
18-500 Design Review Report Page 1 of 10

Mouseketool
Authors: Rosina Ananth, Saumya Bhandarkar, Sarah Gaiter

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system capable of wirelessly control-
ling a mouse and common keystrokes on a laptop screen
from afar. Improving upon existing technology such as
computer mice and remotes, the Mouseketool lever-
ages a low-power microcontroller, force sensors, and
Bluetooth to create a seamless experience and a rich
gesture language for users to move, click, and perform
other keyboard actions. The project aims to improve
the experience of human-computer interactions.

Index Terms— Wireless mouse, Inertial Measure-
ment Unit (IMU), Human-Computer Interaction, Blue-
tooth, GUI, Wearable Technology, Embedded Systems,
Touch Sensors, Flex Sensors, Analog-Digital Converter

1 INTRODUCTION

The field of human-computer interaction is constantly
evolving and is a critical part of our lives. Traditional
input devices like the mouse, keyboard, and remote are
fundamental in how we interact with computers, but in
terms of accessibility, can be expanded on. Our product,
the Mouseketool, offers a solution that is more intuitive,
versatile, and accessible to interact with a computer. The
Mouseketool is essentially a glove embedded with sensors
that converts motion to mouse movements and touch to
keystrokes. Traditional input devices like a mouse can
cause discomfort with prolonged use, but the Mouseke-
tool eliminates the need for constant wrist and hand move-
ments, offering a comfortable and ergonomic alternative. It
can also be accessible and convenient for those with phys-
ical disabilities involving limited mobility. For certain ap-
plications requiring precise control, the Mouseketool can
increase efficiency and productivity, such as design, gam-
ing, and 3D modeling.

2 USE-CASE REQUIREMENTS

2.1 Accuracy:

We break down accuracy into two components: user
experience of accuracy and technical accuracy. For user
experience, we aim to have a test group of users rate our
devices an average score of 90% with regards to its usability
and how well they perceive it to pick up their movements.
In terms of technical accuracy, we aim for our product to
recognize and carry out our gesture language with 90% ac-
curacy.

2.2 Weight:

We aim to have our product weight 113-170 grams (4-6
ounces), the weight of an average sports watch. The weight
of the product is crucial to ensuring user comfort and min-
imizing physical strain during prolonged use. By targeting
this weight range, our product will be lightweight and un-
obtrusive, preventing users from experiencing discomfort or
fatigue, as proven by those that wear sport watches.

2.3 Latency:

The product should exhibit minimal input-to-response
latency, with a maximum acceptable latency of 15 millisec-
onds. Low latency is an important factor for applications
where real-time interaction is required, such as gaming and
virtual reality. High latency can negatively impact user
experience, leading to reduced usability. Therefore, min-
imizing latency is essential to providing a seamless user
experience.

2.4 Wireless Range:

We aim to have our product work up to a range of 2.28
meters (7.5 ft). We selected this range because it is the
average range of a wireless game controller. This range is
selected to provide users with sufficient mobility and free-
dom to interact with their computer without having to stay
in a specific location. This allows users to sit comfortably
on a couch or move around in their environment, similar to
the average viewing distance from a television.

2.5 Battery Life:

We selected the battery life of the product to be 2-3
hours. This is so users can use the product for extended
periods without frequent recharging. This is important for
applications that require prolonged periods such as watch-
ing movies and doing work. A longer battery life requires
a large battery, and we did not want to sacrifice the weight
of the product. Thus, we chose a reasonable battery life of
2-3 hours.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Our embedded system is made up of a microcontroller
and several sensors (variable resistors and an inertial mea-
surement unit (IMU)) which are spread across a glove. The
touch sensors, or force-sensitive resistors, are placed on the
fingertips of the thumb, pointer, middle, and ring fingers

18-500 Design Review Report Page 2 of 10

as well as on the side of the pointer finger. The flex sensors
are placed on the pointer, middle, and ring fingers to detect
bends in the fingers. Finally, the IMU and the microcon-
troller are placed on the back of the hand of the glove,
mounted on a PCB to allow the user’s hand to move as
freely as possible. A diagram of the sensor layout can be
seen below.

