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Abstract— Students waste time searching for study spaces, and 
the goal of ScottySeat is to  streamline this process. Our solution is 
to capture images of study spaces and update a web application in 
real-time to reflect the seat availability in a given room. To 
accomplish this, we will be using a custom-trained YOLOv5 model 
to detect people and chairs.  
 

Index Terms—Computer vision, object detection, single board 
computer 

I. INTRODUCTION 
Campus study spaces are a crucial commodity for 

many students at CMU. Whether it be for individual or group 
work - campus provides a reliable, safe location for students to 
work at. However, CMU has limited study space and free spots 
are hard to come by.  

Looking at campus itself, popular areas tend to fill up 
quickly while smaller spots aren’t widely known. With the size 
and complexity of CMU’s campus, finding a single free space 
can take upwards of 30-40 minutes and even longer for group 
scenarios. Currently, classrooms/meeting rooms can be  
reserved but this doesn’t account for open study areas that make 
up the majority of student study areas. Room reservations are 
usually restricted to organizations or students of the school 
where the room is located. Reservations also fill up quickly and 
don’t allow for time flexibility to book closer to study time. 

Our project seeks to ease the struggle in and reduce the 
time taken in finding campus study spots by providing students 
with easily accessible, real-time information on study spot 
availability. To do this, we will build a web platform showing 
digital maps of study areas. Each study area will have its own 
map indicating study spot locations and availability. Real-time 
camera footage of the areas will be monitored using computer 
vision to regularly update the site as well.  

 

II. USE-CASE REQUIREMENTS 
To meet our use case, we have created requirements for 

numerical accuracy, speed and spatial accuracy. Numerical 
accuracy in our use-case relates to the number of seats available 
in a study space. This is arguably the most important  use-case 
requirement as low numerical accuracy can misguide users 
meaning that there would be no speed up in finding a study spot. 
Keeping this in mind, we aimed to have 90% accuracy in 
detecting available seats. Our second use-case requirement 

relates to the update speed from capturing an image to the 
results being displayed on our webpage. For our solution to be 
useful, the data provided to the user should reflect the study 
rooms current capacity. After polling some potential end users 
and taking their feedback, we have decided that changes in seat 
availability must be reflected within 45 seconds of them 
occurring. Our last requirement is regarding the user interface. 
For users to be able to use our UI with ease, the seat mapping 
needs to be easy to interpret. This means that the seat mapping 
should closely reflect the positions of the real positions. 
Initially, this spatial accuracy use-case requirement was 
quantified as being able to map chair positions to seating charts 
with a 20% error margin. This metric will be measured by 
comparing the seat mapping with a camera with an overhead 
view, is needed.  

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION  
Our system can be mainly divided into 3 subsystems, 

including the hardware module, the computer vision module, 
and the web application (UI) module, as shown in the diagram 
below (Figure 1).  

The sensing module consists mainly of TedGem USB 
cameras. Such cameras will be deployed one for each study 
space being monitored. Its main purpose is to provide input for 
the CV algorithm for detection, and also provide training and 
testing data that would be used for verification.  
 Within a room,  we have a wall-mounted camera, 
angle down at the room floor angle camera, we will sample a 
frame every few seconds, preprocess it, run it through a custom 
trained YOLOv5 object detection mode. We will take 15 
samples per update, and take the highest confidence samples, 
post process them and update the web application. Further 
details have been provided in the graph, or explained later. 

IV. DESIGN REQUIREMENTS 
To achieve our first use-case requirement, we will 

need a single high quality camera per room and must have a 
highly accurate object detection algorithm.  

For the camera footage, we require 1080p resolution 
to be able to accurately detect objects and their edges. The 
camera needs to have a large field of view to be and be placed 
correctly so that it captures the entirety of the room in a single 
shot. Our set-up must work in a variety of lighting conditions 
so the camera should have automated exposure adjustment. 

To achieve our first use-case requirement, the object 
detection algorithm must be able to identify chairs and people 
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sitting on chairs with 90% accuracy. To aid with achieving this 
accuracy, we sample at least 15 times per 45 second update 
(overall 20 times per minute) and use the detected objects with 
the highest confidence. If the highest confidence detected in an 
image is less than 80% we will ignore the images taken in that 
minute. The algorithm will need to be able to also discern 
clearly between nearby objects with high accuracy and will also 
need to have very high accuracy on occluded objects. 

