
18-500 Final Project Report: Team A0 - 10 December 2023 Page 1 of 16

Go Learning Buddy
Authors: Nathaniel James, Hang Shu, Israel Escobar-Camacho

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—The Go Learning Buddy provides a 9x9
physical board for beginning Go players to play on. It
can indicate the best move for the current position,
and provides a platform for post-game analysis. These
features help players learn and develop strategies that
they can extend to larger boards after they master our
product. The physical Go board reads in the game state
and sends the data to a server back-end, which sends
back the best move from the engine to be displayed on
the board’s LEDs. Each move is automatically stored,
so that users can analyze their games with the engine
post-game.

Index Terms—Convolutional Neural Network,
Monte Carlo Tree Search, Policy Network, Reinforce-
ment Learning, Value Network

1 INTRODUCTION

Go, also known as Weiqi or Baduk is an ancient game
that has been played for millennia. As such, it has de-
veloped an immense following all around the world, but
especially in Eastern Asia. Despite the games elegance and
simplicity, due to the boards large size (19x19) as well as the
ability to capture and replace stones, the amount of pos-
sible positions is incomprehensibly large. As such, many
beginners start on smaller boards (mainly 9x9 and 13x13)
to get a grasp of the game fundamentals before moving up
to the standard size board. Our product is designed with
these beginners in mind.

Our product was originally designed with a 19x19
board, and was aimed towards medium-to-advanced am-
ateur players. However, the construction and wiring of the
physical board took far longer than we expected, and we
switched to a 9x9 board accordingly. As a consequence, our
target audience shifted towards beginners, as basically only
beginners use 9x9 boards to play regularly. Additionally,
because we had a functioning web app and engine, we built
in the capability of being able to play against the engine
online without using the physical board.

In order to learn from their training matches, beginning
and intermediate Go players wish to see which moves they
made were strong, and which were blunders. Beyond this,
game notation is difficult and time consuming, as even on a
9x9 board there are 81 different intersections on the board
to place stones on, and each placement comes with the pos-
sibility of captures. Thirdly, in the interest of training, and
reaching more advanced board positions, players in a match
might want to see the best move(s) in the position. Finally,
players may not have an opponent nearby of appropriate
level to play against.

Our product solves all of these problems at once. Two
players can play against each other on our custom-built
Go board and each move is registered by photoelectric sen-
sors on each intersection. These moves are transmitted
to our software web application, where a Go engine trained
with self-play reinforcement learning uses Monte Carlo Tree
Search (MCTS) to calculate the best responses. These can-
didate moves are sent back to the web app for display, which
sends the best of them (as judged by the engine) to the
physical board, where LEDs light up the proper row and
column. After each move is made, it is stored by our web
application, so that players can look at their game history,
and see move suggestion from the engine at each point in
their previously played games. Finally, if the user is on
their own, they can play against the engine via the web
app, without needing to use the physical board at all. In
total, our product supports three modes of usage: human
vs. human with hints, human vs. human without hints,
and human vs. engine, all with available historical analy-
sis.

Of course, Go engines are available to play against and
train with online. Players can find opponents online, and
analyze their game history on websites. But, there is no
current way to play against an opponent over-the-board,
while receiving analysis and storing positions for further
analysis later. Such technologies exist for game like Chess,
but none for Go, and that is what our product provides
that no one else can.

2 USE-CASE REQUIREMENTS

The modified Go board is designed with specific use-
case requirements that emphasize precision and responsive-
ness. To fulfill these requirements, it must possess the ca-
pability to accurately identify the black and white stones
on the board with 100% certainty. This is so that users
can be sure historical data is correct when trying to learn
from their past games. The engine also requires a com-
pletely accurate representation of the board state in order
to give viable suggestions. The board must also rapidly as-
sess the entire game state, accomplishing this task in under
50 microseconds so that the delay is imperceptible to our
users.

Originally, we aimed for the self-play reinforcement
learning engine to be programmed to operate at a skill level
similar to that of an amateur 5-dan Go player. However,
with the shift to a 9x9 board aimed towards beginners the
skill requirement has also shifted. In games such as Go and
Chess the most important factor when learning is playing
against opponents ”better” than yourself. As such, our



18-500 Final Project Report: Team A0 - 10 December 2023 Page 2 of 16

9x9 engine must be able to regularly outperform beginning
players, quantified as at least a nine-to-one win-to-loss ra-
tio, as this will ensure our users can improve enough from
it to progress to larger boards. It will present the five most
promising moves for any given position on our web appli-
cation. This allows users to explore multiple possible lines
of play, rather than the singular move the engine deems
”best”, allowing for deeper positional understanding. For
each of the five optimal moves presented on the web ap-
plication, a percentage will be provided to estimate the
engine’s belief in the likelihood of winning the game if that
specific move is performed. The top-rated move among
these will be chosen and relayed as the recommended move
to be displayed on the physical Go board. The calculation
required to find the 5 optimal moves should be done in less
than 3 seconds to make the game play over our board feel
as responsive as it can be, given the computationally-heavy
calculation of this step.

