up thelr movements,
In terms of technical accuracy, we aim for our product to
recognize and carry out our gesture language with 90% ac-
curacy.

2.2 Weight:

We aim to have our product weight 113-170 grams (4-6
ounces). the weight of an average sports watch. The weight
of the product is crucial to ensuring user comfort and min-
imizing physical strain during prolonged use. By targeting
this weight range, our product will be lightweight and un-
obtrusive, preventing users from experiencing discomfort or
fatigue, as proven by those that wear sport watches.

2.3 Latency:

The product should exhibit minimal input-to-response
latency, with a maximum acceptable latency of 300 millisec-
onds. Low latency is an important factor for applications
where real-time interaction is required, such as gaming and
virtual reality. High latency can negatively impact user
experience, leading to reduced usability. Therefore, min-
imizing latency is essential to providing a seamless user
experience.

2.4 Wireless Range:

We aim to have our product work up to a range of 2.28
meters (7.5 ft). We selected this range because it is the
average range of a wireless game controller. This range is
selected to provide users with sufficient mobility and free-
dom to interact with their computer without having to stay
in a specific location. This allows users to sit comfortably
on a couch or move around in their environment, similar to
the average viewing distance from a television.

2.5 Battery Life:

We selected the battery life of the product to be 2-3
hours. This is s0 users can use the product for extended
periods without frequent recharging. This is important for
applications that require prolonged periods such as watch-
ing movies and doing work. A longer battery life requires
a large battery, and we did not want to sacrifice the weight
of the product. Thus, we chose a reasonable battery life of
2-3 hours.
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3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Our embedded system is made up of a microcontroller
and several sensors (variable resistors and an inertial mea-
surement unit (IMU)) which are spread across a glove. The
touch sensors, or force-sensitive resistors, are placed on the
fingertips of the thumb, pointer, middle, and ring fingers
as well as on the side of the pointer finger. The flex sensors
are placed on the pointer. middle, and ring fingers to detect
bends in the fingers. Finally, the IMU and the microcon-
troller are placed on the back of the hand of the glove,
mounted on a PCB to allow the user's hand to move as
freely as possible. A diagram of the sensor layout can be
seen below.

The Mouseketool should only carry out mouse and key-
board actions when the user intends to make these actions.
Thus, we designed our system to have a fail-safe trigger.
The IMU will only register and send data when the sensor
on the side of the index finger s triggered. We have simi-
lar failsafe triggers for the touch and flex sensors. For the
touch sensors on the tips of fingers, the system will only
register a finger press if both the thumb and the finger are
pressed at the same time. For the flex sensors, the system
will only register a finger flex if the pad of the respective
finger is also pressed into the palm of the hand.

As per the Bluetooth architecture plan (see Fig. 5).
it’s important to note that Bluetooth Low Energy (BLE)
doesn’t follow the traditional guidelines of a client-server
model. Rather, we made the ESP32 the server. and the
Python code the client. As mentioned before, we have a
fail-safe for the mouse located on the side of the index fin-
ger. When this is triggered, the board will continuously
transmit linear acceleration on the x and z axes via Blue-
tooth notification to the Python script every 50ms. On
the client side, callback notifications are received, and the
code calculates mouse movements using a double integral
formula with bias-correction. It then uses the python built
in Pyautogui to move the mouse on vour screen. If the
failsafe is not detected, the board will read in the values of
the other sensors on the glove (touch and flex sensors) and
send out an opeode to be transmitted. Again, on the client
side, when callback notifications are received, it decodes the
sent opeode and carries out the customized gesture. The
Arduino code running on the esp works as follows. First,
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the esp32 initializes both the Bluetooth device and its var-
jous sensors. The esp polls its sensors every 30ms to ensure
response rate 18 as quick as possible. When a gesture is de-
tected, the esp sends a notification out and ignores all other
gestures and sensor inputs for 1.5 seconds. We added this
delay as it ensures that a single gesture isn’t transmitted
repeatedly, which would be inconvenient to users.

