Use Case & Application

e The strong competitive scene in Go means there is high demand for training
Our project does this in two ways:

e Real time over-the-board analysis

o When two players are playing against each other on our physical board, our systems allows
both players to see the best move in their position, if desired

e Historical Analysis and Suggestions
o Historical analysis allows players to examine which of their moves were strong and which had
considerably better alternatives.
o Multiple engine suggestions allows users to explore alternative to their own move even if
there's was the engine’s top choice.
o Monte Carlo Tree Simulations allow us to display the expected win probabigiii
candidate moves

Quantitative Design Requirements

e Mention specifics of hardware
o 100% accurate identification of game tiles
o Perform aread of game state in less than 50 microseconds
o Perform light sensor configuration in less than 50 microseconds
o Communicate a game state to COM port at most 120ms
o Communicate advice from COM port to arduino at most 300 Microseconds

e RL Engine

Strength level of at least Amateur 5-Dan
Display the five best candidate moves in each position on the website

e Website

o 100% accurate recording of game history
o Visualization of each move in a specific game’s history

(@)
(@)

Solution

e Physical Go board that connects to a computer
o Communicates game state
o Emits advice from engine

e Website following live gameplay of the Go game

o Once game is finished, the history can be downloaded
o Game history can also be visualized on the website
o Interfaces the engine to the Go board

e Engine will make suggestions for each move if the player wants

System Specification - The Board

Arduino Status signals H Key:
Grey boxes- breadboarded components

[Blue boxes- representation of one data

ee _ 4
outputs ® @

[Segment for 1 16:1 mux
Dotted boxes- arduino interface signals

TTET TT6T
oo mx ee ee ik ee
outputs outputs.

P e =
! Arduino control |

signals
!

| DoD1D2 D3 J e N
5v i
Player 1 T i) | |
vee v
CD74HC4067 — i e
deice @ ‘ ‘ ‘ = '
— o J
(0,0) e
[[. { ©a8) [()
: l 00000000 000000000 o
,,,,, P 800000000000000000 o
" Arduino 0009900000000 00Q00 o
| stats 00000000 000000000 o
| signals OOOOOO%%OOOOOOOOOLP} o T p—
- ! 000000 & FRO 000000 o signals |
@ | D337 000000 PAFOOOC0000 o osozs |
¥ F 0000000000000 000Q0 o T
I 19 OO0 Ogamd OO OO0 OP OO0 O -
units| 6660 Jed @’@?OOO’) =
600 N AW 00 00 o
@000 00000 000000000 o
@000 0000000000000 0C o
(OOOOOGOOOOQOQOOOOE} o
éoooooocoooooooooo(o
QO0OO000 000000000 o
00000000 000000000 o
1 S000000< >-O0-0-0-0-0-0-0-0
L o 9
|

Finished
Gd‘"ca Bu((cQ
T
~

19 \ LED I
units \\ \ '
/ \ 3
Player 2 // (0000000000000 000 00 \\ |
Bution] J \ 3
M| oo \ |
iR i ! Arduino control | 1§]
‘ ' i signals. ;
D24-D32 i
PUPPI J

System Specification - RL Engine

System Workflow Training Workflow

Network Tuner
(adjusts DNN based on
the simulated game
result)

Board position

from website interface ¢
>

Expected and
true results

MCT Simulator

Board position Deep Neural Network
from website interface trained via self-play Candidate Moves with Weights

v

LN
“1 with Monte Carlo tree
simulation

Vector Interpreter
(processes the
candidate moves from
the policy vector)

Deep Neural Network
with adjustable
parameters

Policy Vector

System Specification - Site

Computer
Locally host site
»— COM port Web Serial API
Filesystem
Go board — Go engine
w, e)

Game 4

Block diagram of entire system

Arduino data retrieval signals

a0-al6
¥ ¥

LI 7]
6x SN74LS158N

CD74HC4067

19) Cflel Ol
units 0 XS = o 3 %o 8 of o |
) gl Gl SR A

Computer
Locally host site

COM port | Web Serial API

Filesystem

Game 1 Go engine

Game 2

Game 3 |

Game 4

Deep
Neural
Network

Implementation Plan - Hardware

e Make custom adjustments to physical GO board to mount electrical
components
e Embedded the light sensors output and multiplexers with the arduino to

allow for multi-cycle data retrieval
o Requires automatic configuration for environment
o Edge cases needing to be more thorough for muxes 16-21

Develop software for retrieving and formatting game state data retrieval
Develop LED software for optional advice mid game

Implementation plan - RL

e Randomly initialized deep neural network parameters

e Monte Carlo Tree Simulations used to determine each move
o Simulations are computed with the deep neural network playing the game against itself.

e Parameters adjusted post-game result via gradient descent
o Minimize expected result post-move vs. actual game result
o Maximize similarity between policy vector and search probabilities
e Once trained, weights can be stored locally
o Given input of board state, it will output the best available moves, along with their expected
win percentages

o If queried, can transmit the best available move to be displayed on board

Implementation plan - software/site

e Built on React + Javascript

e Interfacing the board and engine
o Web serial API to read and send signals to the COM port
o Serialize signal from board into an input for the go engine
m 361 element array
o Send the output of the engine back to the Arduino board

e Saving game history
o Saved into text file — download onto computer
e Displaying game history
o Import txt file
o Visualization of the board for each move made in the game

m Convert each game state/move into a board visualization
m Each move will also show the engine’'s suggested move

Test, Verification, and Validation

e Hardware
o Initial parts
m Develop circuitry for light sensors and multiplexer performance through breadboarding
o Final parts
m Make dummy physical game states for retrieval
m Push serial requests to LEDs to test correct provided insight

e (Game History Analysis

o Compare engine suggestions to high-level open source engines to ensure strong suggestions
o Use dummy Game state in CSV format for ensuring game state is recorded and displays

e RL
o Ensure engine performs at 50+% record against a 5-Dan level engine available online
o Website

o Jest unit testing for each page in the site to ensure correctness of code

roject Management

Oct2-0Oct8 Oct 9 - Oct 15 Oct 16 - Oct 22 Oct 23 - Oct 29 Oct 30 - Nov 5 Nov 6 - Nov 12 Nov 13 - Nov 19 Nov 20 - Nov 26 Nov 27 - Dec 3 ‘
! e o e iz eoioam
I ® b4 s v . 4
Develop software Have board sent for physical Install light Troubleshoot Install and | slack
for modification sensors into circuitry & data debug LED) I
hardware-software I board and retrieval components
Protocol circuitry | |)
1 1 : =
2 —_ ! V
Israel : i
Order Test sensor t)
test-parts and 1)
i configurations H
— for software h)
1 H H
Order Final H
Parts H :
| ' i
Setup React Work on Start : Troubleshoot Develop & Slack
Web Page saving Game 1 | data Troubleshoot H
i History | | retrieval 2-way serial
H ang 5 and analysis i | and serial communication
% i | communication | between
; & engine and
1 hardware
; H
: I
Build Go Build Training Initial training Validation§ Secondary | Validation | 3rd round of Final model Slack
Framework Framework session, (extra adjustmery training rd. 2 training validation / N
Nathan N N built in for post session N N {
= = troubleshooting, 1st N S N
setup issues round
N N

