
18-500 Design Review Report Template - 18 January 2022 Page 1 of 12

Go Learning Buddy
Authors: Nathaniel James, Israel Escobar-Camacho, Hang Shu

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Go Learning Buddy provides a physical
board for Go players to play on, which can be set to
indicate the best move for the current position, along
with a platform for analysis post-game. These features
help players learn and develop strategies for when they
play. The physical Go board reads in the game state
and sends the data to a computer back-end, which sends
back the best move from the engine to be displayed on
the board’s LEDs. Each move is automatically stored,
so that users can analyze their games with the engine
post-game.

Index Terms— Convolutional Neural Network,
Monte Carlo Tree Search, Policy Network, Reinforce-
ment Learning, Value Network

1 INTRODUCTION

Go, also known as Weiqi or Baduk is an ancient game
that has been played for millennia. As such, it has de-
veloped an immense following all around the world, but
especially in Eastern Asia. Despite the games elegance and
simplicity, due to the boards large size (19 x 19) as well
as the ability to capture and replace stones, the amount
of possible positions is incomprehensibly large. Players can
and do train for years, the best of them playing in domestic
and international tournament, followed by millions of fans.
Our project is designed with these trainers in mind.

In order to learn from their training matches, beginning
and intermediate Go players wish to see which moves they
made were strong, and which were blunders. Beyond this,
game notation is difficult and time consuming, as there are
361 different intersections on the board to place stones on,
and each placement comes with the possibility of captures.
Thirdly, in the interest of training, and reaching more ad-
vanced board positions, players in a match might want to
see the best move(s) in the position.

Our product solves all three of these problems at once.
Two players can play against each other on our custom-
built Go board and each move will be registered by sensors
on each intersection. These moves will be transmitted to
our software web application, where a Go engine trained
with self-play reinforcement learning will use Monte Carlo
Tree Search (MCTS) to calculate the best response. These
response will be sent back to the physical board, and the
best move will be displayed by LEDs lighting up on the
proper row and column. Finally, as each move is made, it
will be stored by our web application, so that players can
look at their game history, and see move suggestion from
the engine at each point in their previously played games.

Of course, Go engines are available to play against and

train with online. Players can find opponents online, and
analyze their game history on websites. But, there is no
current way to play against an opponent over-the-board,
while receiving analysis and storing positions for further
analysis later. Such technologies exist for game like Chess,
but none for Go, and that is what our product provides
that no one else can.

2 USE-CASE REQUIREMENTS

The modified Go board is designed with specific use-
case requirements that emphasize precision and respon-
siveness. To fulfill these requirements, it must possess the
capability to accurately identify the black and white tiles
on the board with 100% certainty. Additionally, it needs
to rapidly assess the entire game state, accomplishing this
task in under 50 microseconds.

Furthermore, the Arduino unit to which the Go board
is connected to is expected to transmit the game state to
the COM port within a time frame of less than 120 mil-
liseconds. Similarly, the move suggestions sent from the
COM port to the Arduino should be done in under 300
milliseconds.

The self-play reinforcement learning engine is pro-
grammed to operate at a skill level similar to that of an
amateur 5 dan Go player. It will present the five most
promising moves for any given position on our web appli-
cation. The top-rated move among these will be chosen
and relayed as the recommended move to be displayed on
the physical Go board. For each of the five optimal moves
presented on the web application, a percentage will be pro-
vided to estimate the engine’s belief in the likelihood of
winning the game if that specific move is performed. The
calculation required to find the 5 optimal moves should be
done in less than 3 seconds.

In addition to these features, our web application must
offer a dynamic visualization of live gameplay on the Go
board, as well as the move suggestions generated by the
Go engine. These real-time updates on the web application
should occur in less than 200 milliseconds (not including the
time it takes to generate an output from the Go engine)
and must maintain a precise representation of the ongo-
ing game. Furthermore, the web application must have the
capability to save and retrieve past Go games with 100%
accuracy, ensuring the integrity of historical game data.



