
1
18-500 Design Project Report: ScottySeat 14/10/22

ScottySeat
Aditi Raghavan, Mehar Goli, Chen Shen

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract— Students waste time searching for study spaces, and
the goal of ScottySeat is to streamline this process. Our solution is
to capture images of study spaces and update a web application in
real-time to reflect the seat availability in a given room. To
accomplish this, we will be using a custom-trained YOLOv5 model
to detect people and chairs.

Index Terms—Computer vision, object detection, single board
computer

I. INTRODUCTION
Campus study spaces are a crucial commodity for

many students at CMU. Whether it be for individual or group
work - campus provides a reliable, safe location for students to
work at. However, CMU has limited study space and free spots
are hard to come by.

Looking at campus itself, popular areas tend to fill up
quickly while smaller spots aren’t widely known. With the size
and complexity of CMU’s campus, finding a single free space
can take upwards of 30-40 minutes and even longer for group
scenarios. Currently, classrooms/meeting rooms can be
reserved but this doesn’t account for open study areas that make
up the majority of student study areas. Room reservations are
usually restricted to organizations or students of the school
where the room is located. Reservations also fill up quickly and
don’t allow for time flexibility to book closer to study time.

Our project seeks to ease the struggle in and reduce the
time taken in finding campus study spots by providing students
with easily accessible, real-time information on study spot
availability. To do this, we will build a web platform showing
digital maps of study areas. Each study area will have its own
map indicating study spot locations and availability. Real-time
camera footage of the areas will be monitored using computer
vision to regularly update the site as well.

II. USE-CASE REQUIREMENTS
To meet our use case, we have created requirements for

numerical accuracy, speed and spatial accuracy. Numerical
accuracy in our use-case relates to the number of seats available
in a study space. This is arguably the most important use-case
requirement as low numerical accuracy can misguide users
meaning that there would be no speed up in finding a study spot.
Keeping this in mind, we aimed to have 90% accuracy in
detecting available seats. Our second use-case requirement

relates to the update speed from capturing an image to the
results being displayed on our webpage. For our solution to be
useful, the data provided to the user should reflect the study
rooms current capacity. After polling some potential end users
and taking their feedback, we have decided that changes in seat
availability must be reflected within 45 seconds of them
occurring. Our last requirement is regarding the user interface.
For users to be able to use our UI with ease, the seat mapping
needs to be easy to interpret. This means that the seat mapping
should closely reflect the positions of the real positions.
Initially, this spatial accuracy use-case requirement was
quantified as being able to map chair positions to seating charts
with a 20% error margin. This metric will be measured by
comparing the seat mapping with a camera with an overhead
view, is needed.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Our system can be mainly divided into 3 subsystems,

including the hardware module, the computer vision module,
and the web application (UI) module, as shown in the diagram
below (Figure 1).

The sensing module consists mainly of TedGem USB
cameras. Such cameras will be deployed one for each study
space being monitored. Its main purpose is to provide input for
the CV algorithm for detection, and also provide training and
testing data that would be used for verification.
 Within a room, we have a wall-mounted camera,
angle down at the room floor angle camera, we will sample a
frame every few seconds, preprocess it, run it through a custom
trained YOLOv5 object detection mode. We will take 15
samples per update, and take the highest confidence samples,
post process them and update the web application. Further
details have been provided in the graph, or explained later.

IV. DESIGN REQUIREMENTS
To achieve our first use-case requirement, we will

need a single high quality camera per room and must have a
highly accurate object detection algorithm.

For the camera footage, we require 1080p resolution
to be able to accurately detect objects and their edges. The
camera needs to have a large field of view to be and be placed
correctly so that it captures the entirety of the room in a single
shot. Our set-up must work in a variety of lighting conditions
so the camera should have automated exposure adjustment.

To achieve our first use-case requirement, the object
detection algorithm must be able to identify chairs and people

2
18-500 Design Project Report: ScottySeat 14/10/22

sitting on chairs with 90% accuracy. To aid with achieving this
accuracy, we sample at least 15 times per 45 second update
(overall 20 times per minute) and use the detected objects with
the highest confidence. If the highest confidence detected in an
image is less than 80% we will ignore the images taken in that
minute. The algorithm will need to be able to also discern
clearly between nearby objects with high accuracy and will also
need to have very high accuracy on occluded objects.

To achieve our second-use case requirement, speed,
we will need a relatively fast algorithm which does not
compromise accuracy for speed. The website should
automatically refresh every 45 seconds and we are giving 1
second for final changes (storing information to the database)
to be reflected on the page. Given that we have a 44 seconds
window between a change occurring and an update, and aim to
have 20 samples/min, we will have ~14 samples between the
change and the update. This means the algorithm needs to be
able to run and complete within 3 seconds.

To achieve our spatial accuracy requirement, we will
need to carry out perception correction as a final post processing
step before displaying the maps to users. Specifically, the
positions of the detected objects will be adjusted from the
angled view of the camera to a top-down view.

V. DESIGN TRADE STUDIES

A. Hardware
The motivation for using hardware, instead of

software for running our computer vision model was due to
privacy. Our project captures images in a public space, and to
help ensure privacy of the users, we thought it was best to use
a single board computer. This way images will not have to be
sent over the network, reducing the possibility of hacking, and
the images can be easily deleted after use. The only data being
sent over the network will be the locations of chairs and tables
and so users can safely participate in our project while
remaining anonymous.
 The choice of using a single board computer (SBC)
compared to an FPGA was that it would be much easier to scale
an SBC model versus an FPGA model. Additionally,
networking on an FPGA is non-trivial and translating the
computer vision models would be out of the scope for the given
project timeline.