As for the IMU diagram (see Fig. 6), on the board
side. once the IMU is moved and the failsafe triggered.
the board will begin sending over acceleration data to a
python receiver for processing. From here, the raw data
will go through a Kalaman filter to reduce compounding
error over time from the integration. After this, we will
double integrate the acceleration to get the position of the
glove relative to its starting location, and use PyAutoGUI
to move the mouse to the new position. We used a 3-state
Kalman filter. one for position, velocity, and acceleration
to correct for the error introduced by double integration
and measurement noise. We iterated on the design, select-
ing different values for the transition covariance and initial
state covariance based on the IMU values given. We specif-
ically chose a low covariance for acceleration since our IMU
is pretty accurate in its calculations, and higher values for
the other two states, so the filter is stiffer., and corrects
these values more over time.

As per the hardware architecture plan (see Fig. 4), the
touch and flex sensors interact with the main development
board through analog inputs. Each sensor will receive
power (3.3V) from the board and feed information to the
ESP32. The IMU will communicate with the development
board via 12C, and will also receive power (3.3V) from the
Vee pin on the board. In order to supply power to the sys-
tem and peripherals, we will have a battery ranging from
3.7V to 5V.

Some components of our system have changed since our
design stage. The first change made was the placement of
the touch sensors on the glove. When we first designed the
placement of each sensor on the glove, we positioned each
touch sensor at the tip of each finger and each flex sensor
relatively high, right below the touch sensors. After a small
user study of about 5 people, our accuracy was very low,
with about 40% of the sensors working as promised. We
saw that as people were reaching to touch the touch sen-
sors, their fingers were bending just enough to trigger the
flex sensors as well. We then decided to move the touch
sensors down and to the side of their original pesitions, so
the users won’t have to bend their fingers as much to reach
the touch sensors. As a quick demonstration, when you
touch your fingertips with your thumb, you can see that
your finger bends quite significantly. Moving the sensors to
the side and down allow you to touch each sensor without
too much of a bend. With proper thresholding, these slight
bends will not produce a trigger. With this new position-
ing, we were able to achieve our use case requirements and
satisfy our users.

We also realized our IMU data needed additional pro-
cessing than planned. This included feeding the processed

data into a Kalman filter to mitigate compounding error, as
well as adding interrupt functionality to the fail-safe sensor,
to reduce undesired mouse drift. We implemented a 3-state
Kalman filter for the x and z accelerations respectively,
with the states being position, velocity, and acceleration.
We modified the initial and transient state covariances to
ensure that the filter would correct for position and velocity
more harshly than the acceleration values. In addition, we
reset velocity to zero and froze the mouse in place when our
accelerometer measured several zero values for acceleration
in a row, to avoid additional movement past what was ges-
tured. For interrupt functionality, we introduced another
Bluetooth notification opcode that would prevent mouse
movements when the failsafe sensor wasnt being actively
pressed.

4 DESIGN REQUIREMENTS

4.1 Battery Voltage:

Ideally. our system should be powered with a lithium
ion battery that is no more than 5V. This upper limit will
ensure that our system's battery life is long enough to meet
our 2-3 hour requirement, but the weight does not go over
our limit of 170 grams.

4.2 Bluetooth:

The Bluetooth Low Energy receiver should be able to
sense the module from a distance of 2.28 meters away. This
will ensure that the user can comfortably use our glove even
when watching a movie on thelr TV from their couch.

5 DESIGN TRADE STUDIES

5.1 ESP32 Board vs. Nucleo

One of the first and most important design decisions
we made was to use the ESP32S development board. This
board has over 15 ADC channels, built-in bluetooth con-
nectivity and Wi-Fi capability. Additionally. it comes in
a small package of around 2 inches wide, has a low power
mode, and is relatively cheap in cost. Some tradeoffs we
were introduced to were that there isn’t as much documen-
tation for the development board itself. For now, we are
basing most of our calculations off of the microcontroller
datasheet, but certain things such as how the LDO on the
board works, and the specifications for the board itself are
a bit unknown. To get around this, we need to do extensive
testing to find out the correct and operable thresholds for
each pin and each voltage input. Overall, this board helps
significantly with our weight, communication, and battery
requirements. We were debating on using the STM32 Nu-
cleo Board instead, mostly because of our familiarity with
the board and its software from taking 18349, the multi-
tude of ports and ADC channels, and the extensive docu-
mentation on the chip itself. However, by using the STN32
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Nucleo, we would trade off size, which is an extremely im-
portant requirement for us to have. The Nucleo board’s
width ranges to around 832.5mm, which is much larger than
the average size of a palm. Because we want our product
to be usable, portable, and easy for users to consume, we
decided to go with the ESP32, for the reasons listed above.