18-500 Design Review Report Template - 18 January 2022 Page 2 of 12

Figure 1: Overall system architecture



18-500 Design Review Report Template - 18 January 2022 Page 3 of 12

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

As can be seen in Fig. 1, users will play Go on our
physical board, which reads in the game state through light
sensors covering each of its row-column intersection. This
game state is captured by our Arduino microcontroller, and
is then sent to the computer’s COM port when a user has
clicked ”Finished Move” button on the board. The web
application on the computer then reads in the game state
via web serial api and feeds the game state into the Go
engine. The Go engine will output the 5 best moves move
the position, in order of strength, and the best move will
be sent back to the Arduino via the same COM port. If the
users clicks the ”Advice” button, then 2 LEDs correspond-
ing to row and column of said move, will light up on the
Go board, showing the user which move the engine recom-
mends. When a Go game is finished, the user can click the
end button, which will be conveyed to the web application.
When the game is finished, users can download the game
into their computer’s file system and load it in later into
the web application to view the history.

4 DESIGN REQUIREMENTS

4.1 Hardware

For many of the Hardware design requirements, we
largely focus on performance and latency of our implemen-
tation to fit the needs of competitive players. This means
being 100% accurate for our game state analysis at 50 Mi-
croseconds. Because our routine for light sensor configura-
tion is very similar, we are requiring that our configuration
stage also hold at the same speed before a game starts.

In terms of our communication to our COM port, we
are requiring that we send information, such as the game
stage, as a rate of 120 Microseconds as fast as our serial
communication constrains us. We require for communica-
tion for advice to be in 300 Microseconds as this would
require sending a request through the COM port while re-
ceiving a advice for players usage.

4.2 Software

Since users will directly interact with the web applica-
tion, the design requirements are almost 1:1 with the use
case requirements. For example, to reach the less than 200
milliseconds refresh rate set in the use case requirements,
the rendering of each component in a specific page, along
with all the computations necessary to generate each com-
ponent, must sum to less than 200 milliseconds. To be able
to save and retrieve past Go games with 100% accuracy,
the data structure holding the game states but must be
updated with 100% accuracy as the live gameplay is read
in from the physical Go board.

4.3 RL Engine

Quantitative design requirements are especially impor-
tant for the RL Engine component, as it has quite a few
moving parts, and contributes by far the most latency that
the user will experience. In our use-case requirements we
have stated a 3s limit between move input, and recommen-
dation, as this is short enough to not hinder gameplay, but
long enough to allow for a proper MCTS simulation. As
such, our MCTS must take no longer than 2.5 seconds, as
if it does, even if all other component meet requirements,
the total latency will be above 3 seconds.

The engine strength requirements are well documented
in section II, but to achieve that level we require a MCTS
depth approaching 1600, as this is what top engines use
today, when time and hardware limited.

5 DESIGN TRADE STUDIES

5.1 Hardware

As users make a move at any moment, we need to keep
record of any new piece that is added on the board. This
means that we have 361 sensors to gather data on and send
to the COM port. Our micro controller can only support 16
analog input ports though. This would mean that in order
for us to read each port, we would have to poll 16 sensors
for a given 23 cycles. This polling would mean that we
would select different sections, requiring binary conversion
of the cycle for multiplexer selection inputing.

binary solution←− cycle selection (1)

mux segment i(.sel(Binary solution)) (2)

Depending on embedded software coding for the micro-
controller, the polling during a single cycle can be as fast as
10−6 s (as this is the clock frequency of our Arduino) but
the slowest expected duration would be 50 ∗ 10−6 s. This
analysis would mean that, our testing for our data retrieval
would be as follows

nc ∗ te + tdelay = ttotal (3)

Where nc is the number of cycles, te is time of execution,
tdelay is the button time delay, and ttotal is the total data
retrieval time.