In addition to these features, our web application must
offer a dynamic visualization of live gameplay on the Go
board, as well as the move suggestions generated by the
Go engine. These real-time updates on the web application
should occur in less than 200 milliseconds (not including the
time it takes to generate an output from the Go engine)
and must maintain a precise representation of the ongo-
ing game. Furthermore, the web application must have the
capability to save and retrieve past Go games with 100%
accuracy, ensuring the integrity of historical game data.
These combine to make sure that our users are not only
learning from the actual games that they played, but that
their games are not interrupted by needing to wait for the
web app to catch up.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

As can be seen in Fig. 1, users play Go on our physical
board, which reads in the game state through photoelectric
sensors (81 in total on a 9x9 board) underneath each of its
row-column intersection. Our Arduino microcontroller cap-
tures this game state, which is then sent to the Raspberry
Pi’s serial communication port and then onwards to the web
application through a websocket. Once the web application
receives a message from the websocket, the web application
then decodes the game state from the message and sends
the game state to the Go engine, making an HTTP request
to the back-end server hosting the Go engine to do so. The
Go engine outputs the 5 best moves move the position, in
order of strength, which are sent back to the web applica-
tion as a response. Once the web application receives the
response, it sends the recommended game move back to
the Raspberry Pi through the same websocket connection,
and then the server on the Raspberry Pi places said move
on the serial communication port, which is then read in by
the Arduino. If the users clicks the ”Advice” button, the 2
LEDs corresponding to row and column of said move light

up on the Go board, showing the user which move the en-
gine recommends. When a Go game is finished, the user
can click the ”End” button, which conveys this to the web
application. When the game is finished, users can down-
load the game into their computer’s file system and load it
in later into the web application to view the history. This
allows users to analyze games they’ve played in the past,
without creating a large storage overhead on the web app.
Our overall system design can be seen on the following page
in Figure 1, and is shown fully connected in Figure 14.

4 DESIGN REQUIREMENTS

4.1 Hardware

For our hardware design requirements, we largely focus
on the performance and latency of our product, in order
to fit the needs of our users, beginning Go players. This
means accurately reporting the board state in under 50 mi-
croseconds (as detailed in 2). Because our routine for light
sensor calibration is very similar, we require that our cal-
ibration stage also takes under 50 microseconds. In terms
of sending communication to the COM port, we require
a maximum latency of 120 microseconds. Finally, when
sending an advice request or receiving advice, we require a
maximum latency of 300 microseconds. These are all de-
signed to make the hardware latency imperceptible to our
users.

4.2 Software

Since users directly interact with the web application,
the design requirements for this section relate to latency,
making sure the site feels responsive to our users. We need
the latency of the communication between the server on
the RPi and the web application to be less than .5 sec-
onds, so that when a user presses a button on the physical
board to update the game state, the web application up-
dates almost immediately, showing the new game state to
our users. We also require that the response time for the
web application making a recommended move request to
our back-end server to be less than 3 seconds. We chose
3 seconds because we need to give sometime for the en-
gine to run its computation, but not too long such that the
gameplay feels sluggish. A design requirement that doesn’t
relate to latency is saving and retrieving past Go games
with 100% accuracy, so that when users use our game his-
tory visualization feature, it isn’t showing them game states
that they haven’t played.

4.3 RL Engine

Quantitative design requirements are especially impor-
tant for the RL Engine component, as it contributes most of
latency that the user will experience, in addition to directly
controlling the quality of suggestions the user receives. In
our use-case requirements we have stated a 3s limit between
move input, and recommendation, as this is short enough



18-500 Final Project Report: Team A0 - 10 December 2023 Page 3 of 16

Figure 1: System Architecture



18-500 Final Project Report: Team A0 - 10 December 2023 Page 4 of 16

to not hinder gameplay, but long enough to allow for a
proper MCTS simulation. As such, our MCTS must take
no longer than 2.5s, as if it does, even if all other compo-
nent meet requirements, the total latency will be above 3
seconds.

5 DESIGN TRADE STUDIES

5.1 Hardware

Whenever users make a move, we need to record how it
has changed the board. This means that we have 81 sensors
to gather data on and send to the COM port. Our micro
controller can only support 16 analog input ports but with
our 16:1 multiplexers, we are using only 5 of the ports. This
means that in order for us to read each port, we have to
poll 5 sensors for a given 16 cycles. This polling means that
we need to select different sections, which requires binary
conversion of the cycle for multiplexer selection inputting.

binary solution←− cycle selection (1)

mux segment i(.sel(binary solution)) (2)

Depending on the embedded software coding for the
micro-controller, the polling during a single cycle can be
as fast as 10−6 s (as this is the clock frequency of our Ar-
duino) but the slowest expected duration would be 50∗10−6

s. This means that, our testing for our data retrieval would
be as follows

nc ∗ te + tdelay = ttotal (3)

Where nc is the number of cycles (16), te is time of execu-
tion, tdelay is the button time delay, and ttotal is the total
data retrieval time (50 microseconds).

There was the choice of either using light sensors or
magnets to detect the board state. With magnets, we have
the benefit of not needing to adjust the light sensors to
the ambient lighting, and we would not have the issue of
a small shadow disrupting our reading of the board state.
However, magnets are costly, and when we were making
the design for the original 19x19 board, the cost was the
main reason why we decided on light sensors.

5.2 RL Engine

As mentioned in section IV, the entire MCTS process
must take under 2.5s in order for our analysis to meet
timing requirements. However, the simulation parameters
(depth and amount of candidate moves considered) can al-
ways be adjusted in order to adhere to this. If we let d
be the depth of simulation, f be the expansion factor of
the MCTS search, x be the time required for a single posi-
tional evaluation from the value network (see 6.2.2), and y
be the time required for a single evaluation from the pol-
icy network (see 6.2.1), through experimental observation,
we have determined the time per simulation ts corresponds
roughly as follows.

ts = dy ∗ ((2d+ f)/2f) + dfx+ .008 (4)

This is because for each simulation iteration (i.e. d times) f
new board states must be evaluated, on average f/2 board
states on the same level are explored before moving one
layer deeper, and the average overhead is around 8 mil-
liseconds.

Of course, the more computationally dense a neural
network is, the more accurate it is likely to be, but also
the longer a single evaluation by it will take. As such, we
worked hard to try to find an architecture with a balance
of computation time and accuracy, as a lower computation
times allows for larger expansion and deeper simulation as
shown above. The accuracies and latencies of the different
value network configurations we tested are shown below.
(Those of the policy network are not shown for two rea-
sons: we tied the architecture of the policy network to that
of the value network, and as can be seen above, the value
network evaluation time has a larger effect on the total
latency).