5.2 Sensors vs Computer Vision

When designing our system, we determined two main
ways that we could recognize gestures: either recognizing
physical movements using sensors (the IMU) attached to
the hand or using computer vision. There were several
tradeoffs we considered when making this design choice.
We determined that implementing our faraway mouse with
computer vision might result in a better user experience
for users because there would be no need for them to wear
bulky sensors. However, this would come at the cost of
applicability - specifically, computer vision might fail or
perform poorly in dimly lit environments or at further dis-
tances from the computer. Using physical sensors would
allow users to use the product in a multitude of light con-
ditions (ex. when users are watching a movie in a dark
room) and at a further distance rather than having to be
within range of a camera. Another cost was power. Run-
ning a CV module (especially with ML involved) would be
very power intensive compared to our set of sensors. Fi-
nally, having a CV model deployed in the cloud or even a
local model might result in a lot of unwanted latency for a
mouse application, more so than the combination of sensors
and Bluetooth. The sensor option, we determined. would
allow us to process data at a low level with less latency,
speeding up our overall pipeline.

5.3 Bluetooth vs USB vs WiFi

For our glove, we explored several protocols for send-
ing data from the mouse to a receiver on the laptop. We
determined that using USB would be the most reliable,
with minimal latency incurred from networking and mini-
mal connection interruptions. However, this would defeat
the design purpese of having a mouse that can be used
from a little over 2 meters away, since the USB would be
inconveniently long. Between Bluetooth and WiFi, either
protocol would have worked well for our design, especially
since our microcontroller supported both natively. In the
end, we determined that the power consumption of Blue-
tooth would be less than that of WiFi, since it is designed
for lower energy usage. Thus, we settled on using Bluetooth
to send data, with USB as our backup plan.

5.4 Sensors

When designing our glove layout, we had to decide how
many sensors we wanted on our glove as well as the place-
ment. Having more sensors would of course allow us to
support more gestures and gather more data on hand move-
ment. However, each sensor would consume some power,

take up one of the limited ADC pins on our microcon-
troller. and possibly create some interference with the other
sensors. For each fingertip, we decided to use force sensi-
tive resistors. Some of the benefits of this include that
they're relatively small and cheap. running around lem in
diameter, and are effective variable resistors, so establishing
thresholds to make the system more binary is trivial. How-
ever, some tradeoffs we face with this include their variance.
Each force sensitive resistor has a different calibration of
reading, so we need to calibrate each sensor individually
with information on its ideal working state. For example,
we noticed that some of the sensors, when not depressed
at all, have very different readings, ranging from close to
0 to around 700 (after ADC calculations). We determined
that for our touch resistors, having one on each finger and
an additional one as the “trigger” for the IMU would be
sufficient to allow for a rich gesture language while keep-
ing the sensors far enough apart and the number of sensors
below the number of available ADCs. For our flex sensors,
we chose to place them only on 3 of the fingers rather than
all of them. Again, this design decision was based on our
choice to limit the number of sensors while keeping our
language as rich as possible. We placed the flex sensors on
the easiest-to-bend fingers to make it accessible for users.
Again, each sensor is relatively small and cheap, so we will
have to customize our calibration technique for each sensor
individually.