5.2 RL Engine

As mentioned in section IV, the entire MCTS process
must take under 2.5 in order for our analysis to meet timing
requirements. Through experimental observation, we have
determined the time per simulation ts corresponds to the
number of simulated moves m roughly as follows.

ts = 6.9 ∗ 10−6 + .0003m (4)

This means that even assuming a larger depth than re-
quired of 2000 (the requirement is 1600), a full simulation



18-500 Design Review Report Template - 18 January 2022 Page 4 of 12

would take just over .6 seconds giving lots of space for other
processes running long, extra caclulations in particularly
complex board states (i.e. lots of captures) etc.

5.3 Software

Rendering an NxN board has a time complexity of
O(N2) as the rendering is done by reading in a flatten ver-
sion of the NxN board and converting the information into
NxN tiles to be rendered. This means that each time a live
update is sent from the Go board to the web application,
an O(N2) operation is performed.

When loading in a saved game, users can pick which
move to display on the web application. Because the board
is saved in the following state: array of length 361 with
elements being tuples describing (“W” or “B” or “E”, -1 or
the move number) where “W”, “B”, and “E” correspond
to white, black, and empty, when the user selects a spe-
cific move to display, we need to generate the game state
at that specific move. This will be an O(N2) operation as
we need to scan through each element, collecting only the
moves <= the specified move.

Since we are playing Go, N is fixed to 19, so all of these
operations are technically constant, however, these con-
stant multipliers do matter in the real world as we want
latency to be minimal.

6 SYSTEM IMPLEMENTATION

Our system implementation can be split into three
parts: hardware, software, and RL engine. How these sec-
tion interact is shown in Fig. 2. Accordingly, for each
subsection and sub-subsection, the specific system imple-
mentation is given below.

6.1 Hardware

6.1.1 Board Development and Physical Alter-
ations

For our physical board development, we would need to
use an entirely custom hollow board to support our elec-
tronics. This board would be the same length and width
of a conventional GO board (454.5 mm by 424.2 mm),
with the addition more of height so our Arduino can go
in (greater than the standard 151.5 mm).

For this to be possible, we will take advantage of laser
cutters to cut out wood panels and make holes for our light
sensors to detect where pieces are placed. We made a DXF
design file to instruct the laser cutter follow such requests
(Ref. 12.1.1). At this same time, we developed finger joints
for these crates for easy assembly that wouldn’t prolong our
implementation process.

6.1.2 Circuitry Design and Development

When working on circuitry design, we applied light sen-
sors on every hole a piece could be placed with a vector

board connected to these sensors. As mentioned before in
5.1, we would need to have multiple iterations of sensor
polling as there are a limited number of ports. To com-
pensate for this, we would use 16:1 multiplexeres that will
connect to 16 light sensors as shown in Figure 2.

Now that all the light sensors have been designated as-
signed to a 16:1 multiplexer out of the 22 we will be us-
ing. We will need to apply another series of multiplexeres
as, again, we only have 16-analog ports to receive data
through. This is our designation for the multiplexeres:

• Arduino analog 0-11 port

– 16:1 multiplexer components 0-11

∗ light sensors 0-191

• Arduino analog 12-15 port

– 2:1 multiplexer components 0-5

∗ 16:1 multiplexer components 12-22

· light sensors 192-360

We will use the Arduino’s digital pins 0-3 for the 16:1
multiplexeres selection port. In addition, we will use digit
pins 4 for our 2:1 multiplexeres selection port which re-
sult we would like to switch from: either 16:1 multiplexer
components 12-15 results or components 17-22 results.

In addition to the data retrieval that we have designated
and ported, we will have buttons (specified as hexagon
blocks in our figure 2) for users to start and end games, in-
form when a turn has been finished, as well as allow players
to be shown advice mid game. These button/swithes will
be connected to digital pins D33-37.

We have also added 38 LEDs to signify the x and y
coordinate of a preferred move. These LEDs will be con-
nected in series to each digital Arduino pin D5-23 for Y
coordinate and D24-D32 for X coordinates. Each LED will
be connected in series with a resistor to regulate current.