Figure 2: Network Size Trade-Off

It is important to note here that the value network’s
objective is to output a scalar evaluation of a position (0
for a black win, 1 for a white win), so accuracy in this
case is measured by if the network correctly predicts which
player won the game a specific board state is from. (16
million board states from expert-level and pro Go matches
were used for training, and about 2 million were used for
validation.)

Accordingly, we used the architecture from iteration 13,
as while it had slightly lower accuracy than 14 and 15, that
loss is on the order of .05% accuracy, and the reduced la-
tency allows for deeper and wider simulations.

A second trade-off occurred when our group made the
decision to switch from a 19x19 board to a 9x9. We had
allocated three weeks for engine training, and by this point,
two of them had already passed, meaning the engine was
already specialized to work on a 19x19 board. As such, we
had to decide whether to continue training the engine on a
19x19 board and just pad the input from a 9x9 when using
it, or to stop 19x19 training and focus only on the 9x9.
We chose the latter, as the former would have resulted in
an almost unusable engine for our physical board and we
wanted to prioritize our main, over-the-board, use cases
(players would have been able to play against the 19x19
engine on the web app on the proper-sized board). How-
ever, this created some issues, as some results of the 19x19
training can still be seen in the engine, as we only had one



18-500 Final Project Report: Team A0 - 10 December 2023 Page 5 of 16

week to tune them out (more in 7.2).

5.3 Software

An important design trade off that we considered
when building the software component of our project was
whether to run the engine computation client-side or server-
side (server-side in our case, would be a Flask server run-
ning on Hang’s computer). There were 2 main considera-
tions when deciding on this choice: computation time and
network latency.

Regarding network latency, the main benefit of running
having the game engine compute client side would be that
there would be no need to communicate over the network
since the engine code would be embedded into the web
application code. This means there would be no added
latency to the game engine computation time. Having a
separate server hosting the game engine would require our
web application to make a request to the server’s endpoint,
and wait for a response, adding some latency to the game
engine computation time due to the communication over
the network.

For computation time, a benefit of computing the en-
gine recommendations on a separate back-end server is that
the computation time would generally be consistent, and
therefore, more testable and easier to adjust on our end.
Having this compute run client side would mean that the
computation depended on the hardware that the client is
running on (phone vs computer, older computer hardware
vs newer computer hardware). Another major downside of
running engine client side is that we would have to convert
the TensorFlow code written in Python into TensorFlow
for Javascript (tf.js) which can increase the computation
time up to 10-15 times[5].

Considering that converting our engine code into
Javascript with tf.js may increase our computation time
by up to 10-15 times, we decided to have a separate back-
end server hosting the game engine. Even though there
will be added latency due to the communication happening
over the network, this added latency is small compared the
performance difference between running the engine code in
Python (server side) vs Javascript (client side), considering
an overwhelming majority of the engine’s latency is caused
by TensorFlow operations.

6 SYSTEM IMPLEMENTATION

Our system implementation can be split into three
parts: hardware, software, and RL engine. How these sec-
tion interact is shown in Fig. 2. Accordingly, for each
subsection and sub-subsection, the specific system imple-
mentation is given below.

6.1 Hardware

6.1.1 Board Development and Physical Alter-
ations

For our physical board development, needed to use an
entirely custom hollow board to support our electronics.
As it is now 9x9, this board has a smaller lenght and width
than a conventional GO board measuring at 273 mm by
273 mm, with the addition more of height so our Arduino
fit inside at 73mm.

For this to be possible, we take advantage of laser cut-
ters to cut out wood panels and make holes for our light
sensors to detect where pieces are placed, using a DXF de-
sign file shown. At the same time, we developed finger
joints for easy board assembly.

6.1.2 Circuitry Design and Development

When working on circuitry design, we applied light sen-
sors on every hole a piece could be placed with a vector
board connected to these sensors. As mentioned before in
5.1, we would need to have multiple iterations of sensor
polling as there are a limited number of ports. To com-
pensate for this, we would use 16:1 multiplexers that will
connect to 16 light sensors as shown in Figure 1. We are
using light sensors since we need a large amount of sensors
(81) and light sensors are cheap compared to the magnet
alternative we have discussed.

Now that all the light sensors have been designated as-
signed to a 16:1 multiplexer out of the 5 we will be using. In
our initial plans for our 19x19 board, we planned on using
additional 2:1 multiplexers to make up for the restriction of
ports. But, due to the change to a 9x9 board, such restric-
tion are not applicable as we would have more than enough
ports for our implementation. This is our designation for
the multiplexers:

• Arduino analog 0-4 port

– 16:1 multiplexer components 0-4

∗ light sensors 0-80

• Arduino analog 5 port

– light sensors 81

We will use the Arduino’s digital pins 0-3 for the 16:1
multiplexers selection port.

In addition to the data retrieval that we have designated
and ported, we will have buttons (specified as hexagon
blocks in our figure 1) for users to start and end games, in-
form when a turn has been finished, as well as allow players
to be shown advice mid game. These button/switches will
be connected to digital pins D33-37.

We have also added 18 LEDs to signify the x and y
coordinate of a preferred move. These LEDs will be con-
nected in series to each digital Arduino pin D14-22 for Y
coordinate and D5-13 for X coordinates. Each LED will be
connected in series with a resistor to regulate current.