The main difference between the NVIDIA Jetson
Nano 2GB Developer Kit and the Raspberry Pi is their compute
power. Since we intended on using machine learning to identify
objects, a larger GPU is preferred as it is able to parallelize
many of the matrix operations needed in machine learning.
While analyzing YOLOv5, researchers found that the RPi, out
of the box had an FPS of 1.6 FPS while the Jetson Nano had an
FPS of 5 FPS [1]. Considering that we are using 2 cameras for
our MVP (one camera per room), and have some preprocessing
and postprocessing to do on our input image, using the RPi
would possibly become a limiting factor in our speed
requirement. A solution to this might be to use a smaller YOLO
model but scaling down the algorithm results in a reduced
accuracy according to benchmarks released by Ultralytics [2].
Another possibility was to use the RPi along with the Intel
Neural Compute Stick 2. According to Feng et al., the RPi +

NCS2 outperforms the Jetson Nano on both mean confidence
and FPS, when using YOLOv3 [3]. However, the Intel NCS2 is
out of stock, and for our project timeline, we needed our
hardware as soon as possible.

B. Computer Vision Model
○ The motivation behind computer vision as

opposed to a physical method such as seat sensors was
scalability. Scalability is simpler with computer vision, by
adding a few new cameras to a space rather than individual
sensors to every chair in the area.

○ The main goal of our computer vision model
is to detect chairs, tables and people in a given room from a
given image. Chairs will be oriented in different positions and
will likely be partially or mostly occluded by a table or a person.
Taking up to 15 images per 45 second update period, images
will be sampled every three seconds and the model will also run
on hardware. As such some requirements we had for a given
CV model were as follows:

● Classify and locate multiple objects in an image
● Scalable to more than one object class
● Can run in under 2-3 seconds
● Can handle object occlusion and orientation variability
● Optimally, have the highest starting accuracy with

lowest resource usage.
○ Overall, we considered a variety of object

detection architectures: namely neural network-based methods
(Faster R-CNN, Yolo) and feature detection-based methods
(BRIEF, SIFT, ORB). All the architectures noted can be
implemented in Python through the use of common libraries
and thus can run on the Jetson Nano. Specifically, the
underlying libraries used are OpenCV (BRIEF/SIFT/ORB
feature descriptors are built in), and Tensorflow/Pytorch for
neural network models. They all also run relatively quickly - in
close to real time. .

From there, the feature detection methods tend to have
the lowest resource usage but also come with a number of risk
areas due to how object detection is ultimately done. With
feature detectors such as BRIEF/SIFT/ORB - object detection
is generally performed through image matching [5]. The feature
descriptors detect various ‘features’ in a source image (i.e.
corner points, areas of high contrast and variability) and a
thresholding model such as KNN is used to match those points
to an object in a test image. Thus, it operates essentially as a
one to one image matching architecture. This makes it difficult
for these methods to account for object occlusion if not enough
points are present. In our use case especially, chairs can’t be
moved by a user to help object detection so the system needs to
account for heavy object occlusion. The system also becomes
difficult to scale to multiple object classes. Different sets of
descriptors and models for each object class, that is for different
types of tables, different chair designs will be needed. Lastly,
image matching for object detection also makes this method
unideal for person detection as well, a separate system will be
needed to track people in the scene.

In contrast, the neural networks were pre-trained by
the developers to work on multiple object classes with multiple
objects per image. For example, YOLO in particular was
pretrained on the COCO dataset to detect 80 different object

Commented [1]: Prof: Why 90%, (basically there's a
why question for every sample/accuracy metric in this
section).
Also, 'what is hance level, split into false/true positives'

Self Note: We need to explain the relation btwn 20
times vs 10-15 samples

Commented [2]: Add notes on security

Commented [3R2]: @akraghav@andrew.cmu.edu

3
18-500 Design Project Report: ScottySeat 14/10/22

classes. In testing we can see, out-of-the-box YOLO is able to
detect tables, chairs, people and even some objects such as the
TV and a backpack as well. We can also note that YOLO is able
to detect the chairs despite heavy occlusion.

Figure 2: Sample Yolov5L output

It is possible to build a feature descriptor-based

architecture to work for our use case, however with the issues
that will need to be accounted for and the time that will be taken
for training of either system type - a neural network based
model is preferable for our case.

Of Faster-RCNN, YOLO - Faster R-CNN is noted to
have the highest precision and slowest time. The creators of
YOLO themselves found that a Faster R-CNN with VGG-16
architecture achieved a mAP of 73.2% with a speed of 7 frames
per second as opposed to standard YOLO achieving 63.4 mAP
and 45 FPS (both are when tested on COCO2007 - a CV
dataset) [6]. Here mAP refers to Mean Average Precision, here
it tells us the system with the highest true positive to false
positive ratio. To see whether Faster R-CNN or YOLO will
prove more accurate for our use case. We tested Facebook’s
Detectron 2 Faster R-CNN architecture and Ultralytic’s
YOLOv5L architecture locally using 6 iPhone test images of
our study space. Each image showed a single human, one table
and 7 chairs. Testing showed, YOLO was able to accurately
detect more objects than Faster R-CNN even with lower
resource use, though Faster R-CNN did generally seem to have
higher confidence in its results through a qualitative analysis.
Through this we determined we will finally use YOLOv5L for
our project.

i. Table 1: Detection Testing off Faster RCNN vs Yolov5L

Architecture
Human
Detected?

Table
Detected?

Chairs
Detected

Objects
Detected

Faster RCNN +
ResNet 50 6/6 6/6 18/42 30/54

Faster RCNN + 6/6 6/6 25/42 31/54

ResNext 101

Yolov5L 6/6 6/6 39/42 51/54

VI. SYSTEM IMPLEMENTATION

A. Subsystem A - Computer Vision
The computer vision pipeline comprises three

sections: preprocessing, CV model and postprocessing (sample
consolidation), denoted with bold text for the start of each
section. Overall, the system will take in an image sampled from
the camera feed and output list of object detected and
confidence level for each object, and coordinates for a bounding
box around each box.