6.1.3 Data Retrieval and User Interfacing

For our arduino in sumation, we will have port desig-
nations of these sorts:

• analog 0-15 data retrieval sensors (inputs)

• digital 0-3 data control 16:1 mux selections (output)

• digital 4 data control 2:1 mux selections (output)

• digital 5-23 Y cooridnate LEDs (output)

• digital 24-32 X coordinate LEDs (output)

• digital 33-37 Button status (inputs)

For our data retrieval, we will be focusing on grabbing
one section of data in 16 cycles. Our software will record 16
data values at a given cycle in a array. All our multiplexer
selections will be initialized at zero and our selection ports
for our 16:1 will increment from 0-15 in binary. Once we
have recorded data from 16 different addresses (totalling
to 255 datas retrieved), our software will then have digital



18-500 Design Review Report Template - 18 January 2022 Page 5 of 12

Figure 2: Overall system implementation diagram



18-500 Design Review Report Template - 18 January 2022 Page 6 of 12

pin 4 as high and go through another 16 cycles to retrieve
data, but only from analog ports 12-15 instead. The analog
pins 12-15 will have a new selection of light sensors selected
now, the other ports are unessential results. Once we have
completed another 16 cycles, our array will be full of all
361 values and ready to send to COMS port as text values.

For our user interface, we will be using a advice but-
tons that will trigger the arduino to light up 2 LEDs (one
on the x coordinate and one on the Y coordinate). The
micro controller will know which ones to turn on by having
a pre loaded move to advise the player on.

We will also have buttons of when a turn has been fin-
ished for micro controller to trigger a data retrieval ac-
tion. We will also have our start/end button trigger pre-
configuration phases where we find the reference value of
our light sensors so we know what values we are to expect
if a piece is placed or not on a spot.

6.2 RL Engine

The Go engine built using self-play reinforcement learn-
ing will be implemented in two parts: training and usage
in analysis. Monte Carlo tree search will be used in both
parts, along with the policy and value networks.

6.2.1 Policy Network

The policy network is a convolutional neural network
(CNN). The input is a length 361 vector (the flattened
board-state), and the output is a length 361 vector of prob-
abilities that sum to 1, meaning that output[0] represents
the relative strength of placing a stone on the intersection
of the 0th row and column (assuming 0-indexing). The ini-
tial weights of this network are determined by a gaussian
distribution with mean 0.

6.2.2 Value Network

The value networks is another CNN. The input is the
same length 361 vector, and the output is a singular scalar
value, representing the players chance of winning from that
position. The initial weights for this network will be trained
via regression, using a data set of board-states pulled from
expert level Go matches, tagged with the outcome. This is
because from section V a full game simulation takes about
2 seconds, so it is faster to pull initial training data from a
huge database where the quality of match is high (higher
quality of matches allows for the network to have a bet-
ter initial grasp of positional strength) than too simulate
enough times to develop a strong value network indepen-
dently.

6.2.3 MCTS

From any given board state, our engine determines the
next move via MCTS. Let us first define a few variables
for simplicity of notation: exploitation score (or average
strength of position) as Q, exploration bonus (score for
adding new information to the tree) as u, board state as

s, action (or move) as a, optimal action as at, number of
states in the MCTS tree as N , the number of states in a
given sub-tree of the MCTS tree as ns, the nth substate
of a state s as sn, the probability said substate is reached
as πn, the policy network serving as a function as p, the
value network serving as a function as v, and the balancing
constant c. We then are trying to maximize the quantity
Q+ u, yielding

at = argmax(Q(s, a) + u(s, a)) (5)

Q(s, a) = (

ns∑
i=1

sn ∗ πn)/ns (6)

u(s, a) = P (s, a) ∗ c
√
ns/(1 +N(s+ a)) (7)

Essentially, the exploitation score increases as more pos-
itive board states are reached, and the exploration score
increases when less explored branches are expanded. The
hyper-parameter balancing constant c is chosen depending
on the amount of exploration desired (exploration is more
encouraged in early game, and less encouraged in the end
game).