18-500 Final Project Report: Team A0 - 10 December 2023 Page 6 of 16

6.1.3 Data Retrieval and User Interfacing

For our Arduino in summation, we have port designa-
tions as follows:

• analog 0-5 data retrieval sensors (inputs)

• digital 0-3 data control 16:1 mux selections (output)

• digital 14-22 Y coordinate LEDs (output)

• digital 5 -13 X coordinate LEDs (output)

• digital 33-37 Buttons (inputs)

For our data retrieval, we focus on grabbing one section
of data in 16 cycles. Our software records 16 data values at
a given cycle in a array. All our multiplexer selections are
initialized at zero and our selection ports for our 16:1 in-
crement from 0-15 in binary. Once we record data from 16
different addresses (totalling to 80 data points retrieved),
our software fetches the 81st value in its own dedicated pin
A5. Once we have completed retrieving all our data, our
array is full of all 81 values and is ready to send to COMS
port as text values.

For our user interface, we use an advice buttons that
triggers the arduino to light up 2 LEDs (one row and one
column). The micro controller knows which ones to turn
on by sending a advice poll to the COMs port and waiting
for advice coordinates to be received from the engine.

We also have buttons for when a turn is finished. This
triggers a data retrieval action for the micro-controller. We
have our start/end button trigger pre-configuration phases
where we calibrate our light sensors to the ambient light of
the room.

6.2 RL Engine

The Go engine built using self-play reinforcement learn-
ing was implemented in two parts: training and usage in
analysis. Monte Carlo tree search[1] (MCTS) was used in
both cases; for the former it decided what the next move
was in the simulation and for the latter it decides the rec-
ommendation for a given position. MCTS utilizes two neu-
ral networks, known as the value and policy networks, to
generate suggested moves for a position (see figure 3).

6.2.1 Policy Network

The policy network is a convolutional neural network
(CNN). The input is a 9x9 vector, representing a Go board
state, and the output is a length 82 vector (one for each of
the 81 intersections in addition to output[81] representing
passing the turn) of probabilities that sum to 1, meaning
that output[0] represents the relative strength of placing a
stone on the intersection of the 0th row and column (as-
suming 0-indexing). The initial weights of this network
were determined by a Gaussian distribution with mean 0.
For each training batch, the ground truth that the policy
network is trying to match was the visit count from the
simulation the board state was generated in (see 6.2.4).

6.2.2 Value Network

The value network is another CNN. The input is the
same 9x9 vector representing the board state, and the
output is a singular scalar value, representing the players
chance of winning from that position (0 representing a black
win, and 1 representing a white win). The initial weights
for this network were trained via regression, using a data
set of board-states pulled from expert level Go matches,
tagged with the outcome of the match. This allowed the
value network to obtain a general positional understanding
before any of the MCTS simulations detailed in 6.2.4.

6.2.3 MCTS

From any given board state, our engine determines the
next move via MCTS. Let us first define a few variables for
simplicity of notation: evaluation score (or average strength
of position) as Q, exploration bonus (score for adding new
information to the tree) as u, board state as s, action (or
move) as a, optimal action as at, number of states in the
MCTS tree as N , the number of states in a given sub-tree
of the MCTS tree as ns, the nth substate of a state s as
sn, the probability said substate is reached as πn, the pol-
icy network serving as a function as p, the value network
serving as a function as v, and the balancing constant c.
(Referred to by these variables in Figure 3 as well.) We
then are trying to maximize the quantity Q+ u, yielding

at = argmax(Q(s, a) + u(s, a)) (5)

Q(s, a) = (

ns∑
i=1

sn ∗ πn)/ns (6)

u(s, a) = P (s, a) ∗ c
√
ns/(1 +N(s+ a)) (7)

Essentially, the evaluation score encourages expanding
branches of the tree with board states more beneficial for
the player who is moving, and the exploration bonus en-
courages expanding sparser, more rarely visited areas of
the tree. The hyper-parameter balancing constant c is cho-
sen depending on the amount of exploration desired (ex-
ploration is more encouraged in early game, and less en-
couraged in the end game). Depth of simulation, (d), and
expansion factor (f) are set, and then the following steps
are repeated d times. (For engine usage these are set to take
just under 2.5s per calculation as detailed in 5.2, but for
training both d and f are varied to generate more diverse
training data.)

1. Start at the root of the built-out tree (the current
board state)

2. Until you are at a leaf node, move downwards to the
child state with the highest score according to equa-
tion 5, marking each node you pass through as visited.

3. Take the top f moves suggested by the policy net-
work in the leaf position, and create child nodes for
each one.



18-500 Final Project Report: Team A0 - 10 December 2023 Page 7 of 16

4. Evaluate each child node with the value network.

5. Traverse back up to the route, updating the average
values Q for each node based off of its new descen-
dants, and repeat.

After these steps are completed the requisite number of
times, the local policy (i.e. the next move) is determined
by the normalized state visit count over the course of that
particular simulation. That is, whichever child of the root
has been visited the most in step 2 of the above list is des-
ignated as the move of choice by the engine. Each child’s
visits is divided by the total number of visits to form the
target vector used to train he policy network for future
iterations.

6.2.4 Training Implementation

Figure 3: Training Flow

The training driver maintains the current board state
which it sends to the search driver after every move. The
search driver builds out the game tree through d iterations
using the value and policy networks. The strongest avail-
able move is processed with move logic and the resulting
state is sent back to the training driver. The visit count
data is stored with the inputted board state as training
data for the policy network, and after the simulated game
runs to completion, all constituent board states are tagged
with the outcome, and stored as training data for the value
network.