The Mouseketool should only carry out mouse and key-
board actions when the user intends to make these actions.
Thus, we designed our system to have a fail-safe trigger.
The IMU will only register and send data when the sensor
on the side of the index finger is triggered. We have simi-
lar failsafe triggers for the touch and flex sensors. For the
touch sensors on the tips of fingers, the system will only
register a finger press if both the thumb and the finger are
pressed at the same time. For the flex sensors, the system
will only register a finger flex if the pad of the respective
finger is also pressed into the palm of the hand.

As per the software architecture plan (see Fig. 5), the
microcontroller runs C code that gathers data from the
various sensors and prunes it before sending it via Blue-
tooth to a Python receiver. The network ”packet” sent to
the Python receiver will contain information such as which
gesture was detected as well as any additional sensor in-
formation required to carry out the gesture (in the case of
mouse movement). The Python receiver module will then
process IMU movements and utilize PyAutoGUI to control
the mouse and keyboard.

As per the hardware architecture plan (see Fig. 4), the
touch and flex sensors interact with the main development
board through analog inputs. Each sensor will receive
power (3.3V) from the board and feed information to the
ESP32. The IMU will communicate with the development
board via I2C, and will also receive power (3.3V) from the
Vcc pin on the board. In order to supply power to the sys-
tem and peripherals, we will have a battery ranging from

3.7V to 5V.

4 DESIGN REQUIREMENTS

4.1 Battery Voltage:

Ideally, our system should be powered with a lithium
ion battery that is no more than 5V. This upper limit will
ensure that our system’s battery life is long enough to meet
our 2-3 hour requirement, but the weight does not go over
our limit of 170 grams.

4.2 Bluetooth:

The Bluetooth Low Energy receiver should be able to
sense the module from a distance of 2.28 meters away. This
will ensure that the user can comfortably use our glove even
when watching a movie on their TV from their couch.

5 DESIGN TRADE STUDIES

5.1 ESP32 Board vs. Nucleo

One of the first and most important design decisions
we made was to use the ESP32S development board. This
board has over 15 ADC channels, built-in bluetooth con-
nectivity and Wi-Fi capability. Additionally, it comes in
a small package of around 2 inches wide, has a low power
mode, and is relatively cheap in cost. Some tradeoffs we
were introduced to were that there isn’t as much documen-
tation for the development board itself. For now, we are
basing most of our calculations off of the microcontroller
datasheet, but certain things such as how the LDO on the
board works, and the specifications for the board itself are
a bit unknown. To get around this, we need to do extensive
testing to find out the correct and operable thresholds for
each pin and each voltage input. Overall, this board helps
significantly with our weight, communication, and battery
requirements. We were debating on using the STM32 Nu-
cleo Board instead, mostly because of our familiarity with
the board and its software from taking 18349, the multi-
tude of ports and ADC channels, and the extensive docu-
mentation on the chip itself. However, by using the STM32
Nucleo, we would trade off size, which is an extremely im-
portant requirement for us to have. The Nucleo board’s
width ranges to around 82.5mm, which is much larger than
the average size of a palm. Because we want our product
to be usable, portable, and easy for users to consume, we
decided to go with the ESP32, for the reasons listed above.

5.2 Sensors vs Computer Vision

When designing our system, we determined two main
ways that we could recognize gestures: either recognizing
physical movements using sensors (the IMU) attached to
the hand or using computer vision. There were several
tradeoffs we considered when making this design choice.

18-500 Design Review Report Page 3 of 10

We determined that implementing our faraway mouse with
computer vision might result in a better user experience
for users because there would be no need for them to wear
bulky sensors. However, this would come at the cost of
applicability - specifically, computer vision might fail or
perform poorly in dimly lit environments or at further dis-
tances from the computer. Using physical sensors would
allow users to use the product in a multitude of light con-
ditions (ex. when users are watching a movie in a dark
room) and at a further distance rather than having to be
within range of a camera. Another cost was power. Run-
ning a CV module (especially with ML involved) would be
very power intensive compared to our set of sensors. Fi-
nally, having a CV model deployed in the cloud or even a
local model might result in a lot of unwanted latency for a
mouse application, more so than the combination of sensors
and Bluetooth. The sensor option, we determined, would
allow us to process data at a low level with less latency,
speeding up our overall pipeline.