From these equations, it is also clear that to maximize,
only the ”strongest” move (from the policy networks point
of view) from each leaf node should be evaluated. The
following steps are repeated a constant number of times
(initially 1600 as this is the industry standard, but if this
is too prohibitive on training / execution time it can be
reduced):

1. Identify the strongest move from each leaf state in
the MCTS tree using the policy network.

2. Using (5), find the state-action pairing with the high-
est score.

3. Add this move to the MCTS tree, and repeat.

After these steps are completed the requisite number of
times, the local policy (i.e. the next move) is determined
by the normalized state visit count over the course of that
particular simulation.

6.2.4 Training Implementation



18-500 Design Review Report Template - 18 January 2022 Page 7 of 12

Figure 3: Training flow

The training driver maintains the current board state,
and sends prompts to the simulator to continue the game
until it reaches completion. The simulator uses the steps
described in 6.1.3 to generate a policy vector from visit
counts. The strongest available move is sent back to the
driver, which updates the board state. The resultant policy
vector is stored with the inputted board state as training
data for the policy vector, and after the simulated game
runs to completion, all board states are tagged with the
outcome, and stored as training data for the value network.

Each simulated game generates upwards of 5000 board
state pairings (as there are no early resignations common
in human vs. human matches), so after each set of 200
training matches, upwards of 1 million training data points
have been generated. The policy network is trained to min-
imize cross-entropic loss between its output and the desired
policy vector given a position (characterized by the MCTS
visit counts generated from that position), and the value
network is trained to minimize mean-squared error between
its scalar output, and the result of the game that reached
a given position (1 for win, 0.5 for draw, 0 for loss).

6.2.5 Analysis Usage

When engine analysis of a position is desired (whether
mid-game or post-game) MCTS is run, using the saved
weights of the policy network and value network. Same as
training, the normalized visit counts represents the policy
vector, but these data points will not be saved for further
training. Once prompted by the back-end, the engine will
send back the policy vector, from which the back-end will
select the strongest move to display (if in-game) or a num-
ber of strong moves to consider (if doing post-game analysis
on the website).

6.3 Software

The web application will be built from React and will
show a visualization of the live gameplay of the Go board
and allow users to visualize saved Go games.

6.3.1 The two pages in the web application

Figure 4: Page 1 of web application

Figure 5: Page 2 of web application

The first page will be the page corresponding to the visu-
alization of the live gameplay over the physical Go board.
This page will allow users to see the Go game on the com-
puter, as well as the 5 moves suggested by the Go engine.
The page will also allow users to save the game by down-
loading a game information file to their computer’s filesys-
tem.

The second page serves to display saved Go games. The
user can pick which Go game to load in as well as which
move to view. For each move, the page will also display the
suggestions made by the Go engine as well as the engine’s



18-500 Design Review Report Template - 18 January 2022 Page 8 of 12

predicted probabilities of winning the game for each of the
moves.

6.3.2 Visualization of the Go board

The Go board will be drawn with CSS and can be bro-
ken down into 2 parts: background and tiles. The back-
ground will simply be a brown square covering the entirety
of the board as the background. The tiles have 9 different
categories: top left, top, top right, middle left, middle, mid-
dle right, bottom left, bottom, and bottom right. The tiles
are broken down into such categories because the tiles are
divs and in order to draw in the black and white go pieces,
the pieces must be centered on each div. Since the pieces
fall on the intersection of lines and not in between, dividing
the tiles into such categories with lines drawn inside each
div and not as the border of each div makes drawing the
go pieces easier.

6.3.3 Saving and loading Go games

In the background of the web application, Go game
states are handled as a 1d array of length 361. This array
only contains the following information: “W”, “B”, “E”,
or white, black, and empty corresponding to each index.
As the game is running, another 1d array will be updated
and this is the array that will eventually be saved. This
array will contain tuples of the following format (“W” or
”B” or ”E”, -1 or move number). When the game is over,
this array will be converted into a string, written to a file,
and then this file can be saved into your computer’s file
system.