Preprocessing: Initially, we were converting our image to
grayscale and doing contrast limited adaptive histogram
equalization (CLAHE). CLAHE was used as it equalizes the
contrast within the image [6]. As you can see in Figure 4, the
foreground and background are both dark with low contrast so
applying equalization seemed like a good way to combat this
[7] . That being said, we found that it was leading to lower recall
on our custom CV model. After analyzing some of the missing
objects, we suspected that the objects were being missed as they
had low contrast compared to nearby objects, and since we were
converting to grayscale discriminating features like chair color
was being lost. To combat this, we decided to stay in RGB and
increase brightness and contrast using convertScaleAbs [8] CV
function. To increase distinguishability, we sharpened the
image using a simple kernel for convolution [9].

■ Figure 3: Initial webcam test image

Commented [4]: Fro trade studies: Section C on
webapp?

4
18-500 Design Project Report: ScottySeat 14/10/22

■ Figure 4: Preprocessed webcam image

CV Model: The sampled image is then run through a custom-
trained YOLOv5l model to retrieve bounding boxes for objects
detected, the classes of detections and the confidence level of
the classifications. Figure 5 shows a visual representation of the
data that will be outputted - except through the form of a list.

Figure 5: Sample YOLOv5 output using iPhone test image

 Out-of-the-box, our base Yolov5l model was pre-
trained by Ultralytics suign the 80-class COCO image dataset.
We noted that we only required 4 out of the 80 classes for our
use case: tables, chairs, people, backpacks and that the starting
model had many false positives and low confidence detections
in these classes. For these two reasons, we initially decided to
replace the output mapping with just our four target classes and
to use transfer learning to account for both these issues. For
transfer learning, we wanted to train first on another existing
dataset such as ImageNet to decrease occurrences of false
positives and then a custom dataset to increase classification
confidence.

To prepare the custom image dataset, we took pictures

of the study room with people and chairs in various
configurations and orientations, to capture as many real life
scenarios as possible. To take these pictures, we used an angled
camera to simulate the actual camera setup the model will have
to operate with. All the collected data was labeled using
Roboflow. Data augmentation was then used to artificially
diversify and increase the dataset size by 7x.

For the existing dataset, we decided against ImageNet
after finding it had many person-adjacent classes (ie hand, man,
woman etc) rather than one ‘person’ class. Instead, we used
Pascal VOC and the OpenImages dataset - both common for
object detection with chairs. Both datasets were stripped of any
images without the target 4 classes and were relabelled with the
custom 4-class mapping as well.

While training, we found that training on existing
datasets had limited impact on final training results. The types
of background and settings shown in the existing datasets were
too general to specify to our use case. As the model was already
pretrained, what was needed was the specificity given by the
custom dataset. We found that final training accuracy with the
custom dataset remained the same with and without initial
existing dataset training and that images trained with existing
dataset had worse detection accuracy.

One other change we made was to switch from our
custom 4-class mapping to the 80-class mapping. Initially, we
found that the 4-class mapping was hindered by the backpack
class for cases where a chair was completely covered by a
backpack. Switching then to a 3-class mapping, while the model
was able to reach high precision and recall metrics with the
mapping, live testing showed many cases of high confidence,
false positives that sampling could not account for. As the target
classes were already part of the pre-trained 80-class mapping,
we decided to switch back to this mapping to take advantage of
YOLOv5L’s existing accuracy. Once again training on the
custom dataset with this mapping scheme, the occurrence of
high confidence, false positives was greatly reduced while
retaining high precision and recall metrics.

Full details on training accuracy metrics and outcomes
are discussed in object accuracy testing.

Post-Processing: From here the post-processing of the CV
pipeline is centered around consolidating the samples taken
since the last update. The inference output of each image will
be temporarily stored until 15 samples have been taken.
Looking at our sample output we found that we were prone to
undercounting chairs, specifically when people were sitting on
them. The motivation behind this secondary step is that while
we do want high confidence detections, objects are sometimes
covered between frames - so we want to account for cases of
non-detection due to excess occlusion as well. That being said,
minute movements, within the span of 10 seconds, would often
lead to a desirable result, a correctly sized bounding box above
our confidence threshold. Keeping this in mind, we created a
sampling algorithm that gave images with greater number of
chairs higher priority. Our sampling algorithm also took into
account the mean confidence of objects of interest.

5
18-500 Design Project Report: ScottySeat 14/10/22

 Our algorithm removes all the objects in the image
with a confidence of less than 0.5. It then filters out extraneous
objects like backpacks and phones, and calculates the mean
confidence of these images.

B. Subsystem B - Related Hardware Components
 In our ideal scalable system, we have 1 Jetson Nano
for every 2 rooms. The Jetson Nano takes in 1 video feed per
room and runs an instance of the CV module per room.

A 1080p video camera with a large field of view is
used to capture images used for inference. We chose a video
camera with autofocus and auto brightness to make our
preprocessing steps easier. The camera is placed on one wall of
the room and angled down toward the table.

Inference is done using TensorRT to mitigate issues
regarding memory usage and bandwidth which arises when
using PyTorch for inference. We observed that loading large
models on PyTorch on the Jetson maxed out the physical
memory available. This also affected the time it took to load,
which was approximately 20 seconds.

Additionally, one of these Jetsons will host our web
server. In our MVP, we successfully had the Jetson running
inference on 2 rooms while simultaneously running the web
server. To test that our HTTP requests were working we hosted
our web server on a different IP address and it worked as
expected.