To achieve our second-use case requirement, speed, 
we will need a relatively fast algorithm which does not 
compromise accuracy for speed. The website should 
automatically refresh every 45 seconds and we are giving 1 
second for final changes (storing information to the database) 
to be reflected on the page. Given that we have a 44 seconds 
window between a change occurring and an update, and aim to 
have 20 samples/min, we will have ~14 samples between the 
change and the update. This means the algorithm needs to be 
able to run and complete within 3 seconds. 

To achieve our spatial accuracy requirement, we will 
need to carry out perception correction as a final post processing 
step before displaying the maps to users. Specifically, the 
positions of the detected objects will be adjusted from the 
angled view of the camera to a top-down view. 

V. DESIGN TRADE STUDIES  

A. Hardware 
The motivation for using hardware, instead of 

software for running our computer vision model was due to 
privacy. Our project captures images in a public space, and to 
help ensure privacy of the users, we thought it was best to use 
a single board computer. This way images will not have to be 
sent over the network, reducing the possibility of hacking, and 
the images can be easily deleted after use. The only data being 
sent over the network will be the locations of chairs and tables 
and so users can safely participate in our project while 
remaining anonymous.  
 The choice of using a single board computer (SBC) 
compared to an FPGA was that it would be much easier to scale 
an SBC model versus an FPGA model. Additionally, 
networking on an FPGA is non-trivial and translating the 
computer vision models would be out of the scope for the given 
project timeline. 

The main difference between the NVIDIA Jetson 
Nano 2GB Developer Kit and the Raspberry Pi is their compute 
power. Since we intended on using machine learning to identify 
objects, a larger GPU is preferred as it is able to parallelize 
many of the matrix operations needed in machine learning. 
While analyzing YOLOv5, researchers found that the RPi, out 
of the box had an FPS of 1.6 FPS while the Jetson Nano had an 
FPS of 5 FPS [1]. Considering that we are using 2 cameras for 
our MVP (one camera per room), and have some preprocessing 
and postprocessing to do on our input image, using the RPi 
would possibly become a limiting factor in our speed 
requirement.  A solution to this might be to use a smaller YOLO 
model but scaling down the algorithm results in a reduced 
accuracy according to benchmarks released by Ultralytics [2]. 
Another possibility was to use the RPi along with the Intel 
Neural Compute Stick 2. According to Feng et al., the RPi + 

NCS2 outperforms the Jetson Nano on both mean confidence 
and FPS, when using YOLOv3 [3]. However, the Intel NCS2 is 
out of stock, and for our project timeline, we needed our 
hardware as soon as possible. 

B. Computer Vision Model 
○ The motivation behind computer vision as 

opposed to a physical method such as seat sensors was 
scalability. Scalability is simpler with computer vision, by 
adding a few new cameras to a space rather than individual 
sensors to every chair in the area.  

○ The main goal of our computer vision model 
is to detect chairs, tables and people in a given room from a 
given image. Chairs will be oriented in different positions and 
will likely be partially or mostly occluded by a table or a person. 
Taking up to 15 images per 45 second update period, images 
will be sampled every three seconds and the model will also run 
on hardware. As such some requirements we had for a given 
CV model were as follows: 

● Classify and locate multiple objects in an image 
● Scalable to more than one object class 
● Can run in under 2-3 seconds 
● Can handle object occlusion and orientation variability 
● Optimally, have the highest starting accuracy with 

lowest resource usage.  
○ Overall, we considered a variety of object 

detection architectures: namely neural network-based methods 
(Faster R-CNN, Yolo) and  feature detection-based methods 
(BRIEF, SIFT, ORB). All the architectures noted can be 
implemented in Python through the use of common libraries 
and thus can run on the Jetson Nano. Specifically, the 
underlying libraries used are OpenCV (BRIEF/SIFT/ORB 
feature descriptors are built in), and Tensorflow/Pytorch for 
neural network models. They all also run relatively quickly - in 
close to real time. .  

From there, the feature detection methods tend to have 
the lowest resource usage but also come with a number of risk 
areas due to how object detection is ultimately done. With 
feature detectors such as BRIEF/SIFT/ORB - object detection 
is generally performed through image matching [5]. The feature 
descriptors detect various ‘features’ in a source image (i.e. 
corner points, areas of high contrast and variability) and a 
thresholding model such as KNN is used to match those points 
to an object in a test image. Thus, it operates essentially as a 
one to one image matching architecture. This makes it difficult 
for these methods to account for object occlusion if not enough 
points are present. In our use case especially, chairs can’t be 
moved by a user to help object detection so the system needs to 
account for heavy object occlusion. The system also becomes 
difficult to scale to multiple object classes. Different sets of 
descriptors and models for each object class, that is for different 
types of tables, different chair designs will be needed. Lastly, 
image matching for object detection also makes this method 
unideal for person detection as well, a separate system will be 
needed to track people in the scene. 