Each simulated game generates upwards of 5000 board
state pairings (as there are no early resignations common
in human vs. human matches), so after each set of 200
training matches, upwards of 1 million training data points
have been generated. The policy network is trained to min-
imize cross-entropic loss between its output and the desired
policy vector given a position (characterized by the MCTS
visit counts generated from that position), and the value
network is trained to minimize mean-squared error between
its scalar output, and the result of the game that reached
a given position (1 for win, 0.5 for draw, 0 for loss). Essen-
tially, it becomes an extension of the value network,

6.2.5 Analysis Usage

When engine analysis of a position is desired (whether
mid-game or post-game) MCTS is run, using the saved
weights of the policy network and value network. Same as
training, the normalized visit counts represents the policy
vector, but these data points will not be saved for further
training. Once prompted by the back-end, the engine will
send back the policy vector, from which the back-end will
select the strongest move to display (if in-game) or a num-
ber of strong moves to consider (if doing post-game analysis
on the website).

6.3 Software

The web application is built in React and visualizes the
live gameplay of the Go board to allow users to analyze
their saved Go games. The web application also allows
users to play against the game engine.

6.3.1 Web pages

Figure 4: Live gameplay page



18-500 Final Project Report: Team A0 - 10 December 2023 Page 8 of 16

Figure 5: Game history page

Figure 6: Play against the engine page

The first page (figure 3) is the page corresponding to the vi-
sualization of the live gameplay over the physical Go board.
This page allows users to see the Go game on the computer,
as well as the 5 moves suggested by the Go engine. The
page also allows users to save the game by downloading a
game information file to their computer’s filesystem so that
they can later use this file to visualize their saved gameplay.

The second page (figure 4) serves to display saved Go
games. The user can pick which Go game to load in as
well as which move to view. For each move, the page also
displays the suggestions made by the Go engine along with
the engine’s predicted probabilities of winning the game for
each respective move.

The third and final page (figure 5) allows users to play
directly against the engine without playing over the phys-
ical board. The probabilities shown in figure 3 and figure
4 describe the chance of either black or white winning the
game if they make the recommended move.

6.3.2 Visualization of the Go board

The Go board is drawn with CSS and can be broken
down into 2 parts: background and tiles. The background
is simply a brown square covering the entirety of the board
as the background. The tiles have 9 different categories:
top left, top, top right, middle left, middle, middle right,
bottom left, bottom, and bottom right. The tiles are bro-
ken down into such categories because the tiles are divs and
in order to draw in the black and white go pieces, the pieces
must be centered on each div. Since the pieces fall on the
intersection of lines and not in between, dividing the tiles
into such categories with lines drawn inside each div and
not as the border of each div makes drawing the go pieces
easier.

6.3.3 Saving and loading Go games

In the background of the web application, Go game
states are handled as a 1d array of length 81. This array
only contains the following information: “W”, “B”, “E”,
or white, black, and empty corresponding to each index.
As the game is running, another 2d array is updated and

this is the array that will eventually be saved. This 2d ar-
ray contains arrays that correspond to the board state at
different moves (array at index 0 corresponds to the board
state at move 0). When the game is over, this array is con-
verted into a dictionary where the key is the move number
and the value is the board state, written to a file, and then
this file can be saved into your computer’s file system. We
chose to save to the user’s file system rather than database
because we don’t want to require users to make an account
to store their saved games as we want saved games to be
private to each user.

In the second page of the web application, you can load
in this saved file and select which move to show. Once a
move is selected, the game state will be reconstructed from
the file by reading in all the moves less than or equal to the
current move number and fed into the Go engine for the
recommended moves.

6.3.4 Interfacing with the Arduino

To interface the web application with the Arduino, we
have a RPi connected to the Arduino via a USB. On the
RPi runs a Flask server that on start up, starts a thread
that continuously polls the serial communication port for
data written by the Arduino whenever a board state is read
in. Once a board state is read in, the server on the RPi
emits a message to the web application through a web-
socket. There are 4 types of messages that the server on
the RPi can emit to the web application: start game, get
advice (recommended moves), update board state, and fin-
ish game. For communicating the recommended move back
to the Arduino, the web application receives the best move
from the engine, emits this data back to the server on the
RPi via the same websocket, and then the server places the
data on the serial communication port for the Arduino to
read in the recommended move.

6.3.5 Interfacing with the game engine

The game engine runs on a Flask server hosted by
a laptop. For the web application to communicate with
the engine, the web application makes a request to the
get recommended moves endpoint with the current board
state as the payload. The engine receives this board state
and runs inference to get the top 5 best moves and returns
the best moves in a sorted array as a response.

7 TEST & VALIDATION

7.1 Tests for Hardware

One of the main focus for testing is Latency during our
data retrieval phases, pre-configuration phase, and commu-
nication phase when receiving data and sending it.

For testing latency of data retrieval and configuration
phase, we will run Arduino made function, millis(), to
record the execution of our data retrieval actions and apply
our previous equation in section 5.



18-500 Final Project Report: Team A0 - 10 December 2023 Page 9 of 16

Figure 7: Hardware latency performance

As we can see, the performance of our game retrieval
and game pre-configuration are fairly consistent where pre
configuration takes slightly longer due to it doing the same
process as game retrieval along with assigning all 81 values
to be used in the future with a constant sensitivity margin
filter applied.

As for accuracy of our hardware, we will put it through
a series of 50-100 different games and make sure each game
state is obtained and processed with no error. This would
mean we have a accuracy of 100% for our implementation
as this is expected performance for the average user.

We have initial phase of hardware testing accuracy for
our resistor choices which includes a variety of different
photo resistors in series with a 1MΩ or a 10MΩ.

Figure 8: Electrical readings for occupied intersection

Figure 9: Electrical readings for open intersection

As we can see through these results, we can see a larger
difference in voltages for our 10MΩ resistors compared to
our 1MΩ resistor configuration. This larger difference when
compared to placed and not placed pieces helps differenti-
ate when pieces are placed or not. Therefore, the 10MΩ
resistors are the what we used for our implemention to al-
low us to know when pieces are placed.