5.3 Bluetooth vs USB vs WiFi

For our glove, we explored several protocols for send-
ing data from the mouse to a receiver on the laptop. We
determined that using USB would be the most reliable,
with minimal latency incurred from networking and mini-
mal connection interruptions. However, this would defeat
the design purpose of having a mouse that can be used
from a little over 2 meters away, since the USB would be
inconveniently long. Between Bluetooth and WiFi, either
protocol would have worked well for our design, especially
since our microcontroller supported both natively. In the
end, we determined that the power consumption of Blue-
tooth would be less than that of WiFi, since it is designed
for lower energy usage. Thus, we settled on using Bluetooth
to send data, with USB as our backup plan.

5.4 Sensors

When designing our glove layout, we had to decide how
many sensors we wanted on our glove as well as the place-
ment. Having more sensors would of course allow us to
support more gestures and gather more data on hand move-
ment. However, each sensor would consume some power,
take up one of the limited ADC pins on our microcon-
troller, and possibly create some interference with the other
sensors. For each fingertip, we decided to use force sensi-
tive resistors. Some of the benefits of this include that
they’re relatively small and cheap, running around 1cm in
diameter, and are effective variable resistors, so establishing
thresholds to make the system more binary is trivial. How-
ever, some tradeoffs we face with this include their variance.
Each force sensitive resistor has a different calibration of
reading, so we need to calibrate each sensor individually
with information on its ideal working state. For example,
we noticed that some of the sensors, when not depressed
at all, have very different readings, ranging from close to
0 to around 700 (after ADC calculations). We determined

that for our touch resistors, having one on each finger and
an additional one as the “trigger” for the IMU would be
sufficient to allow for a rich gesture language while keep-
ing the sensors far enough apart and the number of sensors
below the number of available ADCs. For our flex sensors,
we chose to place them only on 3 of the fingers rather than
all of them. Again, this design decision was based on our
choice to limit the number of sensors while keeping our
language as rich as possible. We placed the flex sensors on
the easiest-to-bend fingers to make it accessible for users.
Again, each sensor is relatively small and cheap, so we will
have to customize our calibration technique for each sensor
individually.

5.5 PCB Mill vs Ordering Board

For mounting our components, we considered several
approaches, balancing wearability and comfort with what
would be most effective for connecting wires. We consid-
ered ordering a custom PCB to mount our components to,
but we figured that the shipping time and cost would be
unnecessary since we didn’t need a high level of precision
for the board (our components were rather simple). We
opted instead to mill the PCB ourselves, which would save
us some time and money and still allow us full control over
customization.

6 SYSTEM IMPLEMENTATION

6.1 Hardware

The ESP32 Dev Kit has a multitude of ports for us to
use for the sensors. As seen in the schematic pictured in
Fig. 1, we can see that our board derives power from the
VIN port on the board (this will be supplied by our bat-
tery), and supplies power to peripherals through the 3.3V
VCC pin. From here, we use the GPIO pins that also func-
tion as ADC pins to get information from our touch sensors
(TS) and flex sensors (FS), as shown in Fig. 2. No pulldown
resistors are necessary for our sensors, as our board has con-
figurable internal pulldown resistors within the GPIO pins.
Finally, our IMU communicates with the board via I2C,
as seen in Fig. 3. We can see in our schematic that these
wires are connected to the board in the dedicated I2C lines
(D21 for SDA and D22 for SCL). We have indicated the use
of 2.2K pullup resistors, which will either be soldered onto
our main board, or configured internally on the board. Fi-
nally, the IMU requires 3 additional pins: reset (NRST), a
host interrupt (HINTN), and a bootloader mode selection
(BOOTN). Since our board doesn’t have dedicated pins for
reset, boot, and interrupt, we will simply create these func-
tionalities in software, and essentially bitbang the pins.

18-500 Design Review Report Page 4 of 10

6.2 Software

6.2.1 IMU

A critical component of this product is the inertial mea-
surement unit. It is responsible for translating hand move-
ment into a measurable unit to compute mouse movement.
The IMU consists of multiple different sensors, such as ac-
celerometers, gyroscopes, and magnetometers, which mea-
sure acceleration, angular velocity, and strength and direc-
tion of magnetic fields. This information is fundamental to
retrieving data and processing precise mouse movements.
The steps below summarize how the IMU data will be pro-
cessed into data to be used for mouse movements:

1. Sensor Data Collection: Retrieve linear accelera-
tion, gravity, and angular velocity data from the
accelerometer, gyroscope, and magnetometer in the
IMU.