C. Subsystem C - User Interface
 In order for the output of the CV algorithm to be
displayed in a user-friendly way, a web application interface
has been created. It consists of 2 parts: data post-processing and
web application. Different from our last report, the data post-
processing portion has been moved out of the Web server, and
been put in the Jetson nano. This lightens the burden of the web
server, and ensures the scalability of the project.

Data Post-Processing Post-processing is to ensure that the raw
data outputted by the CV module is interpreted in a way so that
the web application could use it directly and display it to the
user. There are 2 main parts of the process: Perspective
adjustment and occupancy calculation

1. Perspective Adjustment

This process is due to the fact that we chose to mount
the camera in an angle instead of mounting it
overhead. The process is mainly divided into 2 parts:
X coordinate adjustment, and Y coordinate
adjustment.

In a typical perspective adjustment function, such as
cv.getPerspectiveTransform or cv.findHomography,
the basic input we need is the 4 points of the
quadrilateral shape we want to warp. In our case, the
most ideal way is to gain the corners of the ground,
such that we can warp the ground and create an
overhead view of the room. However, due to how the
camera is placed, it is difficult to see the lower corners

of the room. Additionally, there are also quite a few
difficulties.

First, it could be the case that there is no upper corner,
which means that the ground could be extending to
areas outside of the camera. Secondly, the chairs could
be blocking the corners. Thirdly, cropping to the
ground is not good enough, because chairs have
heights, thus if we only crop the quadrilateral shape
according to the 4 corners defined above, then we
might crop out some chairs.

Figure 6: Area of perspective adjustment application

Because of the difficulties above, we decided we could
instead apply perspective transform to the image with
the definition that the lower 2 corners are the 2 corners
of the image, while the upper 2 corners are on the
upper edge of the image, but with a shorter length. In
other words, we are applying a perspective adjustment
to a trapezoid. We have tried a few different methods
to gain the ratio of the upper and lower vertice, one
way is to apply canny edge detection on a the table to
simulate the ratio or angle of the camera:

We first apply image pre-processing on the image,
such as increasing contrast, or applying a bilateral
filter to the image to prepare for edge detection. After
applying Canny Edge Detection, we select for the edge
with the longest length, and ensure that it is a closed
shape. We then apply cv.approxPolyDP so that the
shape of the table is simplified to a quadrilateral shape.
Then we select for the 4 corners of the shape, and thus
we acquire the ratio of the upper and lower edge.

However, besides the difficulty explained previously,
this method requires a high contrast background with
the table, a good lighting condition, and also, most
importantly, that there are little objects around the
table, which is rarely the case in our situation. An
example of the longest outline we get by running the
upper processes - best result after playing around with
the values and parameters in image preprocessing:

6
18-500 Design Project Report: ScottySeat 14/10/22

Figure 7: sample output of edge detection of longest edge

As shown above, the method above is unstable, and
varies greatly from different ways of object placement
and also lighting conditions. While there are other
solutions such as image segmentation, for example,
Detectron, it is not only an overkill to our application
and greatly increases processing time , it also requires
data to train on for it to function on ground.

Our Solution: For the X-coordinates, the idea is pretty
straightforward; we simply stretch the upper vertices
to the side to fill the image. This is inline with the
majority of perspective adjustment functions.

For the Y-coordinates, however, we adopt the idea of
“Psuedodepth”,

Figure 8: Pseudodepth versus depth graph

where we assume that we are dealing with a 2d plane,
and, according to the fact that:

Figure 9: real center point overhead and at angle

In an angled view, P is still the real center of the
“room”, and the y coordinate of P is dependent on the

ratio of the upper and lower vertices. Thus, applying
those conditions, we can solve for an equation with y
respective to the ratio of the upper and lower vertice.
This ratio is the only variable, and greatly affects how
accurate the algorithm is.

There is one problem with this algorithm, which is that
any chair outside of the “trapezoid” would be
excluded, thus, to fix this, we added one more step to
locate anything outside of the bounds to be on the edge
of the map.

Another problem is that after adjustment, and even
before adjustment, the center of some of the chairs are
located inside of the table. Thus, there is one more step
to move each chair outside of the table. The way we
are moving it, in other words, whether we are moving
it upwards or downwards, leftwards or rightwards,
depends on the closest edge of the table it is to.

There is also the problem that, since we are only
adjustment for the center point, this is fine in the case
of a chair, however, in the case of a table, since the
width and height of the table also needs to be adjusted,
we need to apply the perspective adjustment function
to top right, bottom right, and bottom left points
respectively.

Figure 10: Table before and after perspective adjustment

As shown above, the yolo output bounding box is not
a perfect outline of the table before adjustment: for the
upper two corners, it is significantly off in terms of x-
coordinates. Thus, as we can see after adjustment, the
width of the table is actually the difference between
left and right bottom x coordinate value, but height is
the difference between the right bottom and top y
coordinate value. Errors occurred before making this
change with the map showing a really “fat” and
shifting to the right table, due to using only the top
right and bottom left xy coordinates.

2. Occupancy Calculation

The problem with defining “occupied”, is that we can
not differentiate between a standing and a sitting
person. Thus, for a person to be defined as “sitting on
a chair”, we have to have a way to define that the
person is “close enough”. Since the conditions of the

7
18-500 Design Project Report: ScottySeat 14/10/22

camera differ room by room, we can not depend on the
pixel values of the image. This is a problem that we
have to deal with throughout this project.

In calculating occupancy, we first find the closest seat
to each person, with the coordinates after perspective
adjustment. This ensures that a person can only sit on
one chair. After that, we check whether or not the
bounding box of the chair and person overlap, and this
is our definition of “close enough”, or that the person
is sitting on the chair.

Thus, error will occur if a person is standing next to a
chair, as the system will reckon it as sitting on the
chair.

Backend: The framework we chose is Django. There is not
much difference between different frameworks, such as
FLASK, an alternative to Django, thus we chose Django based
on familiarity. Additionally, since we are transferring Data via
JSON format, data will be stored in the form of a JSON file.