7.2 Tests for RL Engine

Accuracy testing: Originally, we were going to test our
engine’s accuracy by playing it manually against engines
of known strength available online. As our target strength
was that of amateur 5-dan, we had planned on playing our
engine against an engine with that strength a representa-
tive amount of times (≥20), and if our engine scored at
least as many wins as losses, it could then me said with
reasonable confidence that our engine was at at least that
level. However, switching from a 19x19 board to a 9x9
board threw a wrench in these plans.

There are some engines available online to play against
on 9x9 boards, however, they do not have a known strength.
In fact, the standard ranking system of dan is for specifi-
cally a 19x19 board, so we now cannot apply it to our prod-
uct. This is why we switched to the metric detailed in 2,
which involved playing at least 20 games, and maintaining
a win-to-loss ratio of at least nine-to-one. The reasoning
behind this is that in order to improve, players need to play
against and get suggestions from players (or in our case en-
gines) better than them. As our main audience shifted to
beginners, our main focus was to ensure our engine was
better than them by enough for them to be able to learn
from it. A nine-to-one ratio makes this difference in level
clear.

Fortunately, all three of us were beginners, so we could
test against the engine, but we also found roommates and
friends to test our engine against as well. The smaller 9x9
board lends itself to draws, but of the 35 games played to a
result (each of the seven testers played 5 games to a result)
the engine won 32, resulting in a win-loss ratio of around
10.7-to-1. It is also interesting to note that all 3 of the wins
came in the fourth and fifth games the testers were play-
ing, suggesting that they were able to improve by playing
against our engine even a small amount of times.

As additional metrics, we can look back to section 5.2
and Figure 2 to see that our value network accuracy clocked
at just under 95%. This means that given any board po-
sition, our evaluation engine can predict the winner from
that point correctly, 95% of the time. This is particularly
impressive, as many of the states used to test this are from
the beginnings of games, from before any meaningful mis-
take has been made. Considering even the strongest engine
would only perform slightly better than 50% in these cir-
cumstances, an overall mark of 95% is quite strong. Addi-
tionally, our policy network scored an accuracy of 84% with
a mean-squared error loss of 1.927 ∗ 10−4, meaning that
given a position, the strongest suggestion the policy net-
work gives matches the target vector (as detailed in 6.2.1).



18-500 Final Project Report: Team A0 - 10 December 2023 Page 10 of 16

In all cases our expansion factor was at least 10, mean-
ing the probability the strongest move was in the top 10
suggestions of the policy network is far greater than that
recorded number of 84%.

This all notwithstanding, there were some issues identi-
fied during the player-vs-engine portion of the testing. The
first was the engine’s seeming aversion to captures. While
the engine has a concept of captures in a general sense (i.e.
it knows that board positions with more of their stones
than their opponents are generally favorable) there is no
explicit bonus programmed in for captures. This resulted
in the engine sometimes not making captures that would
have seemed obvious to a human player. Generally, once
stones have the ability to be captured, this option does not
go away, so it is possible the engine just ”sees” a more im-
portant move at the time and is ”planning” to make the
capture later, but that is difficult to evaluate on its own.
Secondarily, because the first two weeks of engine training
was on a 19x19 board, it seems to ”hallucinate” occasion-
ally, suggesting moves near the right and bottom edges of
the board that do not make a huge amount of sense. This
is likely because on a 19x19 board, moving towards those
specific edges would expand a player’s territory, and if we
had had more than one week to tune for a 9x9 board, this
might have also removed this issue, but as it was, it defi-
nitely cut into our engine’s strength.

Finally, while our engine performed well against users
who were complete beginners, it did struggle against two
more intermediate players, suggesting it has quite bit of
room for improvement. One of these players, who we met
at the TechSpark demo, helped us identify the hallucination
issue.

Latency testing: As shown in 5.2, we controlled the pa-
rameters of our MCTS to ensure our engine computation
time remained underneath the 2.5s barrier. That being
said, there is a difference between theory and practice. As
is shown below, at all times our response time was below
the 2.5s threshold, decreasing as the game goes on due to
there being fewer possible moves that needed to be consid-
ered.

Figure 10: Average Engine Calculation Time

7.3 Tests for Software

For testing the latency for the communication between
the server on the RPi and the web application, we set up a
simple back and forth between the two by having the web
application send the board state to the server on the RPi
and the server immediately sending that same board state
back. We recorded the timestamp of when the web applica-
tion first emitted the message, and the timestamp of when
the web application received a message through the web-
socket and subtract the two timestamps. We’ve collected
34 datapoints and the results are shown below:

Figure 11: Response times for bidirectional communication
graph

As we can see from figure 6, all of the recorded times fall
below the .5 second mark, with the vast majority of them
(75%) them falling below the .15 second mark, meeting our
goal stated in the design requirements.

For testing the latency between the web application and
the back-end server hosting the game engine, we recorded
the timestamp right before the web application made a re-
quest to the server, and recorded the timestamp as soon
as the web application received a response from the server
and subtract the two timestamps. We’ve collected 30 dat-
apoints and the results are shown below:



18-500 Final Project Report: Team A0 - 10 December 2023 Page 11 of 16

Figure 12: Response times for requests to engine endpoint
graph

We see from figure 7 that all of the recorded times fall
below the 3 second mark which meets our stated goal in
the design requirements.

With both of the latency tests reaching our stated goals,
the web application (and integration of the physical board,
web application, and engine) feels responsive and doesn’t
distract user from playing the game.

For testing the accuracy of saving and displaying the
Go board game states, jest unit testing was written in the
web application code. These unit tests ensure that the files
written match the specification given the state data in the
web application. These unit tests also ensure that the ren-
dering of the historical gameplay match specification.