5.5 PCB Mill vs Ordering Board

For mounting our components, we considered several
approaches, balancing wearability and comfort with what
would be most effective for connecting wires. We con-
sidered two options: ordering a custom PCB to mount
our components to, and milling our own PCB in house.
Even though milling was much cheaper and the lead time
was much faster (around 10-15 minutes in Techspark). the
board was too large to comfortably fit on the back of the
glove. The machine we usaed was also unreliable and it was
difficult to get a usably milled PCB without tens of itera-
tions. Because of this, we decided to order a custom PCB
online. Although it did cost a bit more than milling, we
were able to use much smaller traces, and the traces were
much cleaner than using a mill. This brought our final
dimensions down more than 17 of area, to about 2x2.57.

6 SYSTEM IMPLEMENTATION

6.1 Hardware

The ESP32 Dev Kit has a multitude of ports for us to
use for the sensors. As seen in the schematic pictured in
Fig. 1, we can see that our board derives power from the
VIN port on the board (this will be supplied by our bat-
tery), and supplies power to peripherals through the 3.3V
VCC pin. From here, we use the GPIO pins that also
function as ADC pins to get information from our touch
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sensors (TS) and flex sensors (FS), as shown in Fig. 2. Fi-
nally, our IMU communicates with the board via 12C, as
seen in Fig. 3. We can see in our schematic that these wires
are connected to the board in the dedicated 12C lines (D21
for SDA and D22 for SCL). We have indicated the use of
2.2K pullup resistors, which will either be soldered onto
our main board, or configured internally on the board. Fi-
nally, the IMU requires 3 additional pins: reset (NRST), a
host interrupt (HINTN), and a bootloader mode selection
{(BOOTN). Since our board doesn’t have dedicated pins for
reset, boot, and interrupt, we will simply create these fune-
tionalities in software, and essentially bitbang the pins.

6.2 Software
6.2.1 IMU

A critical component of this product is the inertial mea-
surement unit. It is responsible for translating hand move-
ment into a measurable unit to compute mouse movernent.,
The IMU consists of multiple different sensors, such as ac-
celerometers, gyroscopes, and magnetometers, which mea-
sure acceleration, angular velocity, and strength and direc-
tion of magnetic fields. This information is fundamental to
retrieving data and processing precise mouse moverments,
The steps below summarize how the IMU data will be pro-
cessed into data to be used for mouse movements:

1. Sensor Data Collection: Retrieve linear accelera-
tion, gravity, and angular velocity data from the
accelerometer, gyroscope, and magnetometer in the
IMU.

2. Orientation Estimation: Apply Mahoney or
Madgewick's sensor fusion algorithm to estimate the
orientation of the IMU in 3D space.

3. Gravity Compensation: Extract the gravitational ac-
celeration vector from the accelerometer data so that
linear acceleration due to hand motion is separated
from gravitational acceleration.

4. Linear Acceleration Calculation: Subtract the com-
pensated gravitational acceleration from acceleration
in the x, y and z directions.

Position Calculation: Double integrate the calculated
linear acceleration in the x and y directions to get x
and y position.

.C.'\

6. Error Correction: Ovwer time, integration will lead
to position drift due to sensor noise. The IMU we
have purchased for this product comes with calibra-
tion software to help mitigate this error.

6.2.2 Mouse Movement

To control the mouse on the laptop, we will be using the
PyAutoGUI library on Python. It is an important compo-
nent of our product as it provides the software framework to
convert hand movements detected by the IMU into mouse

movements and interactions with the computer. PyAuto-
GUI is cress platform so it can work on various operating
systems including Linux, Windows, and macOS. Specifi-
cally. it provides functions to simulate mouse actions, such
as moving the mouse to specific coordinates on the screen,
clicking, dragging, and scrolling. This allows the product
to mimic traditional mouse behavior. In addition, cus-
tomization options for movement speeds, acceleration rates,
and other parameters are also available which will allow
the IMU data to be integrated more seamlessly. Overall,
PyAutoGUI offers cross-platform compatibility, customiza-
tion options, and accessibility, making it a versatile tool for
creating an intuitive and efficient user experience.