In contrast, the neural networks were pre-trained by 
the developers to work on multiple object classes with multiple 
objects per image. For example, YOLO in particular was 
pretrained on the COCO dataset to detect 80 different object 
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classes. In testing we can see, out-of-the-box YOLO is able to 
detect tables, chairs, people and even some objects such as the 
TV and a backpack as well. We can also note that YOLO is able 
to detect the chairs despite heavy occlusion.  

 

 
Figure 2: Sample Yolov5L output 

 
It is possible to build a feature descriptor-based 

architecture to work for our use case, however with the issues 
that will need to be accounted for and the time that will be taken 
for training of either system type - a neural network based 
model is preferable for our case.  

Of Faster-RCNN, YOLO - Faster R-CNN is noted to 
have the highest precision and slowest time. The creators of 
YOLO themselves found that a Faster R-CNN with VGG-16 
architecture achieved a mAP of 73.2% with a speed of 7 frames 
per second as opposed to standard YOLO achieving 63.4 mAP 
and 45 FPS (both are when tested on COCO2007 - a CV 
dataset)  [6]. Here mAP refers to Mean Average Precision, here 
it tells us the system with the highest true positive to false 
positive ratio. To see whether Faster R-CNN or YOLO will 
prove more accurate for our use case. We tested Facebook’s 
Detectron 2 Faster R-CNN architecture and Ultralytic’s 
YOLOv5L architecture locally using 6 iPhone test images of 
our study space. Each image showed a single human, one table 
and 7 chairs. Testing showed, YOLO was able to accurately 
detect more objects than Faster R-CNN even with lower 
resource use, though Faster R-CNN did generally seem to have 
higher confidence in its results through a qualitative analysis. 
Through this we determined we will finally use YOLOv5L for 
our project. 
 
i. Table 1: Detection Testing off Faster RCNN vs Yolov5L 

Architecture 
Human 
Detected? 

Table 
Detected? 

Chairs 
Detected 

Objects 
Detected 

Faster RCNN + 
ResNet 50 6/6 6/6 18/42 30/54 

Faster RCNN + 6/6 6/6  25/42 31/54 

ResNext 101 

Yolov5L 6/6 6/6 39/42 51/54 

 
 

VI. SYSTEM IMPLEMENTATION 

A. Subsystem A - Computer Vision  
The computer vision pipeline comprises three 

sections: preprocessing, CV model and postprocessing (sample 
consolidation), denoted with bold text for the start of each 
section. Overall, the system will take in an image sampled from 
the camera feed and output list of object detected and 
confidence level for each object, and coordinates for a bounding 
box around each box. 

 
Preprocessing: Initially, we were converting our image to 
grayscale and doing contrast limited adaptive histogram 
equalization (CLAHE). CLAHE was used as it equalizes the 
contrast within the image [6]. As you can see in Figure 4, the 
foreground and background are both dark with low contrast so 
applying equalization seemed like a good way to combat this 
[7] . That being said, we found that it was leading to lower recall 
on our custom CV model. After analyzing some of the missing 
objects, we suspected that the objects were being missed as they 
had low contrast compared to nearby objects, and since we were 
converting to grayscale discriminating features like chair color 
was being lost. To combat this, we decided to stay in RGB and 
increase brightness and contrast using convertScaleAbs [8] CV 
function. To increase distinguishability, we sharpened the 
image using a simple kernel for convolution [9].   

 
■ Figure 3: Initial webcam test image 
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■ Figure 4: Preprocessed webcam image 

 
 

CV Model:  The sampled image is then run through a custom-
trained YOLOv5l model to retrieve bounding boxes for objects 
detected, the classes of detections and the confidence level of 
the classifications. Figure 5 shows a visual representation of the 
data that will be outputted - except through the form of a list.  

 
Figure 5: Sample YOLOv5 output using iPhone test image 
 
 Out-of-the-box, our base Yolov5l model was pre-
trained by Ultralytics suign the 80-class COCO image dataset. 
We noted that we only required 4 out of the 80 classes for our 
use case: tables, chairs, people, backpacks and that the starting 
model had many false positives and low confidence detections 
in these classes. For these two reasons, we initially decided to 
replace the output mapping with just our four target classes and 
to use transfer learning to account for both these issues. For 
transfer learning, we wanted to train first on another existing 
dataset such as ImageNet to decrease occurrences of false 
positives and then a custom dataset to increase classification 
confidence.   