8 PROJECT MANAGEMENT

8.1 Schedule

We organized our schedule by team member, the full
schedule can be found in Fig. 14. Said schedule is quite
different from our original, mainly because of the switch
from a 19x19 board to a 9x9. As you can see, all three
team members had added sections on converting their for-
mer work to fit a 9x9 board, or to rebuilding the physical
board in Israel’s case. Additionally, the switch from stan-
dard photo-electric sensors to photo resistors also caused a
change you see reflected in Israel’s schedule.

8.2 Team Member Responsibilities

Nathan: Primary responsibility was the training and
implementation of the RL engine. Secondary responsibil-
ity was linking the engine with the analysis back-end.

Hang: Primary responsibility was the creation of the
game history analysis front-end and back-end. Secondary
responsibility was linking the analysis back-end to the en-
gine and the physical board.

Israel: Primary responsibility was the creation of the
physical Go board, along with the implementation of sen-
sors to determine where stones are played. Secondary re-
sponsibility of interfacing the physical board data with the
back-end.

8.3 Bill of Materials and Budget

Many of the costs for our project have gone for the sen-
sory of the game state as we require many sensors for this
project. Our micro-controller is also of great cost. Also,
because of the many setbacks of our board development,
there were purchases such as the acrylic boards that were
not needed in the final product sadly. Such purchases being
removed would’ve made our project way more cost efficient
if planning went more according to plan.

The full list of our purchases and parts are found in
Fig. 15.

8.4 Risk Management

8.4.1 Hardware

For our hardware implementation, we had many issues
that could have occured with our system.

One of the risks we had was developing a board of our
own for this project without the help of external personnel.
Our planned mitigation was to shift to having no custom
board but a board with holes. Even though this would
have exposed our circuitry it would have provided the nec-
essary functionality. Fortunately we were able to design
and rebuild a 9x9 board ourselves.

In addition, because we shifted from PCB/Vector board
design to wiring our circuitry, there was a high chance
that some of these sensors would break due to miswiring
or touching wires. To make sure we covered this, we did
compression tests (fitting the wiring into the board), and
marked all the sensors that stopped working. We then in-
sulated all the wires related to said sensors, and retested
until we caught all issues.

Another risk we considered were possible communica-
tions problems with the COMs port and other comput-
ers. If our Arduino did not communicate correctly with
the computer, we would have pre-installed Operating sys-
tems on our computers to ensure that the Arduino has no
problems what ever the software is used.

8.4.2 RL Engine

We foresaw three possible risks with the engine. The
first two related to training time, the former being a situa-
tion where the training of the networks took a prohibitive
amount of time, and the latter being a situation where
the MCTS simulation itself was taking too long generating
training data. After porting every required file to afs stor-
age, network training did not end up being a bottleneck.
In fact, we were more limited by the time it took the net-
work to evaluate positions than we were by the time it took
to train. However, the MCTS simulation did take quite a
bit longer than expected. We managed it in two ways, the
first being our planned solution of down-scaling the simula-
tion depth and expansion factor. This harmed the engines
strength, but only marginally. Due to the previously men-
tioned exploitation weighting (see equation 5 6), the first
steps taken in the tree search matter much more than the
later steps. Reducing the depth does not affect the engine’s
ability to select this first move accurately when building the
game tree.

The third, more damaging issue would have been if the
engine didn’t play at a high enough level for player improve-
ment, regardless of cause. In this case, we planned to use
an open-source Go engine as a replacement. Fortunately,
due to our shift towards targeting beginners, this was not
required, though it might have been had we remained with
a 19x19 board targeting higher level players.



18-500 Final Project Report: Team A0 - 10 December 2023 Page 12 of 16

8.4.3 Software

The main risk that can occur for the software compo-
nent is any last minute overhauls of the designs, which
ended up happening when we changed our design from a
19x19 board to a 9x9 board. To mitigate this risk, the soft-
ware component is designed to be as modular as possible,
making the switch from the 19x19 to 9x9 almost seamless
since the rendering of the Go board is parameterized.

9 Ethical Issues

Our worst-case scenario is for a user to accidentally mis-
use or break our product, exposing dangerous materials
(lead & electronics). These dangerous materials can harm
the user, either through lead contamination or mild shock.
As such, the worst way someone can use our product is to
either treat it roughly or not dispose of it properly. Slam-
ming the hinges to the board or hitting the board itself can
cause the hinges to break, exposing the underside where the
electronics are located, and lead is used to solder. Touching
the exposed electronics can cause shocks, and if pieces of
lead break off, or a user touches it and then their mouth,
small amounts of lead can be consumed. Additionally, if
our product is just thrown in the general trash and not dis-
posed of properly, the lead can leak into the environment.

A scenario that can lead to this worst case involves a
user treating the product in a very rough or careless man-
ner. A user may store the product in an unsafe manner; for
example, they may place the product on the edge of a table
and accidentally push the board off, causing the hinges to
break, exposing the underside where all the lead and elec-
tronics are. In this case, this is disjoint from our intended
use as it does not connect to the usage of our tools itself
but how to properly handle them. As such, we must make
sure to give as explicit as possible directions for how our
product is to be handled, used, stored, and disposed of.

The users can get harmed if they come into contact
with exposed electronics or lead. The environment can get
harmed through improper disposal of the product.

Children are particularly vulnerable to this worst-case
scenario. They have worse emotion control than adults and
are more likely to throw the product off a table in anger
or treat it roughly in some other way. They are also worse
at following directions, or at least understand the value of
doing so less, so they are more likely to disregard storage
or disposal instructions.