2. Orientation Estimation: Apply Mahoney or
Madgewick’s sensor fusion algorithm to estimate the
orientation of the IMU in 3D space.

3. Gravity Compensation: Extract the gravitational ac-
celeration vector from the accelerometer data so that
linear acceleration due to hand motion is separated
from gravitational acceleration.

4. Linear Acceleration Calculation: Subtract the com-
pensated gravitational acceleration from acceleration
in the x, y and z directions.

5. Position Calculation: Double integrate the calculated
linear acceleration in the x and y directions to get x
and y position.

6. Error Correction: Over time, integration will lead
to position drift due to sensor noise. The IMU we
have purchased for this product comes with calibra-
tion software to help mitigate this error.

6.2.2 Mouse Movement

To control the mouse on the laptop, we will be using the
PyAutoGUI library on Python. It is an important compo-
nent of our product as it provides the software framework to
convert hand movements detected by the IMU into mouse
movements and interactions with the computer. PyAuto-
GUI is cross platform so it can work on various operating
systems including Linux, Windows, and macOS. Specifi-
cally, it provides functions to simulate mouse actions, such
as moving the mouse to specific coordinates on the screen,
clicking, dragging, and scrolling. This allows the product
to mimic traditional mouse behavior. In addition, cus-
tomization options for movement speeds, acceleration rates,
and other parameters are also available which will allow
the IMU data to be integrated more seamlessly. Overall,
PyAutoGUI offers cross-platform compatibility, customiza-
tion options, and accessibility, making it a versatile tool for
creating an intuitive and efficient user experience.

7 TEST & VALIDATION

For testing, verification & validation, we broke up our
testing structure into each of the design requirements we
denoted above: latency, weight, accuracy, wireless range,
& battery life.

7.1 Latency

For latency, we want to measure the individual sensor
movement for each target gesture. This includes sensor
detection, or the amount of time it takes for the sensor
to detect that its state has been changed, signal process-
ing, including ADC calculations performed by the board,
and any noise cancellation algorithms deployed, Bluetooth
data reception - sending and receiving data - and finally
gesture identification - using the information given to cor-
rectly identify that a gesture has been made, what gesture
was made, and the translation into keystrokes. Since a
passing output for latency would be that our gestures be
recognized and carried out in ¡= 15ms, we would start by
measuring the total amount of time it takes from doing a
gesture to having the keystroke implemented on the lap-
top. From here, we will compare the results of this test
to our desired requirement and measure each step of the
process to see where we can cut down on time. We assume
the largest bottleneck in our system now is the Bluetooth
technology. For this, we will try to speed up individual
components and process more at the board level to mini-
mize the amount of information sent over Bluetooth, and,
in turn, the total latency of the system. If for some reason
we are unable to meet this latency requirement, we aim to
use USB or a more general serial communication approach
to send data from the board to the laptop.

7.2 Weight

For weight, we want the weight of our product to be as
minimal and unnoticeable as an average watch, weighing
in at around 113-170g. We figure that our greatest poten-
tial risk to this requirement will be the battery. For this,
we will again try to minimize the weight of other compo-
nents we use, including the sensors, main board, PCB, and
IMU. We will likely have to compromise battery life for the
purposes of weight, but we will try to balance the two to
have sufficient battery life to meet our requirements while
also not being too heavy to meet our weight requirements.
In order to test our weight requirements, we will have two
portions of tests: a user study and a technical weight eval-
uation. For the weight evaluation, we will simply weigh the
glove on a metric scale, and record the values. Addition-
ally, to find bottlenecks and ways to cut down the weight
should we need to, we will weigh each individual component
and try to find ways to limit weight while also maintaining
functionality. For the user study, we will focus on weight
distribution. We will ask around 10 participants how the
weight distribution feels, and have them rate it on a scale
from 1-5, with 5 being extremely satisfied. We recognize

18-500 Design Review Report Page 5 of 10

that although we may meet our weight requirements, user
comfort is also an important aspect of our design, and we
aim to test this factor as well.