6.2.3 Bluetooth

In our Bluetooth Low Energy (BLE) client-server
model, the esp32 acts as the server, posting notifications
to its subscriber clients. The Python client running on
the user's laptop listens for notifications and carries out
the appropriate actions. For the GATT profile, we cre-
ated two different characteristics - an opcode character-
istic and an IMU data characteristic. When the esp32
detects a gesture, it translates this to an opcode (ex.
RING, FLEX.POINTER). These opcodes, represented by
an integer, are notified to the user's laptop. When the
Python client receives this opeode in a callback function I,
it carries out the currently mapped gesture (ex. closing a
tab, increasing brightness).

For the IMU characteristic, if the esp32 detects the fail-
safe being triggered, it begins sending x and z acceleration
data every 50 milliseconds. The data is represented as a
byte array containing the bytes of two floats. These values
are recovered on the client side; they are received by the
IMU callback function and processed by our IMU module.

7 TEST & VALIDATION

For testing, verification & validation, we broke up our
testing structure into each of the design requirements we
denoted above: latency, weight, accuracy, wireless range,
& battery life.

7.1 Latency

For latency, we measured the individual sensor move-
ment for each target gesture. This includes sensor detec-
tion, or the amount of time it takes for the sensor to detect
that its state has been changed, signal processing, including
ADC caleulations performed by the board. and any noise
cancellation algorithms deployed, Bluetooth data reception
- sending and receiving data - and finally gesture identifica-
tion - using the information given to correctly identify that
a gesture has been made, what gesture was made, and the
translation into keystrokes. Since a passing output for la-
tency would be that our gestures be recognized and carried
out in less than or equal to 300ms, we started by measur-
ing the total amount of time it takes from doing a gesture
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to having the keystroke implemented on the laptop. From
here, we compared the results of this test to our desired
requirement and measured each step of the process to see
where we can cut down on time. We assumed the largest
bottleneck in our system now is the Bluetooth technology.
For this, we tried to speed up individual components and
process more at the board level to minimize the amount
of information sent over Bluetooth, and. in turn, the total
latency of the system. As a backup plan for Bluetooth, we
aimed to use USB or a more general serial communication
approach to send data from the board to the laptop. To
carry out our test for this component, we constructed a test
in which we pressed start on a stopwatch with the mouse
while at the same time triggering one of the sensors. In
theory, this would result in the mouse clicking stop when
the gesture propagates through. From here, we were able
to achieve an average of 40ms of latency for the sensors
{not including the IMU), which is well under our use case
reqguirements.

7.2 Weight

For weight, we wanted the weight of our product to be
as minimal and unnoticeable as an average watch, weighing
in at around 113-170g. We figured that our greatest poten-
tial risk to this requirement was be the battery. For this, we
again tried to minimize the weight of other components we
use, including the sensors, main board, PCB, and IMU. We
had to compromise battery life for the purposes of weight,
but did our best to balance the two to have sufficient bat-
tery life to meet our requirements while also not being too
heavy to meet our weight requirements. In order to test
our weight requirements, we had a technical weight eval-
uvation. For the weight evaluation, we simply weighed the
glove on a metric scale, and recorded the values. Addition-
ally. to find bottlenecks and ways to cut down the weight
should we need to, we weighed each individual component
and try to find ways to limit weight while also maintaining
functionality. We recognized that although we may meet
our weight requirements, user comfort is also an important
aspect of our design, and we aim to satisfy this factor as
well. Our final weight was 191.78g. which is sadly above
our use case requirements. The battery we decided to use
was a 10,000mAh 5V ©2.1A portable charger that consti-
tuted 57% of the total weight of the glove. Although we
had to go over our budgeted weight, a tradeoff we discov-
ered is that our glove has a very large battery life. which,
for 20g extra (which isn’t much recognizable) seemed worth
the tradeoff.