To prepare the custom image dataset, we took pictures 

of the study room with people and chairs in various 
configurations and orientations, to capture as many real life 
scenarios as possible. To take these pictures, we used an angled 
camera to simulate the actual camera setup the model will have 
to operate with. All the collected data was labeled using 
Roboflow. Data augmentation was then used to artificially 
diversify and increase the dataset size by 7x.  

For the existing dataset, we decided against ImageNet 
after finding it had many person-adjacent classes (ie hand, man, 
woman etc) rather than one ‘person’ class. Instead, we used 
Pascal VOC and the OpenImages dataset - both common for 
object detection with chairs. Both datasets were stripped of any 
images without the target 4 classes and were relabelled with the 
custom 4-class mapping as well. 

While training, we found that training on existing 
datasets had limited impact on final training results. The types 
of background and settings shown in the existing datasets were 
too general to specify to our use case. As the model was already 
pretrained, what was needed was the specificity given by the 
custom dataset. We found that final training accuracy with the 
custom dataset remained the same with and without initial 
existing dataset training and that images trained with existing 
dataset had worse detection accuracy. 

One other change we made was to switch from our 
custom 4-class mapping to the 80-class mapping. Initially, we 
found that the 4-class mapping was hindered by the backpack 
class for cases where a chair was completely covered by a 
backpack. Switching then to a 3-class mapping, while the model 
was able to reach high precision and recall metrics with the 
mapping, live testing showed many cases of high confidence, 
false positives that sampling could not account for. As the target 
classes were already part of the pre-trained 80-class mapping, 
we decided to switch back to this mapping to take advantage of 
YOLOv5L’s existing accuracy. Once again training on the 
custom dataset with this mapping scheme, the occurrence of 
high confidence, false positives was greatly reduced while 
retaining high precision and recall metrics. 

Full details on training accuracy metrics and outcomes 
are discussed in object accuracy testing. 
  
Post-Processing: From here the post-processing of the CV 
pipeline is centered around consolidating the samples taken 
since the last update. The inference output of each image will 
be temporarily stored until 15 samples have been taken. 
Looking at our sample output we found that we were prone to 
undercounting chairs, specifically when people were sitting on 
them. The motivation behind this secondary step is that while 
we do want high confidence detections, objects are sometimes 
covered between frames - so we want to account for cases of 
non-detection due to excess occlusion as well. That being said, 
minute movements, within the span of  10 seconds, would often 
lead to a desirable result, a correctly sized bounding box above 
our confidence threshold. Keeping this in mind, we created a 
sampling algorithm that gave images with greater number of 
chairs higher priority. Our sampling algorithm also took into 
account the mean confidence of objects of interest.  



5 
18-500 Design Project Report: ScottySeat 14/10/22 
 

 

 Our algorithm removes all the objects in the image 
with a confidence of less than 0.5. It then filters out extraneous 
objects like backpacks and phones, and calculates the mean 
confidence of these images. 

 

B. Subsystem B - Related Hardware Components 
 In our ideal scalable system, we have 1 Jetson Nano 
for every 2 rooms. The Jetson Nano takes in 1 video feed per 
room and runs an instance of the CV module per room. 

A 1080p video camera with a large field of view is 
used to capture images used for inference. We chose a video 
camera with autofocus and auto brightness to make our 
preprocessing steps easier. The camera is placed on one wall of 
the room and angled down toward the table. 

Inference is done using TensorRT to mitigate issues 
regarding memory usage and bandwidth which arises when 
using PyTorch for inference. We observed that loading large 
models on PyTorch on the Jetson maxed out the physical 
memory available. This also affected the time it took to load, 
which was approximately 20 seconds.  

Additionally, one of these Jetsons will host our web 
server. In our MVP, we successfully had the Jetson running 
inference on 2 rooms while simultaneously running the web 
server. To test that our HTTP requests were working we hosted 
our web server on a different IP address and it worked as 
expected. 

C. Subsystem C -  User Interface 
 In order for the output of the CV algorithm to be 
displayed in a user-friendly way, a web application interface 
has been created. It consists of 2 parts: data post-processing and 
web application. Different from our last report, the data post-
processing portion has been moved out of the Web server, and 
been put in the Jetson nano. This lightens the burden of the web 
server, and ensures the scalability of the project. 
 
