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Use Case

e Provide easy access for anyone to play and learn mancala

e Allow users to learn via gameplay history & engine response

e Allow users to find other players over the internet and play against them
e Allow users to train on their own by playing against a high level engines

e Allow users to observe live gameplay of player vs player, player vs computer, or

computer vs computer mancala matches




Use Case Requirements - Engine

e 2-Ply Minimax strategy engine functioning as a basic opponent to users and initial
training opponent to the reinforcement learning model
o Using decision tree to maximize stone differential
e High level, self-play trained, reinforcement learning

o This is the main engine opponent for users of the project to play against

o Must play at or above the level of 95% of human mancala players




Use Case Requirements - Website

e Responsive website

o Max gaming latency of 1 second
e Players can optionally make accounts

o Ranking system among players
e Scalable

o Hold at minimum 10 person to person games at a given time
e Provide a history record of the 5 most recent games for each player
e Intuitive gaming interface




Technical Challenge - Self-Play Reinforcement Learning

e Minimax Strategy Engine
o In order to self-learn effectively, the RL model must have a relatively skillful
opponent to start off against.
o This strategy engine must also be able to know which moves it makes will allow it
to move again.
e Self-Play RL Model
o An efficient platform for the RL model to be able to play against itself many many
times is required for effective training.




Technical Challenge - Backend

e Supporting large scale of games at time

o Shared resource (games could be an array, linkedlist, hashtable, etc)

o Resource needs to be scalable

o Modify this resource efficiently to reach the 1 second latency goal for games
e Storing history of games for each player

o Database required

o Compression algorithm on game history to save space




Technical Challenge - Frontend

e Game interface/site development
o Easy player to player game initialization
e Viewing gameplay
o Multiple users concurrently retrieving data
e Game performance
o Retrieve live changes in game state with 1 second latency




Solution - Reinforcement Learning

e Minimax engine as initial opponent for the RL
o Pruning will be used to minimize the size of the decision tree
e Independent engine/opponent/backend structure
o Server keeps track of whose turn it is
o Each player (be it human or engine) takes in the board state when provided,

and outputs their singular move.




Solution - Backend

e AWS Lambda as the compute platform
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Solution - Frontend

e Game interface
o Apply Javascript & React along with Ul components/libraries to provide a
easy to interact user interface
o Allow indicators during games to illustrate legal moves
e Game performance
o Use WebSocket API for fluid interaction between backend<->frontend
e Viewing gameplay
o Develop a Frontend<->Backend protocol




Testing, Verification, Metrics

e Test iterations of engines against each other to ensure later versions are
improving (i.e. newer versions win at higher rates)

e Test final engine version against project team members to ensure it plays at a
higher level than that of the average human. (beats team member >= 95% of
the team)

e Unit test for each lambda function deployed for the backend

e Record response times from client to backend server communication




Division of Labor

Nathan

Hang

Israel

Engines & Reinforcement
Learning

Backend & Infrastructure

Frontend & Gameplay

Build Initial 2-Ply Minimax Engine

Site Hosting Infrastructure

Websocket connection &
backend protocol

Reinforcement Learning Setup

Game Logic & WebSocket
Endpoints

Gaming interface development
for users experience

Overseeing Reinforcement
Learning & Making Adjustments

Player Information Endpoints
(Ratings and Game History)

Display meta-data for games

Engine Testing

Backend Unit Testing

Frontend Unit Testing
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