The server is now much simpler will be only be responsible for
2 things , after the systematic adjustment mentioned above:
handle information sent by jetsons, and handle information
requests sent by users.

Figure 11: Web Application Server Diagram

The room name will be provided when the information is sent
to the server. This allows for the server to update information
only relevant to that room. All room information will be sent
back to the user, so that the user does not have to send a request
to the server to acquire information on that specific room
whenever the user switches rooms, also, this allows for the user
to search/order the rooms according to a specific value without
sending a request to the server for the server to do it. This is a
trade off between scalability/speed and memory.

Frontend: The frontend, namely the website including a html
and css file, and a javascript file that , on loading, will send a
request to the server side requesting the information of a certain
room with a “GET” request. This is different from before as
now the frontend will be requesting information of all rooms,
instead of just that one room the website is looking at. All the
information on the page will be updated with
“AJAX”(Asynchronous JavaScript And XML).

In the javascript file, there are mainly 3 functions: First, one that
sends a request to the server, one that updates the map, and one
that reorders the roomlist according to the ordering.

The send request function will be called when the page is
initialized, and then called every 45 seconds. When the server
responds with all the data, the javascript will save the JSON
data, and call the other 2 functions, namely update map and
update roomlist. The update map function draws the map
according to the coordinates of the seats and chairs, while the
update roomlist function refreshes the room lists.

The update map function will also be called when another room
in the room list is clicked, showing the map of that specific
room, with information acquired from the locally saved JSON
response.

The update room list function will also be called when the order
function is called, as we reorder the rooms depending on what
the ordering parameter is(number of seats/occupied
seats/available seats etc.)

Figure 12: Web Application Layout

VII. TEST, VERIFICATION AND VALIDATION

A. Tests for Use- Case: Object Accuracy
 Table 6 at the end of the report shows comprehensive
metrics across all training for the Yolov5L model. The overall
goal metric was to achieve an overall accuracy of 90%.

Through testing, we found that transfer learning
becomes optimized when freezing 22 layers or the backbone of
the YOLO architecture - with both producing the precision
accuracy (mAP 0.5) after 50 epochs of training (0.69 and 0.70).
Removing the backpack class once again produced a jump in
accuracy of almost 17% when freezing 22 layers and 27% when
freezing the backbone.

However this also resulted in high confidence false
positives during live testing. Training was redone by including
on PASCAL VOC dataset training to combat this, however
this resulted in a drop in mAP accuracy to 0.77. The Pascal
VOC dataset was too general of dataset to effectively train out
high confidence, false positives while also retaining overall
accuracy.

Commented [5]: FINAL REPORT: The Test,
Verification and Validation section must be updated to
include your testing
results as well as QUANTITATIVE verification of your
design requirements, comparing
test results with your design analysis when appropriate,
and QUANTITATIVE validation
of your use-case requirements. Include discussion and
assessment of the results that
explains the relation between the results and the
design requirements and use-case
requirements, especially in cases where aspects of the
requirements were not fully met.

8
18-500 Design Project Report: ScottySeat 14/10/22

Figure 13: Sample Output after PASCAL VOC Training

One final change made was to switch from the custom

class mapping to the original pretrained 80-class mapping.
Doing this switch preserved the existing sensitivity of the model
against false positives while also increasing detection
confidence of the target classes: chairs, tables, people. Training
just on the custom dataset with this mapping achieved the
highest overall accuracy at 0.909 while also preventing high,
confidence false positives in live testing.

Figure 14: Sample Output after Custom Training with COCO

Class Mapping

B. Tests for Use- Case: Occupancy Accuracy

Table 2: Occupancy Testing
Room
Numbe
r

Predicted
Occupanc
y

True
Occupancy

Predicted
Seatcount

True Seatcount

A 1/8 1/8 8 8

B 0/8 0/8 8 8

C 2/8 1/8 8 8

D 4/8 3/8 8 8

E 2/8 2/8 8 8

F 6/8 4/8 8 8

G 4/8 4/8 8 8

H 0/8 0/8 8 8

I 2/7 0/7 7 7

J 0/8 0/8 8 8

As shown in the graph above, among the 10 images we have
run, out of 79 chairs, the occupancy of 7 chairs was incorrectly
noted. The accuracy this turns out to be around 91.1%. Having
a deeper look into the reasons that cause the error, we found out
that the only case where there is an error in occupancy is when
a person is standing close enough to the chair(meaning that the
building boxes of the chair and person are overlapping).

Due to our limited testing conditions, however, we expect to
have a different result for a different room, and the results may
vary depending on the test images given(how many “standing
near a chair” cases occur).

Overall, our occupancy accuracy seems to meet the user-case
requirements.

C. Tests for Use-Case: Speed

Table 3: Processing Time vs Architecture

 Pre
processing

(s)

Inference
(s)

Post
Processing

(s)

Total Time
(s)

Quad-Core
Intel Core i5
with PyTorch
inference

0.02 1.59 0.01 1.62

Jetson Nano
2GB
with PyTorch
inference

 0.05 0.80 0.05 0.94

Jetson Nano
2GB
with
TensorRT
inference

 0.05 0.33 0.05 0.44

As seen by Table 2, though the preprocessing and
postprocessing are faster on Mac, with Quad-Core Intel Core
i5, the speed up time on inference on the Jetson Nano means
that the total time to process an image is much faster on a Jetson
Nano. Switching from Pytorch inference to TensorRT resulted
in a ~2.5x speedup in inference time. The speedup was not
needed to meet our update speed requirement but because
running Pytorch out of the box on the Jetson maxes out the
physical memory available on the Jetson. TensorRT optimizes
the GPU’s memory and bandwidth by fusing nodes within the
kernel [10], which enabled us to run 2 instances of inference at
the same time.

