Use Case & Application

e The strong competitive scene in Go means there is high demand for training
Our project does this in two ways:

e Real time over-the-board analysis

o  When two players are playing against each other on our physical board, our systems allows
both players to see the best move in their position, if desired

e Historical Analysis and Suggestions
o Historical analysis allows players to examine which of their moves were strong and which had
considerably better alternatives.
o Multiple engine suggestions allows users to explore alternative to their own move even if
there's was the engine’s top choice.
o Monte Carlo Tree Simulations allow us to display the expected win probabigiii
candidate moves




Quantitative Design Requirements

e Mention specifics of hardware
o 100% accurate identification of game tiles
o Perform aread of game state in less than 50 microseconds
o Perform light sensor configuration in less than 50 microseconds
o Communicate a game state to COM port at most 120ms
o Communicate advice from COM port to arduino at most 300 Microseconds

e RL Engine

Strength level of at least Amateur 5-Dan
Display the five best candidate moves in each position on the website

e Website

o 100% accurate recording of game history
o Visualization of each move in a specific game’s history

(@)
(@)




Solution

e Physical Go board that connects to a computer
o Communicates game state
o Emits advice from engine

e Website following live gameplay of the Go game

o Once game is finished, the history can be downloaded
o Game history can also be visualized on the website
o Interfaces the engine to the Go board

e Engine will make suggestions for each move if the player wants




System Specification - The Board
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System Specification - RL Engine
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System Specification - Site
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Block diagram of entire system
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Implementation Plan - Hardware

e Make custom adjustments to physical GO board to mount electrical
components
e Embedded the light sensors output and multiplexers with the arduino to

allow for multi-cycle data retrieval
o Requires automatic configuration for environment
o Edge cases needing to be more thorough for muxes 16-21

Develop software for retrieving and formatting game state data retrieval
Develop LED software for optional advice mid game




Implementation plan - RL

e Randomly initialized deep neural network parameters

e Monte Carlo Tree Simulations used to determine each move
o Simulations are computed with the deep neural network playing the game against itself.

e Parameters adjusted post-game result via gradient descent
o Minimize expected result post-move vs. actual game result
o Maximize similarity between policy vector and search probabilities
e Once trained, weights can be stored locally
o Given input of board state, it will output the best available moves, along with their expected
win percentages

o If queried, can transmit the best available move to be displayed on board




Implementation plan - software/site

e Built on React + Javascript

e Interfacing the board and engine
o  Web serial API to read and send signals to the COM port
o  Serialize signal from board into an input for the go engine
m 361 element array
o Send the output of the engine back to the Arduino board

e Saving game history
o Saved into text file — download onto computer
e Displaying game history
o Import txt file
o Visualization of the board for each move made in the game

m Convert each game state/move into a board visualization
m Each move will also show the engine’'s suggested move




Test, Verification, and Validation

e Hardware
o Initial parts
m Develop circuitry for light sensors and multiplexer performance through breadboarding
o Final parts
m Make dummy physical game states for retrieval
m Push serial requests to LEDs to test correct provided insight

e (Game History Analysis

o Compare engine suggestions to high-level open source engines to ensure strong suggestions
o Use dummy Game state in CSV format for ensuring game state is recorded and displays

e RL
o Ensure engine performs at 50+% record against a 5-Dan level engine available online
o Website

o Jest unit testing for each page in the site to ensure correctness of code




roject Management
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