Team AO : Mancala BrainBot

Israel Escobar-Camacho
Nathaniel James
Hang Shu

Use Case

e Provide easy access for anyone to play and learn mancala

e Allow users to learn via gameplay history & engine response

e Allow users to find other players over the internet and play against them
e Allow users to train on their own by playing against a high level engines

e Allow users to observe live gameplay of player vs player, player vs computer, or

computer vs computer mancala matches

Use Case Requirements - Engine

e 2-Ply Minimax strategy engine functioning as a basic opponent to users and initial
training opponent to the reinforcement learning model
o Using decision tree to maximize stone differential
e High level, self-play trained, reinforcement learning

o This is the main engine opponent for users of the project to play against

o Must play at or above the level of 95% of human mancala players

Use Case Requirements - Website

e Responsive website

o Max gaming latency of 1 second
e Players can optionally make accounts

o Ranking system among players
e Scalable

o Hold at minimum 10 person to person games at a given time
e Provide a history record of the 5 most recent games for each player
e Intuitive gaming interface

Technical Challenge - Self-Play Reinforcement Learning

e Minimax Strategy Engine
o In order to self-learn effectively, the RL model must have a relatively skillful
opponent to start off against.
o This strategy engine must also be able to know which moves it makes will allow it
to move again.
e Self-Play RL Model
o An efficient platform for the RL model to be able to play against itself many many
times is required for effective training.

Technical Challenge - Backend

e Supporting large scale of games at time

o Shared resource (games could be an array, linkedlist, hashtable, etc)

o Resource needs to be scalable

o Modify this resource efficiently to reach the 1 second latency goal for games
e Storing history of games for each player

o Database required

o Compression algorithm on game history to save space

Technical Challenge - Frontend

e Game interface/site development
o Easy player to player game initialization
e Viewing gameplay
o Multiple users concurrently retrieving data
e Game performance
o Retrieve live changes in game state with 1 second latency

Solution - Reinforcement Learning

e Minimax engine as initial opponent for the RL
o Pruning will be used to minimize the size of the decision tree
e Independent engine/opponent/backend structure
o Server keeps track of whose turn it is
o Each player (be it human or engine) takes in the board state when provided,

and outputs their singular move.

Solution - Backend

e AWS Lambda as the compute platform

o Endpoints for some game logic s Lambda Functions
</>
m Finding a game room, player ranking, ! | =t 5_1
gameplay history Websocket T
o Websocket endpoints for gameplay (as Frontend/ _
. Client App
opposed to polling) e
m Game handling (determining who is the s i 5_| 5_\' & soo
next player, updating game state, etc) HTTP Findgame Getplayer ~ Get game
e APl Gateway room ranking history
o Need to make the endpoints accessible by the
clients |

e DynamoDB DynamoDB

o Player accounts S S :

e Route53 Games Players Game
Manage the domain name for the project history

(@]

Solution - Frontend

e Game interface
o Apply Javascript & React along with Ul components/libraries to provide a
easy to interact user interface
o Allow indicators during games to illustrate legal moves
e Game performance
o Use WebSocket API for fluid interaction between backend<->frontend
e Viewing gameplay
o Develop a Frontend<->Backend protocol

Testing, Verification, Metrics

e Test iterations of engines against each other to ensure later versions are
improving (i.e. newer versions win at higher rates)

e Test final engine version against project team members to ensure it plays at a
higher level than that of the average human. (beats team member >= 95% of
the team)

e Unit test for each lambda function deployed for the backend

e Record response times from client to backend server communication

Division of Labor

Nathan

Hang

Israel

Engines & Reinforcement
Learning

Backend & Infrastructure

Frontend & Gameplay

Build Initial 2-Ply Minimax Engine

Site Hosting Infrastructure

Websocket connection &
backend protocol

Reinforcement Learning Setup

Game Logic & WebSocket
Endpoints

Gaming interface development
for users experience

Overseeing Reinforcement
Learning & Making Adjustments

Player Information Endpoints
(Ratings and Game History)

Display meta-data for games

Engine Testing

Backend Unit Testing

Frontend Unit Testing

Schedulue |

Y c o £ £ G " ' 3 3 iy " N o] Q r T
1 Legend TASK TITLE CTULT RS T 07N R TV TS SV TAE R WEEK (g/18) WEEK (9/25) WEEK (10/2) WEEK (12/4) WEEK (10/26) WEEK (10/23) WEEK (10/30) WEEK (12/6) WEEK (11/13) WEEK (a1/20) WEEK (23/27) WEEK {a2/¢)
2 israel Ramp up on JavaScript and react Israel 9/18/2023 9/23/2023 5
Plan site development for frontend
Nathen back end Israel 9/18/2023 9/23/2023 5 -
4 H Build Decision Tree and Pruning Algo Nathen 9/18/2023 g/23/202:
lang g Alge 9 3 9/23/2023 5 It

Work on initial game logic (making a

move and determing the next player) Hang 9/18/2023 9/20/2023 2 o
6 Set up AWS EC2 with DynamoDB Hang 9/21/2023 g/24/2023 3 |
7 Use tree to build minimax strategy Nathen 9/23/2023 g/28/2023 5 l _
8 Develop essential pages [TBD] Israel 6

° Set up game logic endpoints Hang | -
i Build strategy/gameplay backend ‘
interface ' Nathen | -
u Develop gaming interface Israel | 2023 | |
2 Run initial RL self-play training | Nathen| 10/2/2023 | 10/9/2023 7 _ | |
13 Game connection |Hang | 10/2/2023| 10/8/2023 | 6 |
u Testing Phase 1: botvbotgameplay | lIsrael | 10/8/2023 | 10/13/2023 5 N l | |
ﬁ Test Opensocket APl game state
retrevial Israel | 10/8/2023 10/15/2023 7
16 Examine and test 15t model iteration | Nathen| 10/9/2023| 10/13/2023 4 77 |
17 Account creation |Hang | 10/9/2023 | 10/15/2023 6 |
1 Test Phase 2: player v bot gameplay |lsrael |10/15/2023 10/22/2023| 7 I
19 |2nd self-play training round | Nathen | 10/13/2023 10/20/2023|
| Ranking system |Hang |10/16/2023 10/22/2023|]
Secondary model testing | Nathen | 10/20/2023 10/24/2023| 4 | e
Test Phase 3: player v player gameplay |Israel |10/22/2023 10/28/2023) 6
2 | Game history component additoin |lsrael |10/22/2023 10/28/2023 6 | N
| Gameplay history |Hang |10/23/2023 10/29/2023| 6 | ‘
Research and store model on server Nathen 10/24/2023 10/27/2023| 3 | ‘
2 Build model/server interface Nathen 10/27/2023| 13/3/2023 | 6 | \
Test Phase 4: Game history retrieval ‘
B | and visuals |Israel |10/29/2023 11/4/2023 | 5 \ |
Set up domain name with Routes3 | Hang imlgo/zozy‘ 1/5/2023 | 5 | | |
| 3rd round of training Nathen| 11/3/2023 | 11/10/2023| 7 ‘ ‘
0 | Slack (new features or catch up) | Hang | 11/6/2023 ‘ 11/7/2023 | 1 ‘ |
31 | Final model validation / selection | Nathen w 11/10/2023{ 11/17/2023 | 7 l
32 :SIack (new features or catch up) :Israel | 12/5/2023| 12/3/2023 28 ‘
n Make existing endpoints accessible with‘
API gateway, test with frontend |Hang | 11/8/2023| 12/3/2023 | 25
3 | Slack j Nathen l 11/17/2023| 12/3/2023 16 ‘
33 | | \