In the second page of the web application, you can load
in this saved file and select which move to show. Once a
move is selected, the game state will be reconstructed from
the file by reading in all the moves less than or equal to the
current move number and fed into the Go engine for the
recommended moves.

6.3.4 Interfacing with the microcontroller

To interface the web application with the microcon-
troller, the serialport javascript library will be used. The
web application will connect to a specific device port given
the device path and the device’s baud rate. Data can
be read in from the microcontroller with serialport.pipe()
function, and the engine recommended move can be sent
to the microcontroller with the serialport.write() function.

7 TEST & VALIDATION

7.1 Tests for Hardware

One of the main focues for testing is Latency during our
data retrieval phases, pre-configuration phase, and commu-
nication phase when receiving data and sending it.

For testing latency of data retreval and configuration
phase, we will run Arduino made functions (1) to record

the execution of our data retrieval actions and apply our
previous equation in section 5.

millis() (1)

For testing communication latency, we will post the ex-
ecution time of before and after a transaction has been sent
and received to ensure that there is no lag in communica-
tion that is driven by hardware.

As for accuracy of our hardware, we will put it through
a series, 50-100, different states and make sure each game
state is obtained and processed with no error.

7.2 Tests for RL Engine

Accuracy testing: Our requirement is an engine at or
above the level of amateur 5-Dan, and engines of that level
are able to be played against online. By pitting our en-
gine against those manually, if our engine scores at 50% or
greater, it has met its accuracy requirement.

Latency testing: This is also eminently manually
testable, as the timing constraints are relatively lax at {3}
seconds, almost all of which will be taken up by the MCTS.
If all other components meet their requirements, the MCTS
needs to take {2.5} seconds or lower, and this can be iter-
atively tested across different positions to make sure it is
executing in time.

7.3 Tests for Software

For the web application, unit tests can be used to test
the performance of the site as well as testing the correct-
ness of the code running the website. The testing frame-
work that will be used is Jest: a Javascript test runner.
Unit tests can be written with the Jest framework for each
React component in the web application, and can be writ-
ten in a way to check the contents of the game files saved
to make sure 100% accuracy is maintained. Specific opera-
tions, such as rendering a board state, can be benchmarked
with Jest to make sure the 200 millisecond latency goal is
reached.

8 PROJECT MANAGEMENT

8.1 Schedule

We have organized our schedule according to our roles
as we state in Team Member Responsibilities in the follow-
ing point. We have also include benchmarks, goals on the
top of our scheduler for us to see and understand when we
will do either intergration or expect certain deadlines. The
schedule is shown in Fig. 12.2.

8.2 Team Member Responsibilities

Nathan: Primary responsibility is the training and im-
plementation of the RL engine. Secondary responsibility is
linking the engine with the analysis back-end.



18-500 Design Review Report Template - 18 January 2022 Page 9 of 12

Hang: Primary responsibility is the creation of the game
history analysis front-end and back-end. Secondary respon-
sibility is linking the analysis back-end to the engine and
the physical board.

Israel: Primary responsibility is the creation of the
physical Go board, along with the implementation of sen-
sors to determine where stones are played. Secondary re-
sponsibility of interfacing the physical board data with the
back-end.

8.3 Bill of Materials and Budget

Many of the costs for our project have gone for the sen-
sory of the game state as we require many sensors for this
project. Our micro-controller (Fig. 12.3 Arduino ) is also
of great cost. The schedule is shown in Fig.12.3.

8.4 Risk Mitigation Plans

8.5 Hardware

For our hardware implementation, we have many issues
that could occur with our system overall. One of the risks
we have and are currently taking is developing a board of
our own for this project with the help of external person-
nel. Such risk to take has affected our time line, but if it
continues to affect us further, we plan to shift to having no
custom board but a board with holes. This would expose
our circuitry and even be a user hazard but the function-
ality will still be as intended.

In addition, because we are ordering so many compo-
nents and so many sensors, there is a high chance that
some of these sensors can break in our circuitry due to mis-
connections or too much wiring to be exposed that could
cause short circuiting. We have ordered additional sensors
to take care of possible issues occurring.