7.3

In terms of accuracy, we planned on testing our prod-
uct extensively to make sure we meet our reguirement of
at least 90% of gestures correctly identified. Some risks we
planned on seeing here are thresholding and human vari-
ance. In order to mitigate as much risk as possible, we
tested our product and GUI with a user study of around

Accuracy

10 participants, and make a point to make wider thresh-
olds to accommodate more variance in between users. Our
failure plan for this requirement was to reduce the num-
ber of gestures as a whole, to simplify the process itself,
or make the gestures more distinet, in that there would be
less factors to keep track of in determining what gesture is
recognized. When we first designed the placement of each
sensor on the glove, we positioned each touch sensor at the
tip of each finger and each flex sensor relatively high, right
below the touch sensors. After a small user study of about
5 people, our accuracy was very low, with about 40% of
the sensors working as promised. We saw that as people
were reaching to touch the touch sensors, their fingers were
bending just enough to trigger the flex sensors as well. We
then decided to move the touch sensors down and to the
side of their original positions, so the users won't have to
bend their fingers as much to reach the touch sensors. As a
quick demonstration, when you touch your fingertips with
your thumb, you can see that your finger bends quite sig-
nificantly. Moving the sensors to the side and down allow
you to touch each sensor without too much of a bend. With
proper thresholding, these slight bends will not produce a
trigger. With this new positioning, we were able to achieve
our use case requirements and satisfied our users. Finally,
we achieved a 100% accuracy for our flex and touch sensors
on the glove. As for the IMU accuracy, we measured this
accuracy in terms of how many seconds it takes for a user
to reach a desired position. For this test, we held a small
user study of around 10 participants. We tasked each par-
ticipant to use the glove to reach a button on the screen
to be clicked. We repeated this process for three trials per
participant For all the participants, it took an average of
10.2 seconds to reach the desired button. After the third
round of trials, we discovered that the time in which par-
ticipants were able to reach the button decreased slightly
to an average 7.1 seconds. Although this accuracy is quite
low, we recognized that there is a learning curve to the
device, as well as certain movements that can be done to
increase accuracy. This includes holding the glove steady
when more error compounding is detected, as to zero out
the velocity and error curves. With more filtering as well
as user training, we can lower this accuracy even further.

7.4 Wireless Range

For our wireless range, we wanted our minimum dis-
tance to be around 2.28 meters, or the average distance
between the couch and a TV, In order to test our device
for this range, we conducted a test where we signaled a
gesture less than 1 foot in front of the laptop, and recorded
if it carries out the gesture or not. From here, we repeated
the same process of signaling a gesture, while backing up 1
foot in between each gesture. One of the major obstacles
to achieving this range is the actual Bluetooth networking.
We believe there will be lots of noise and interference for our
Bluetooth device, so we will try to mitigate this as much as
possible through noise dampener algorithms and reducing
the number of packets sent in total. If we are unable to
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meet this requirement we will resort to using a serial inter-
face such as USB to communicate between the board and
the laptop. After testing, we were able to achieve a Blue-
tooth range of 3.05 meters in all directions, which surpasses
our use case requirement of 2.28 meters.

7.5 Battery

For the battery life of our device, we aimed to have a
battery life of greater than or equal to 2-3 hours, which is
the average length of a movie. We planned to measure the
time it takes for our device to go from fully charged to com-
pletely dead foff. For the test itself, we mimicked scenarios
in which users will most likely use our glove. Specifically,
we tested out gestures on the glove every 5-7 minutes un-
til the battery ran out. Additionally, we looked through
data sheets to find out which devices have the highest bat-
tery consumption and try to mitigate power consumed by
other devices based on this information. The board and
IMU ended up taking up the most battery life. so we used
our board’s low power mode during idle states, and the en-
able pin for the IMU also during idle states. We believed
this would provide the most useful information, as we ex-
pect our users to use the glove for only a couple minutes
at a time, sporadically throughout the course of a movie.
Some risks to this requirement include power requirements
per sensor /device, and sensor integrity. From learning how
lithium batteries work, we know that the voltage output of
the battery will reduce over time, regardless of battery life
remaining. Since our battery voltage will be relatively close
to the typical voltage inputted to the device (3.3 typical in-
putted vs. 3.7-5V VIN), we mitigated this risk by assuming
85% of battery life for our baseline, since voltages tend to
dip more significantly during the last 10% of battery life.
If we fail to meet the battery life requirements, we will
need to use a larger battery, with a higher voltage rating.
However, this failure plan must still be on track with our
weight requirement. Since the two are closely linked (larger
battery = more weight), we will try to balance these two
requirements so both are satisfied at any given time. As
mentioned previously, the results of this tests produced a
battery life of around 12 hours. This is greatly due to the
fact that we are using a larger battery pack of 10,000 mAh
with 5V ©@2.1A, as well as the utilization of Bluetooth Low
Energy and our IMU device's low power mode. Although
the PCB has the capability of receiving power through a
lithium polymer battery, we decided that a portable charger
was the easiest way for users to understand and charge their
batteries, therefore satisfying our users as well as our design
requirements.