Our CV pipeline takes 10 samples before calculating the sample
with the highest confidence. Once this is determined it is sent

9
18-500 Design Project Report: ScottySeat 14/10/22

as a POST request to the web server. Taking 10 samples, once
every second, so the total time between taking the first sample
and sending a POST request is ~10.5 seconds.
Since it is a POST request, changes are immediately reflected
in the webserver. Users receive updates to the front-end via a
GET request which has been set to 10 seconds. This means in
the worst case scenario that a change will be reflected in
approximately 21 seconds after it has been observed which
meets our use case requirement for update speed.

D. Tests for Use- Case: Spatial Accuracy
 To ensure sufficient Spatial Accuracy, we initially
aimed for an average positional error of less than 20% amongst
all objects in a room. To measure this, we aimed for an MAPE
of the relative distance between the chairs and table of under
20%.

To achieve this, we took 13 images of approximately 100 chair
positions with a secondary overhead camera, as shown in figure
10, to act as a ‘ground-truth’ of the true positions of objects in
the room. The chair/table positions were then calculated using
hand-drawn bounding boxes on each image.

Figure 15: Spatial Accuracy Testing Setup

We then measured the difference in chair/table positions
between this ground truth top-down view and our system output
using MAPE, and compared how this value changed both
before and after perception correction.

X*n : Ground-truth (True) distance of chair to centerline of
the table in top down view
Xn : System’s predicted distance of chair to centerline of
the table
Ft : Xn /X*n of a single chair
At : Average Xn /X*n , simulating the true ratio (1)

(1) shows how MAPE was calculated, we found the distances
between the centerpoints of each chair and the table in an image,
and then took a ratio (Ft) between our system’s predicted
distances (Xn) and the ground truth distance (X*n) for each
chair. Using the average distance ratio (At) of all chairs in the
room as the ‘true ratio’, we calculated MAPE between the
average distance ratio and the distance ratio of all chairs in the

room. MAPE values were calculated for both the X-dimension
(horizontal axis) and Y-dimension (vertical axis) as perception
correction was done independently for each dimension.

Table 4. Average MAPE With and Without Perception Correction

Dimensi
on

Without Perception
Correction

With Perception
Correction

Change in MAPE

X
(Width) 96.02% 104.88% +8.87%

Y
(Length) 82.12% 78.29% -3.83%

In total, with perception correction, we found that we weren’t
able to reach an MAPE of under 20%, but we were able to see
considerable improvement in some MAPE in the Y-dimension.
We saw an average drop of 3.83% MAPE in the Y-dimension
and 8.87% increase in the X-dimension. A full table of all
measured MAPE values can be found at the end of the report
(Table) Our perception correction algorithm did allow for some
improvement in the X-dimension, but requires further tweaking
overall to fully improve MAPE as intended.

Two potential sources of error in our MAPE calculation come
from the setup of the overhead camera and manually drawing
the bounding box positions for the ground-truth images.

Figure 16: Overhead camera mounting setup

Mounting the overhead camera proved considerably difficult as
a wire on the back of the camera prevented us from mounting it
facing fully downward. The ceiling panels also pushed up
easily, making it difficult to stick a camera to the ceiling as well.

Commented [6]: There are 2 kinds of positions in
which the camera would be placed: an angled camera
and an overhead camera (Figure 2).

Figure 1: System Block Diagram

The angled camera would be responsible for gaining
input for detection, the training data, which is used to
train for further training the weights of the CV model,
and also the testing data, which would be used to verify
the accuracy of the model output. Both the training and
testing dataset would be processed later with labeling
tools such as the Computer Vision Automated Tool
(CVAT). The overhead head camera would only be
used for collecting testing dataset for verification of the
accuracy of the position of the seat after the
perspective adjustment on the server side of the
webapp.

10
18-500 Design Project Report: ScottySeat 14/10/22

Figure 17: Top-down view of study room from overhead

camera

As can be seen from the sample photo, chairs were sometimes
cut-off from view due to a low ceiling and camera angle. This
made it difficult to draw bounding boxes that accurately
reflected chair positions.

VIII. ETHICAL ISSUES
The largest ethical issue that comes up is regarding

privacy and confidentiality. Data sovereignty is preserved by
processing images from the location they are captured, on the
Jetson Nano1. After data is processed it is deleted, meaning
historical data cannot. This allows us to keep sensitive data
safe by never transferring over a network, the only data being
sent is the location of the seats and tables. Since we are
calculating the occupancy before sending it to the web server,
people are completely anonymized and cannot be tracked.
Additionally, we have our website accessible only within the
CMU network to ensure that our data is accessible to possible
users of our application. A possible edge case is that users
abuse the system if they understand how occupancy is
calculated. Users who want more space could fool our
algorithm to ensure others do not take their space. Anyone
looking for seats would be affected by the issue. While these
were not implemented for the scope of the project, encrypting
JSON requests sent from the Jetson to the server and adding in
firewall and cryptography protocols to our system can help to
mitigate potential attacks to our system.

IX. PROJECT MANAGEMENT

A. Schedule
The major modifications to our project schedule were to do

with model training, Jetson setup and restructuring. We had a
lot of iterations of our model before finding one that met our
requirements. A few weeks were lost trying to meet the
software requirements for the rest of our pipeline, in the end we
downgraded our libraries to be compatible with the Jetson.

1 https://blogs.nvidia.com/blog/2022/01/05/difference-
between-cloud-and-edge-computing/

After meeting with the professors we found that our solution
approach was not as planned out as it should be. After a few
discussions, we changed some of the interactions between our
components to be more modular and scalable. These
implementation changes delayed us by a week or so

A detailed copy of our final schedule is presented in Figure
8.

