
Team A0 : Mancala BrainBot
Israel Escobar-Camacho
Nathaniel James
Hang Shu

Use Case

● Provide easy access for anyone to play and learn mancala

● Allow users to learn via gameplay history & engine response

● Allow users to find other players over the internet and play against them

● Allow users to train on their own by playing against a high level engines

● Allow users to observe live gameplay of player vs player, player vs computer, or

computer vs computer mancala matches

Use Case Requirements - Engine

● 2-Ply Minimax strategy engine functioning as a basic opponent to users and initial

training opponent to the reinforcement learning model

○ Using decision tree to maximize stone differential

● High level, self-play trained, reinforcement learning

○ This is the main engine opponent for users of the project to play against

○ Must play at or above the level of 95% of human mancala players

Use Case Requirements - Website

● Responsive website
○ Max gaming latency of 1 second

● Players can optionally make accounts
○ Ranking system among players

● Scalable
○ Hold at minimum 10 person to person games at a given time

● Provide a history record of the 5 most recent games for each player
● Intuitive gaming interface

Technical Challenge - Self-Play Reinforcement Learning

● Minimax Strategy Engine
○ In order to self-learn effectively, the RL model must have a relatively skillful

opponent to start off against.
○ This strategy engine must also be able to know which moves it makes will allow it

to move again.
● Self-Play RL Model

○ An efficient platform for the RL model to be able to play against itself many many
times is required for effective training.

Technical Challenge - Backend

● Supporting large scale of games at time
○ Shared resource (games could be an array, linkedlist, hashtable, etc)
○ Resource needs to be scalable
○ Modify this resource efficiently to reach the 1 second latency goal for games

● Storing history of games for each player
○ Database required
○ Compression algorithm on game history to save space

Technical Challenge - Frontend

● Game interface/site development
○ Easy player to player game initialization

● Viewing gameplay
○ Multiple users concurrently retrieving data

● Game performance
○ Retrieve live changes in game state with 1 second latency

Solution - Reinforcement Learning

● Minimax engine as initial opponent for the RL

○ Pruning will be used to minimize the size of the decision tree

● Independent engine/opponent/backend structure

○ Server keeps track of whose turn it is

○ Each player (be it human or engine) takes in the board state when provided,

and outputs their singular move.

Solution - Backend

● AWS Lambda as the compute platform
○ Endpoints for some game logic

■ Finding a game room, player ranking,
gameplay history

○ Websocket endpoints for gameplay (as
opposed to polling)

■ Game handling (determining who is the
next player, updating game state, etc)

● API Gateway
○ Need to make the endpoints accessible by the

clients
● DynamoDB

○ Player accounts
○ Game history

● Route53
○ Manage the domain name for the project

Frontend/
Client App

Websocket

HTTP Find game
room

Gameplay

Get player
ranking

Get game
history

Games Players Game
history

Lambda Functions

DynamoDB

Solution - Frontend

● Game interface
○ Apply Javascript & React along with UI components/libraries to provide a

easy to interact user interface
○ Allow indicators during games to illustrate legal moves

● Game performance
○ Use WebSocket API for fluid interaction between backend<->frontend

● Viewing gameplay
○ Develop a Frontend<->Backend protocol

Testing, Verification, Metrics

● Test iterations of engines against each other to ensure later versions are
improving (i.e. newer versions win at higher rates)

● Test final engine version against project team members to ensure it plays at a
higher level than that of the average human. (beats team member >= 95% of
the team)

● Unit test for each lambda function deployed for the backend
● Record response times from client to backend server communication

Division of Labor
Nathan Hang Israel

Engines & Reinforcement
Learning

Backend & Infrastructure Frontend & Gameplay

Build Initial 2-Ply Minimax Engine Site Hosting Infrastructure Websocket connection &
backend protocol

Reinforcement Learning Setup Game Logic & WebSocket
Endpoints

Gaming interface development
for users experience

Overseeing Reinforcement
Learning & Making Adjustments

Player Information Endpoints
(Ratings and Game History)

Display meta-data for games

Engine Testing Backend Unit Testing Frontend Unit Testing

Schedule