8 PROJECT MANAGEMENT

8.1 Schedule

The schedule is shown in Fig. 7 18 our Gantt chart for
the specific task breakdown of our project. Yellow is Sarah,

Red is Rosina, Blue is Saumya, Purple is Rosina & Saumya,
Orange 18 Sarah & Rosina, and Pink is all. The project
was mostly on schedule, except for a few components. The
parts that took longer than we anticipated were the IMU
data processing and fabricating the PCB board. We ran
into unexpected problems that made it difficult to adhere
to the schedule. However, the PCB board was still done in
a reasonable time and the IMU processing was done by the
final presentation, although more time would have allowed
us to make the mouse movements more precise,

8.2 Team Member Responsibilities

In terms of the overall project breakdown, Sarah is re-
sponsible for implementing and testing our hardware, inter-
facing between hardware and software, calibrating sensors,
and helping with the physical components of our design.
Saumya is responsible for the low-level code running on the
microcontroller to send data to the Python receiver, Blue-
tooth networking, and sending pruned sensor data over to
the pyautogui-based mouse and keyboard module. Rosina
will be responsible for sensor value processing for keystrokes
and the IMU (with help from Saumya), the mouse and key-
board module, and the GUI of the system.

8.3 Risk Management

Throughout the project lifecycle, the main risks we en-
countered included the PCB and the IMU. As for the PCB,
as mentioned before, we explored two options: a milled
PCB as well as ordering a custom PCB online. Since order-
ing a PCB would produce much smaller traces and in return
a much smaller board in area, we decided to go with order-
ing our PCB. After reviewing our budget, we had more
than enough left to spend on boards, and decided to use
the milled PCB as our fallback design. Additionally. as for
the IMU, we had lots of trouble regarding signal processing
and converting the acceleration data to mouse movements.
Because our IMU unfortunately arrived quite late in the
semester, we mitigated this shipping risk as much as we
could by figuring out integration procedures prior to ar-
rival and generating pseudo code for how the code would
analyze data from the IMU. This helped greatly as once
the board arrived we were able to start right at the mouse
movements stage. Again, because of time constraints, we
tried to mitigate the compounding error as much as pos-
sible by using a Kalman filter. This helped a lot with the
compounding error as well as any noise generated from the
IMU itself.

8.4 Bill of Materials and Budget

The bill of materials and budget needed for the project
are listed in Table 1.
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Table 1: Bill of materials
Description Model # Manufacturer Quantity Cost @ Total
Main development board ESP-WROOM-32 Espressif Systems 1 $9.59  S$38.36
Intertial Measurement Unit FSM300 CEVA Technologies, Inc. 1 $67.36 S67.36
Touch Sensors N/A Ezweiji 6 $3.19  S49.14
Flex Sensors SEN-10264 Sparkfun 5 $17.09  S85.45
Fabric Glove N/A HandLandy 1 $13.80  S13.80
Printed Circuit Board N/A JLCPCB 10 $1.21  s12.10
10K Ohm 0805 Resistors N/A Chanzon 100 $4.99 §4.99
2.2K Ohm 0805 Resistors N/A Chanzon 100 $4.99 $4.99
Total §276.19

8.5 Risk Mitigation Plans

As previously discussed, we have several risk mitigation
strategies for each of our use case requirements. For la-
tency. if we are unable to get below our threshold, we plan
to switch from Bluetooth to USB as our protocol for send-
ing data between the glove and the computer. For weight,
we will opt for a smaller battery in the case that we can-
not reduce our weight in any other component to get below
our threshold. For accuracy, if it becomes impossible to
achieve our goal, we plan to reduce the complexity of our
gesture language and for make our gestures more distinct.
For wireless range, if we are unable to reduce interference,
we may switch to either WiFi or USB, since the ESP32 also
supports WiFi. Finally, for battery life, in the case that we
are not able to power our device with a 5V battery. we will
increase the size of our battery.