B. Team Member Responsibilities
Team member responsibilities, primarily, are delegated

based on each member’s expertise - Aditi: Hardware, Mehar:
Computer Vision, Chen:Web Interface. Larger sections like CV
and integration/interfacing tasks, are also split across members
to make sure work is evenly split. Throughout our timeline as
well, members will be working together for tasks that may need
more hands.

 Aditi:

● Jetson Setup (YOLOv5, web server)
● Converting PyTorch models to TensorRT
● Sampling Algorithm
● Planning and Team Status Report

 Mehar:
● Data Preparation: Data Augmentation, Cleaning

and Relabelling
● Data Collection
● Yolov5 Model Training
● CV Pipeline Integration

 Chen:
● Web Application Development
● Data Post-Processing
● Translating CV output for Seat Map
● Interfacing from Jetson to Web App

Mehar and Aditi:

● Image Preprocessing
● Custom Data Labeling
● Object Classification Research

Tasks were also split with final testing amongst team

members as well. Chen worked on occupancy accuracy testing,
Aditi on speed testing, and Mehar on object accuracy testing.
The spatial accuracy testing metric methodology was developed
by Chen, Aditi and Mehar, while final calculations and testing
were carried out by Mehar.

C. Bill of Materials and Budget

○ The bill of materials and budget can be found in Figure
7.

11
18-500 Design Project Report: ScottySeat 14/10/22

D. Amazon Web Services Usage

○ Custom training of the Yolov5 model was made
possible through AWS services. Specifically, $100 worth of
credits and another $40 were used in training the Yolov5 model,
and data preparation and storage. Credits were used for 180+
hours of p2 and p3 EC2 instance usage, and 7.7 GB of data
storage on S3. We would like to thank AWS for providing us
the resources to make training possible.

E. Risk Management
One of the risks we initially had was occlusion of the

chair a person may be sitting on. In practice, we found that we
were able to place the camera high enough and our dataset was
robust enough to account for most cases of this. Instead, a
problem that similar color clothing to the chair can cause the
system to miss the chair entirely, thinking the chair is part of
the person. We were able to mitigate this through our
preprocessing by greatly increasing contrast and overall
exposure of the image.

Another risk we had was oversensitivity to changes -
specifically, if someone were to leave the room to go to the
bathroom for a few minutes. We decided to keep this case as
further features once we reached MVP for our project. Due to
delays in integration, we did not have enough time to fully
implement this feature. However, our plan to mitigate this issue
was to use an extra class to detect the presence of backpacks,
laptops and other items to also tell us whether a chair is
potentially occupied. If we detected a person or multiple school
items by the chair, then the chair would be counted as occupied.

X. RELATED WORK
We are mainly aware of 4 projects that are similar to ours:

Fall 2020 Team B4 Smart Library, Fall 2021 Team A3
FreeSeats and Spring 2022 Team E4. Ours differs from Smart
Library as we have dynamic seat mapping which accounts for
more cases and situations, while FreeSeats are using sensors
mounted on a chair to detect and monitor each chair and reflect
it on an app.

XI. SUMMARY

With the implementation of our design, students no longer
have to travel around campus to find a study space as they could
do so just by a single click. Our solution is to place cameras in
study rooms and use computer vision to identify available seats.
We will display the available seats and where they are located
on a web application. We hope to save users time, and more
efficiently utilize all of the study spaces CMU has to offer.

In terms of future work, we have found that our CV module is
not as accurate in other spaces. Our custom dataset was limited
and only had pictures of rooms within Hammerschlag. It would

2 https://en.wikipedia.org/wiki/POST_(HTTP)

be beneficial to train our machine learning model with different
chairs, with different perspectives and with more variations in
lighting. Additionally, it would be good to have our website to
only be accessible to people signed into their CMU accounts to
keep this information more confidential. Though we were able
to scale our MVP to 2 cameras, to better utilize the Jetson, an
expensive resource, it might be beneficial to use the third USB
A to host a third room. This may require porting our inference
to DeepStream.

We have definitely learned the importance of communication.
Making sure there are clearly defined and reachable deadlines
are critical to having a successful project. Reaching out for help
early is also an important lesson learned. We found that we were
able to find solutions to our issues much faster.

GLOSSARY OF ACRONYMS
AJAX - Asynchronous JavaScript And XML
CV– Computer Vision
CLAHE - Contrast Limited Adaptive Histogram Equalization
R-CNN - Region-Based Convolutional Neural Network
ML - Machine Learning
RPi – Raspberry Pi
JSON - JavaScript Object Notation
XML - Extensible Markup Language
YOLO -You Only Look Once
CVAT - Computer Vision Annotation Tool
POST - request method supported by HTTP 2

REFERENCES

[1] Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao.
"Yolov4: Optimal speed and accuracy of object detection." arXiv preprint
arXiv:2004.10934 , 2020.
[2] Ultralytics, “Ultralytics/yolov5: Yolov5 in PyTorch > ONNX > CoreML >
TFLite,” GitHub. [Online]. Available: https://github.com/ultralytics/yolov5.
[Accessed: 14-Oct-2022].
[3] H. Feng, G. Mu, S. Zhong, P. Zhang and T. Yuan, "Benchmark Analysis of
YOLO Performance on Edge Intelligence Devices," 2021 Cross Strait Radio
Science and Wireless Technology Conference (CSRSWTC), 2021, pp. 319-
321, doi: 10.1109/CSRSWTC52801.2021.9631594.
[4] Redmon, Joseph, et al. "You only look once: Unified, real-time object
detection." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016.
[5] S. A. K. Tareen and Z. Saleem, "A comparative analysis of SIFT, SURF,
KAZE, AKAZE, ORB, and BRISK," 2018 International Conference on
Computing, Mathematics and Engineering Technologies (iCoMET), 2018, pp.
1-10, doi: 10.1109/ICOMET.2018.8346440.