7.3 Accuracy

In terms of accuracy, we plan on testing our product
extensively to make sure we meet our requirement of at
least 90% of gestures correctly identified. Some risks we
plan on seeing here are thresholding and human variance.
We recognize that each person’s hand is different, so we will
adopt a calibration process in which the sensors will be cal-
ibrated based on each person’s hand, and ensure that the
thresholds used are as wide yet narrow as possible to ensure
maximum accuracy per user. In order to mitigate as much
risk as possible, we will test our product and calibration
process with a large group of people, 20, and make a point
to make wider thresholds to accommodate more variance
in between users. Our failure plan for this requirement is
to reduce the number of gestures as a whole, to simplify the
process itself, or make the gestures more distinct, in that
there would be less factors to keep track of in determining
what gesture is recognized.

7.4 Wireless Range

For our wireless range, we would like our minimum dis-
tance to be around 2.28 meters, or the average distance
between the couch and a TV. In order to test our device
for this range, we will conduct a test where we will signal
a gesture less than 1 foot in front of the laptop, and record
if it carries out the gesture or not. From here, we will re-
peat the same process of signaling a gesture, while backing
up 1 foot in between each gesture. We will then return
to the laptop and repeat the entire process again, but at
a different angle, totaling 8 degrees: 0, 45, 90, 135, 180,
22, 270, and 315. One of the major obstacles to achieving
this range is the actual Bluetooth networking. We believe
there will be lots of noise and interference for our Bluetooth
device, so we will try to mitigate this as much as possible
through noise dampener algorithms and reducing the num-
ber of packets sent in total. If we are unable to meet this
requirement we will resort to using a serial interface such
as USB to communicate between the board and the laptop.

7.5 Battery

For the battery life of our device, we aim to have a bat-
tery life of greater than or equal to 2-3 hours, which is the
average length of a movie. We plan to measure the time it
takes for our device to go from fully charged to completely
dead/off. For the test itself, we will mimic scenarios in
which users will most likely use our glove. Specifically, we
will test out gestures on the glove every 5-7 minutes until
the battery runs out. Additionally, we will look through
data sheets to find out which devices have the highest bat-
tery consumption and try to mitigate power consumed by
other devices based on this information. We assume the

board and IMU will take up the most battery life, so we will
aim to use our board’s low power mode during idle states,
and an enable pin for the IMU also during idle states. We
believe this will provide the most useful information, as we
expect our users to use the glove for only a couple minutes
at a time, sporadically throughout the course of a movie.
Some risks to this requirement include power requirements
per sensor/device, and sensor integrity. From learning how
lithium batteries work, we know that the voltage output
of the battery will reduce over time, regardless of battery
life remaining. Since our battery voltage will be relatively
close to the typical voltage inputted to the device (3.3 typ-
ical inputted vs. 3.7-5V VIN), we aim to mitigate this risk
by assuming 85% of battery life for our baseline, since volt-
ages tend to dip more significantly during the last 10% of
battery life. If we fail to meet the battery life requirements,
we will need to use a larger battery, with a higher voltage
rating. However, this failure plan must still be on track
with our weight requirement. Since the two are closely
linked (larger battery = more weight), we will try to bal-
ance these two requirements so both are satisfied at any
given time.

8 PROJECT MANAGEMENT

8.1 Schedule

The schedule is shown in Fig. 6 is our Gantt chart for
the specific task breakdown of our project. Yellow is Sarah,
Red is Rosina, Blue is Saumya, Purple is Rosina & Saumya,
Orange is Sarah & Rosina, and Pink is all.

8.2 Team Member Responsibilities

In terms of the overall project breakdown, Sarah is re-
sponsible for implementing and testing our hardware, inter-
facing between hardware and software, calibrating sensors,
and helping with the physical components of our design.
Saumya is responsible for the low-level code running on the
microcontroller to send data to the Python receiver, Blue-
tooth networking, and sending pruned sensor data over to
the pyautogui-based mouse and keyboard module. Rosina
will be responsible for sensor value processing for keystrokes
and the IMU (with help from Saumya), the mouse and key-
board module, and the GUI of the system.

8.3 Bill of Materials and Budget

The bill of materials and budget needed for the project
are listed in Table 1.

