
Use Case & Application

● The strong competitive scene in Go means there is high demand for training
● Our project does this in two ways:
● Real time over-the-board analysis

○ When two players are playing against each other on our physical board, our systems allows
both players to see the best move in their position, if desired

● Historical Analysis and Suggestions
○ Historical analysis allows players to examine which of their moves were strong and which had

considerably better alternatives.
○ Multiple engine suggestions allows users to explore alternative to their own move even if

there’s was the engine’s top choice.
○ Monte Carlo Tree Simulations allow us to display the expected win probabilities for each of the

candidate moves

Quantitative Design Requirements

● Mention specifics of hardware
○ 100% accurate identification of game tiles
○ Perform a read of game state in less than 50 microseconds
○ Perform light sensor configuration in less than 50 microseconds
○ Communicate a game state to COM port at most 120ms
○ Communicate advice from COM port to arduino at most 300 Microseconds

● RL Engine
○ Strength level of at least Amateur 5-Dan
○ Display the five best candidate moves in each position on the website

● Website
○ 100% accurate recording of game history
○ Visualization of each move in a specific game’s history

Solution

● Physical Go board that connects to a computer
○ Communicates game state
○ Emits advice from engine

● Website following live gameplay of the Go game
○ Once game is finished, the history can be downloaded
○ Game history can also be visualized on the website
○ Interfaces the engine to the Go board

● Engine will make suggestions for each move if the player wants

System Specification - The Board
Key:

Grey boxes- breadboarded components
Blue boxes- representation of one data

 Segment for 1 16:1 mux
Dotted boxes- arduino interface signals

System Specification - RL Engine

System Workflow Training Workflow

System Specification - Site

Block diagram of entire system

Implementation Plan - Hardware

● Make custom adjustments to physical GO board to mount electrical
components

● Embedded the light sensors output and multiplexers with the arduino to
allow for multi-cycle data retrieval
○ Requires automatic configuration for environment
○ Edge cases needing to be more thorough for muxes 16-21

● Develop software for retrieving and formatting game state data retrieval
● Develop LED software for optional advice mid game

Implementation plan - RL

● Randomly initialized deep neural network parameters
● Monte Carlo Tree Simulations used to determine each move

○ Simulations are computed with the deep neural network playing the game against itself.
● Parameters adjusted post-game result via gradient descent

○ Minimize expected result post-move vs. actual game result
○ Maximize similarity between policy vector and search probabilities

● Once trained, weights can be stored locally
○ Given input of board state, it will output the best available moves, along with their expected

win percentages
○ If queried, can transmit the best available move to be displayed on board

Implementation plan - software/site

● Built on React + Javascript
● Interfacing the board and engine

○ Web serial API to read and send signals to the COM port
○ Serialize signal from board into an input for the go engine

■ 361 element array
○ Send the output of the engine back to the Arduino board

● Saving game history
○ Saved into text file → download onto computer

● Displaying game history
○ Import txt file
○ Visualization of the board for each move made in the game

■ Convert each game state/move into a board visualization
■ Each move will also show the engine’s suggested move

Test, Verification, and Validation

● Hardware
○ Initial parts

■ Develop circuitry for light sensors and multiplexer performance through breadboarding
○ Final parts

■ Make dummy physical game states for retrieval
■ Push serial requests to LEDs to test correct provided insight

● Game History Analysis
○ Compare engine suggestions to high-level open source engines to ensure strong suggestions
○ Use dummy Game state in CSV format for ensuring game state is recorded and displays

● RL
○ Ensure engine performs at 50+% record against a 5-Dan level engine available online

● Website
○ Jest unit testing for each page in the site to ensure correctness of code

Project Management