[6] “Clahe histogram equalization - opencv,” GeeksforGeeks, 09-Nov-2021.
[Online].Available:https://www.geeksforgeeks.org/clahe-histogram-
eqalization-opencv/. [Accessed: 16-Dec-2022].

[7] “Histogram equalization,” Wikipedia, 29-Jun-2022. [Online]. Available:
https://en.wikipedia.org/wiki/Histogram_equalization. [Accessed: 16-Dec-
2022].

[8] “Changing the contrast and brightness of an image!,” OpenCV. [Online].
Available:

Commented [7]: FINAL REPORT: explain how we
handled project risks

12
18-500 Design Project Report: ScottySeat 14/10/22

https://docs.opencv.org/3.4/d3/dc1/tutorial_basic_linear_transform.html.
[Accessed: 16-Dec-2022].

[9] “Python opencv - filter2d() function,” GeeksforGeeks, 05-Nov-2021.
[Online]. Available: https://www.geeksforgeeks.org/python-opencv-filter2d-
function/. [Accessed: 16-Dec-2022].

[10] “Faster yolov5 inference with TENSORRT, run YOLOV5 at 27 FPS on
Jetson Nano!,” Latest Open Tech From Seeed, 29-Aug-2022. [Online].
Available: https://www.seeedstudio.com/blog/2022/08/23/faster-inference-
with-tensorrt-on-nvidia-jetson-run-yolov5-at-27-fps-on-jetson-nano/.
[Accessed: 16-Dec-2022].

[11] T. Yeung, “What's The difference: Edge computing vs cloud computing ,”
NVIDIA Blog, 17-Sep-2022. [Online]. Available:
https://blogs.nvidia.com/blog/2022/01/05/difference-between-cloud-and-edge-
computing/. [Accessed: 16-Dec-2022].

[12] "You Only Look Once: Unified, Real-Time Object Detection," 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp.
779-788, doi: 10.1109/CVPR.2016.91 [Accessed: 13-Oct-2022].

Figure 18: Table of Materials and Costs

Figure 19: Project Schedule With Major Benchmarks

13
18-500 Design Project Report: ScottySeat 14/10/22

Table 5. Spatial Accuracy MAPE with vs without Perception Correction

Sample #

X-dimension (Width) Y-dimension (Height)

Without Perception
Correction

With Perception
Correction Change in MAPE

Without Perception
Correction

With Perception
Correction Change in MAPE

1 156.60% 160.08% 3.48% 72.58% 79.96% 7.39%

2 37.04% 72.47% 35.43% 59.69% 44.89% -14.80%

3 40.39% 66.73% 26.34% 94.68% 59.72% -34.96%

4 48.60% 119.84% 71.24% 96.06% 68.06% -27.99%

5 136.62% 144.17% 7.55% 103.97% 79.54% -24.43%

6 159.33% 161.81% 2.48% 92.10% 95.85% 3.75%

8 133.72% 118.19% -15.53% 124.19% 114.88% -9.32%

9 133.81% 132.99% -0.81% 68.17% 83.14% 14.98%

10 147.42% 136.43% -10.99% 93.02% 67.05% -25.96%

12 47.14% 50.07% 2.93% 63.76% 69.36% 5.60%

13 51.54% 59.63% 8.08% 74.97% 111.04% 36.07%

14 34.40% 32.28% -2.12% 65.45% 39.57% -25.88%

15 121.64% 108.81% -12.82% 58.92% 104.66% 45.74%

Average 96.02% 104.88% 8.87% 82.12% 78.29% -3.83%

Table 6. Model Training Results

Model Description Epochs mAP 0.5 mAP 0.5:0.95 Precision Recall

Testing for Optimal Transfer Learning Configuration

Custom Data, Freeze 24 layers 50 0.54103 0.28801 0.69936 0.50833

Custom Data, Freeze 23 layers 50 0.61379 0.36274 0.84041 0.52138

Custom Data, Freeze 22 layers 50 0.69160 0.41573 0.85648 0.64115

Custom Data, Freeze Backbone 50 0.70822 0.44626 0.89579 0.67487

Custom Dataset Training Without Backpack Class

Custom Data with No Backpack Class,
Freeze 22 Layers 50 0.87396 0.58691 0.85267 0.84129

Custom Data with No Backpack Class,
Freeze Backbone 50 0.97384 0.66036 0.90455 0.93743

Custom Dataset Training With Pascal VOC using Custom Labeling and No Backpack Class

Pascal VOC w/Custom Labeling,
Freezing 10 Layers + Custom Dataset, 50+10 0.53313 0.34305 0.94968 0.40855

14
18-500 Design Project Report: ScottySeat 14/10/22

Freezing 22 Layers

Pascal VOC w/Custom Labeling,
Freezing 10 Layers + Custom Dataset,
Freezing 22 Layers 50+30 0.76944 0.47584 0.85187 0.72637

Custom Dataset Training With Pascal VOC using COCO Labeling

Custom Data w/ COCO Labeling,
Freezing Backbone 50 0.90979 0.72143 0.97086 0.87832

Custom Data w/ COCO Labeling,
Freezing Backbone + Pascal VOC
w/COCO Labeling, Freezing 22 Layers 50+10 0.82936 0.58633 0.77764 0.78755

Pascal VOC w/COCO Labeling, Freezing
Backbone 50 0.86833 0.66212 0.81220 0.80924

Pascal VOC w/COCO Labeling, Freezing
Backbone + Custom Data w/ COCO
Labeling, Freezing 22 Layers 50+10 0.65957 0.40164 0.65979 0.63132

Pascal VOC w/COCO Labeling, Freezing
Backbone + Custom Data w/ COCO
Labeling, Freezing 22 Layers 50+50 0.90029 0.72916 0.97410 0.87656