8.4 Risk Mitigation Plans

As previously discussed, we have several risk mitigation
strategies for each of our use case requirements. For la-
tency, if we are unable to get below our threshold, we plan
to switch from Bluetooth to USB as our protocol for send-
ing data between the glove and the computer. For weight,

18-500 Design Review Report Page 6 of 10

Table 1: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Main development board ESP-WROOM-32 Espressif Systems 1 $9.59 $9.59
Intertial Measurement Unit FSM300 CEVA Technologies, Inc. 1 $67.36 $67.36
Touch Sensors N/A Ezweiji 3 $8.19 $24.57
Flex Sensors SEN-10264 Sparkfun 3 $17.09 $51.28
Fabric Glove N/A HandLandy 1 $13.80 $13.80
Printed Circuit Board N/A DIY 1 $0.00 $0.00
Total $166.60

we will opt for a smaller battery in the case that we can-
not reduce our weight in any other component to get below
our threshold. For accuracy, if it becomes impossible to
achieve our goal, we plan to reduce the complexity of our
gesture language and/or make our gestures more distinct.
For wireless range, if we are unable to reduce interference,
we may switch to either WiFi or USB, since the ESP32 also
supports WiFi. Finally, for battery life, in the case that we
are not able to power our device with a 5V battery, we will
increase the size of our battery.

9 RELATED WORK

Some other related works that are similar to our prod-
uct is gest.co, the Nintendo Power Glove, and various ASL
interpreter gloves. The Gest glove leverages Bluetooth Low
Energy technology and a similar glove sensor system that
can track gestures from afar. While Gest is still in its pro-
totype stages, it provided us a good baseline for existing
projects in the space. The Nintendo Power Glove is a con-
troller accessory for the NES (Nintendo Entertainment Sys-
tem). It provided users a way to control video games on
their console straight from their hands, rather than a tra-
ditional controller. There are various buttons and controls
located on the glove, where users can control players and
use their hand motions to control characters. Addition-
ally, similar to our design, the Power Glove detects yaw,
pitch and roll to detect hand placement and orientation
relative to the origin. As for the ASL glove, we found a
previous Capstone project team that created an ASL in-
terpreter glove that could detect hand movement for the
entire ASL alphabet. Their system used a similar style
of wearable technology fit with sensors, which we used as
inspiration for our sensor setup.

10 SUMMARY

In all, the Mouseketool is a promising device that can
make users’ lives easier and more efficient when using their
screens. It replaces dated technology with a sleek and wear-
able device that users can quickly get accustomed to. While
we anticipate challenges with regards to sensor threshold-
ing, Bluetooth networking, and processing IMU data, we
hope to work around these challenges using frequent test-
ing and validation, and making use of our risk mitigation

plans if necessary. We are excited to take on these chal-
lenges and bring our product to life.

Your references should be a very carefully crafted
list, cited in the appropriate ways. Don’t merely list a
Wikipedia page or a bunch of GitHub URLs. Note that
any code you used in your project does need to be cited.

11 REFERENCES

[1] Espressif Systems. ”ESP32-WROOM-32 Datasheet.”
13 Feb. 2023, https://www.espressif.com/sites/ de-
fault/files/documentation/ esp32wroom32 datasheet en.pdf

[2] CEVA, Inc. ”FSM30x Datasheet.” 2
Jan. 2023, https://www.ceva-dsp.com/wp-
content/uploads/2019/10/FSM30x-Datasheet.pdf.

[3] ”Ezweiji Precision Electrical Resistance Touch Sensor
(Resistive).” Amazon, https://www.amazon.com/Ezweiji-
Precision-Electrical- Resistance-Resistive/dp/B0C1SF7JT5
/ref=sr 1 1?crid=34RFCPF23WL3U& key-
words=ezweiji+touch+ sensor&qid=1697250980&sprefix=ezwei
ji+touch+sensor%2Caps%2C101&sr=8-1.

[4] Sparkfun. ”FLEX SENSOR SPECIAL EDI-
TION DATA SHEET.”n.d, https://cdn. spark-
fun.com/assets /9/5/b/f/7/FLEX SENSOR -
SPECIAL EDITION DATA SHEET v2019 Rev A .pdf.

18-500 Design Review Report Page 7 of 10

Figure 1: A schematic picturing the pins and connections for the ESP32 development board.

Figure 2: A schematic picturing the pins and connections for each sensor in the project.

18-500 Design Review Report Page 8 of 10

Figure 3: A schematic picturing the pins and connections for the IMU.

Figure 4: A block diagram depicting the hardware approach to the project.

18-500 Design Review Report Page 9 of 10

Figure 5: A block diagram depicting the software approach to the project.

18-500 Design Review Report Page 10 of 10

F
ig
u
re

6
:
G
a
n
tt

C
h
a
rt