9 ETHICAL ISSUES

There are a few ethical issues that arise in our product.
First, our glove is a right handed glove. This negatively af-
fects those that are left-handed, as they will not be able to
use the glove as efficiently as a right-handed person would.
In theory. this could be fixed by making a duplicate prod-
uct that functions the same way, but uses a left-handed
glove. Another issue is the exposed circuitry on the glove.
There is no encasing on the microcontroller, sensors, or
wires, which could potentially lead to easier damage and
physical harm to the user. To fix this issue, we could put
the exposed components in a protective casing. Finally, a
large ethical issue that relates to our product is privacy.
The user should be fully aware of the extent to which the
glove can be used. This includes possibly deleting data, or
downloading software that may be harmful. Additionally.
if this glove were ever customized using keystrokes the user
18 not aware of, it might cause adverse effects to the user’s
data and privacy. To solve this issue, we can introduce
password protection in order to change the keystrokes on
the glove through the GUIL This might allow for a safer
product for the user as well as make sure their information
and privacy is secured.

10 RELATED WORK

Some other related works that are similar to our prod-
uct is gest.co, the Nintendo Power Glove, and various ASL
interpreter gloves. The Gest glove leverages Bluetooth Low
Energy technology and a similar glove sensor system that
can track gestures from afar. While Gest is still in its pro-
totype stages, it provided us a good baseline for existing
projects in the space. The Nintendo Power Glove is a con-
troller accessory for the NES (Nintendo Entertainment Sys-
tem). It provided users a way to control video games on
their console straight from their hands, rather than a tra-
ditional controller. There are various buttons and controls
located on the glove, where users can control players and
use their hand motions to control characters. Addition-
ally, similar to our design, the Power Glove detects vaw,
pitch and roll to detect hand placement and orientation
relative to the origin. As for the ASL glove, we found a
previous Capstone project team that created an ASL in-
terpreter glove that could detect hand movement for the
entire ASL alphabet. Their system used a similar style
of wearable technology fit with sensors, which we used as
inspiration for our sensor setup.

11 SUMMARY

In summary. we've successfully developed a functioning
glove capable of translating gestures into keystrokes and fa-
cilitating mouse movements, However, we encountered un-
expected challenges, notably concerning undesired mouse
movements and the integration of a fail-safe mechanism.
While the system doesn’t operate as seamlessly as initially
intended, these challenges have provided valuable insights
for potential improvements in future iterations. Moving
forward, we plan to explore alternative positioning systems
to replace the IMU to minimize compounding errors. These
solutions could potentially entail computer vision.

11.1 Lessons Learned

To future students, we would suggest heavily research-
ing parts to use that provide more functionality. Some-
thing that was particularly helpful to us was purchasing
an IMU that had preinstalled calibration software. This
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simplified the processing a great amount and saved us a
lot of time. Externally sourcing a PCB instead of making
our own also saved us time and allowed us to avoid any
possible errors during fabrication. Finally, our last sug-
gestion would be to look into other sensors that can track
position more accurately than an IMU. Position could not
be accurately derived from acceleration, so if the goal is
to find accurate positions, we would suggest looking into
other softwares/sensors.

12 GLOSSARY OF ACRONYMS

ADC - Analog to Digital Converter
BLE - Bluetooth Low Energy

DAC - Digital to Analog Converter

ESP - ESP-WROOM-32 Microcontroller
GUI -~ Graphical User Interface

IMU - Inertial Measurement Unit

PCB - Printed Circuit Board
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Figure 4: A block diagram depicting the hardware approach to the project.
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Figure 6: A block diagram depicting the IMU design flow for the project.
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