The main ethical concept being violated here is account-
ability. This worst-case scenario revolves around the mis-
use of our product in some way. Of course, we cannot fully
control how our product is treated, but we must do our
utmost to prevent misuse and mitigate the circumstances
leading to the physical damage of the board. For example,
we can’t make our product indestructible, but we can re-
inforce the hinges to reduce the chance of them breaking.
We can’t guarantee our users will store or dispose of the
product correctly, but we can include detailed instructions,

warnings for what could go wrong, and possibly mandate
that a parent be there for the product’s purchase to ensure
that at least one responsible adult knows the risks (in the
hopes that they can guide the user if it is not themselves
to safety).

10 RELATED WORK

One part of our project that is similar to work that has
been done before is related to our Go engine. There have
been historical Go engines such as Goemate and Zen, but
the one that everyone knows today is AlphaGo. AlphaGo
was developed in 2015, and it was a pivotal moment for
Go engines as it was the first Go engine to defeat a world
champion in a 5 game match using novel techniques simi-
lar to what our engine uses (MCTS with CNNs). AlphaGo
does not rely on predefined heuristics, but, instead, it starts
from scratch, learning the game solely through self-play.
This approach has enabled AlphaGo to achieve superhu-
man levels of play in these games and has had a profound
impact on the field of AI and its applications in various
domains.

Relating to our project’s hardware component, a simi-
lar product comparison can be seen with Square Off Pro’s
chess board. Square Off Pro’s chess board not only facil-
itates game recording but also enables players to engage
in chess matches against artificial intelligence on the very
board. Our project, however, aims to provide a similar
service, but for Go.

11 SUMMARY

The goal of our project, Go Learning Buddy, was to pro-
vide a platform for beginners to learn Go over the board.
Our project accomplished this task by providing users an
easy way of recording and viewing their previous Go games
and suggesting moves via our Go engine. Both of these
features serve to help users learn and devise their own
strategies to improve their gameplay. These two features
are provided via an integrated system of a physical Go
board whose state is read in by light sensors and an Ar-
duino micro-controller, and a software system on a com-
puter which takes in the gameplay data and visualizes and
saves gameplay. The software system also runs a Go engine
in the background which takes in game states and outputs
what it thinks is the top 5 best moves. The top rated move
is then sent back to the Arduino micro-controller which
lights up 2 LEDs on the board, displaying to the users the
recommended move.

With regards to our requirements, we met all of them
(aside from the original engine strength requirement that
shifted). The board records the game state with 100% ac-
curacy, all of our latencies are below their given thresholds,
and the engine has a greater than 9-to-1 win-to-loss ratio
against beginner opponents.



18-500 Final Project Report: Team A0 - 10 December 2023 Page 13 of 16

11.1 Future work

One potential item we can add to our project is to con-
vert the 9x9 board into the bigger 19x19 board, but with
a custom PCB instead of hand-wiring the components to-
gether. The PCB can streamline the building process as
many of the build issues we ran into for this project was
with wires touching when they should not have. This would
make the game more applicable to a professional audience,
as they may want to save their games automatically.

On the software side, a database can be added such
that players have the option of making an account and
saving their games to the database, or of simply using the
current feature which is downloading the game onto their
computer’s file system.

On the engine side, if we continued with a 9x9 we would
want to more fully train on a 9x9, removing the hallucina-
tion issue detailed in 7.2. However, if it were shifted to a
19x19 as suggested just above, we would want to revert to
the original 19x19 training, and continue from there, as we
never had a fully functional 19x19 policy network. Added
training serves only to increase the quality of the engine,
which would be vital as with a 19x19 board we would not
only be catering to beginners, but also to stronger players.

11.2 Lessons Learned

When developing the board and hardware implemen-
tation, there were many setbacks and design changes to
the board development. Many parts came in late, and the
build processes for each component took much longer than
expected. As such, we learned that it was necessary to plan
for the build processes of each hardware component to take
longer than we expect, and to have contingencies in case
we are not able to finish certain components in time.

This lesson leads directly into the next lesson we have
learned: to make our designs as modular as possible to
account for any possible contingency plan we may take in-
stead of the original plan. Because the software and engine
were designed to be extremely modular, we were able to
seamlessly transition the board from a 19x19 grid into a
9x9 grid, even with the extremely tight deadline we were
on.

12 Glossary of Acronyms

• CNN - Convolutional Neural Network

• LED - Light Emitting Diode

• MCTS - Monte Carlo Tree Search

• PCB - Printable Circuit Board

• RL - Reinforcement Learning

• RPi – Raspberry Pi

13 References

1. Fragkiadaki, Katerina, Deep Reinforcement Learn-
ing and Control: AlphaGo, AlphaGoZero, MuZero,
Spring 2022

2. “Get Started with TensorFlow.Js.” TensorFlow,
www.tensorflow.org/js/tutorials. Accessed 15 Dec.
2023.

3. Hui, Jonathan, Monte Carlo Tree Search (MCTS) in
AlphaGo Zero, 20 May 2018

4. ”MakerCase” Makercase, https://en.makercase.com//.
Accessed 9 Nov. 2023

5. Schrittwieser, Antonoglou, et. al., Mastering Atari,
Go, Chess and Shogi by Planning with a Learned
Model, 21 Feb. 2020

6. Silver, Hubert, et. al., Mastering Chess and Shogi
by Self-Play with a General Reinforcement Learning
Algorithm, 5 Dec. 2017



18-500 Final Project Report: Team A0 - 10 December 2023 Page 14 of 16

F
ig
u
re

1
3
:
F
u
ll
y
co
n
n
ec
te
d
sy
st
em

a
rc
h
it
ec
tu
re

d
ia
g
ra
m



18-500 Final Project Report: Team A0 - 10 December 2023 Page 15 of 16

F
ig
u
re

1
4
:
G
a
n
tt

C
h
a
rt



18-500 Final Project Report: Team A0 - 10 December 2023 Page 16 of 16

F
ig
u
re

1
5
:
B
il
ls