Another issues we have taken into consideration is pos-
sible communications problems with the COMs port and
their possible usage on other computers. If our Arduino
can not communicate correctly with the computer, we will
have pre-installed Operating systems on our computers to
ensure that the Arduino has no problems what ever the
software is used.

8.5.1 RL Engine

With regards to the engine there are three main pos-
sible issues. One is if training is taking a prohibitively
long time, even with GPU acceleration, and the second
is that the MCTS itself (which is involved in the training
and will be the main performance bottleneck) is taking too
long. In both cases, the search depth of the MCTS can
be reduced, which will harm the engines strength, but only
marginally. Due to the previously mentioned exploitation
weighting (see equation x), the first steps taken in the tree
search matter much more than the later steps. The third,
more damaging issue would be if the engine doesn’t play
at a high enough level for player improvement, regardless

of cause. In this case, we could use an open-source Go
engine as a replacement. While this would remove the
signal-processing component to our project, it would be
more useful than having a non-working engine.

9 RELATED WORK

One part of our project that is similar to work that has
been done before is related to our Go engine. There have
been historical Go engines such as Goemate and Zen, but
the one that everyone knows today is AlphaGo. AlphaGo
was developed in 2015, and it was a pivotal moment for
Go engines as it was the first Go engine to defeat a world
champion in a 5 game match using novel techniques as it
combined deep neural networks with MCTS. AlphaGo does
not rely on predefined heuristics, but, instead, it starts from
scratch, learning the game solely through self-play. This ap-
proach has enabled AlphaGo to achieve superhuman levels
of play in these games and has had a profound impact on
the field of AI and its applications in various domains.

Relating to our project’s hardware component, a simi-
lar product comparison can be seen with Square Off Pro’s
chess board. Square Off Pro’s chess board not only facil-
itates game recording but also enables players to engage
in chess matches against artificial intelligence on the very
board. Our project, however, aims to provide a similar
service, but for Go.

10 SUMMARY

The goal of our project, Go Learning Buddy, is to pro-
vide a platform for users to learn Go over the board. The
way our project accomplishes this task is to provide users
an easy way of recording and viewing their previous Go
games and to provide suggested moves from our Go en-
gine. Both of these features serve to help users learn and
devise their own strategies to improve upon their gameplay.
These two features are provided via an integrated system of
a physical Go board whose state is read in by light sensors
and an Arduino microcontroller, and a software system on
a computer which takes in the gameplay data and visu-
alizes and saves gameplay. The software system also will
run a Go engine in the background which takes in game
states and outputs what it thinks is the top 5 best moves.
The top rated move can then be sent back to the Arduino
microcontroller which will light up 2 LEDs on the board,
displaying to the users the recommended move.

11 Glossary of Acronyms

• CNN - Convolutional Neural Network

• MCTS - Monte Carlo Tree Search

• RL - Reinforcement Learning

• LED- Light Emiting Diode



18-500 Design Review Report Template - 18 January 2022 Page 10 of 12

12 References

1. Silver, Hubert, et. al., Mastering Chess and Shogi
by Self-Play with a General Reinforcement Learning
Algorithm, 5 Dec. 2017

2. Schrittwieser, Antonoglou, et. al., Mastering Atari,
Go, Chess and Shogi by Planning with aLearned
Model, 21 Feb. 2020

3. Hui, Jonathan, Monte Carlo Tree Search (MCTS) in
AlphaGo Zero, 20 May 2018

4. Fragkiadaki, Katerina, Deep Reinforcement Learn-
ing and Control: AlphaGo, AlphaGoZero, MuZero,
Spring 2022



18-500 Design Review Report Template - 18 January 2022 Page 11 of 12

12.1 Architecture and system description figures (Ref 3)

12.1.1 Physical board implementation



18-500 Design Review Report Template - 18 January 2022 Page 12 of 12

12.2 Milestone and Schedule chart (Ref 8.1)

12.3 Budget and Parts list (Ref 8.3)

.