Data Post-Processing Post-processing is to ensure that the raw 
data outputted by the CV module is interpreted in a way so that 
the web application could use it directly and display it to the 
user. There are 2 main parts of the process: Perspective 
adjustment and occupancy calculation 
 

1. Perspective Adjustment 
 
This process is due to the fact that we chose to mount 
the camera in an angle instead of mounting it 
overhead. The process is mainly divided into 2 parts: 
X coordinate adjustment, and Y coordinate 
adjustment. 
 
In a typical perspective adjustment function, such as 
cv.getPerspectiveTransform or cv.findHomography, 
the basic input we need is the 4 points of the 
quadrilateral shape we want to warp. In our case, the 
most ideal way is to gain the corners of the ground, 
such that we can warp the ground and create an 
overhead view of the room. However, due to how the 
camera is placed, it is difficult to see the lower corners 

of the room. Additionally, there are also quite a few 
difficulties.  
 
First, it could be the case that there is no upper corner, 
which means that the ground could be extending to 
areas outside of the camera. Secondly, the chairs could 
be blocking the corners. Thirdly, cropping to the 
ground is not good enough, because chairs have 
heights, thus if we only crop the quadrilateral shape 
according to the 4 corners defined above, then we 
might crop out some chairs.  

 
Figure 6: Area of perspective adjustment application 

 
Because of the difficulties above, we decided we could 
instead apply perspective transform to the image with 
the definition that the lower 2 corners are the 2 corners 
of the image, while the upper 2 corners are on the 
upper edge of the image, but with a shorter length. In 
other words, we are applying a perspective adjustment 
to a trapezoid. We have tried a few different methods 
to gain the ratio of the upper and lower vertice, one 
way is to apply canny edge detection on a the table to 
simulate the ratio or angle of the camera: 
 
We first apply image pre-processing on the image, 
such as increasing contrast, or applying a bilateral 
filter to the image to prepare for edge detection. After 
applying Canny Edge Detection, we select for the edge 
with the longest length, and ensure that it is a closed 
shape. We then apply cv.approxPolyDP so that the 
shape of the table is simplified to a quadrilateral shape. 
Then we select for the  4 corners of the shape, and thus 
we acquire the ratio of the upper and lower edge.  
 
However, besides the difficulty explained previously, 
this method requires a high contrast background with 
the table, a good lighting condition, and also, most 
importantly, that there are little objects around the 
table, which is rarely the case in our situation. An 
example of the longest outline we get by running the 
upper processes - best result after playing around with 
the values and parameters in image preprocessing: 
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Figure 7: sample output of edge detection of longest edge 

 
As shown above, the method above is unstable, and 
varies greatly from different ways of object placement 
and also lighting conditions. While there are other 
solutions such as image segmentation, for example, 
Detectron, it is not only an overkill to our application 
and greatly increases processing time , it also requires 
data to train on for it to function on ground.  
 
Our Solution: For the X-coordinates, the idea is pretty 
straightforward; we simply stretch the upper vertices 
to the side to fill the image. This is inline with the 
majority of perspective adjustment functions.  
 
For the Y-coordinates, however, we adopt the idea of 
“Psuedodepth”, 

 
Figure 8: Pseudodepth versus depth graph 

 
where we assume that we are dealing with a 2d plane, 
and, according to the fact that: 

                           
Figure 9: real center point overhead and at angle 

 
In an angled view, P is still the real center of the 
“room”, and the y coordinate of P is dependent on the 

ratio of the upper and lower vertices. Thus, applying 
those conditions, we can solve for an equation with y 
respective to the ratio of the upper and lower vertice. 
This ratio is the only variable, and greatly affects how 
accurate the algorithm is.  
 
There is one problem with this algorithm, which is that 
any chair outside of the “trapezoid” would be 
excluded, thus, to fix this, we added one more step to 
locate anything outside of the bounds to be on the edge 
of the map.  
 
Another problem is that after adjustment, and even 
before adjustment, the center of some of the chairs are 
located inside of the table. Thus, there is one more step 
to move each chair outside of the table. The way we 
are moving it, in other words, whether we are moving 
it upwards or downwards, leftwards or rightwards, 
depends on the closest edge of the table it is to.  
 
There is also the problem that, since we are only 
adjustment for the center point, this is fine in the case 
of a chair, however, in the case of a table, since the 
width and height of the table also needs to be adjusted, 
we need to apply the perspective adjustment function 
to top right, bottom right, and bottom left points 
respectively. 

  
Figure 10: Table before and after perspective adjustment 

 
As shown above, the yolo output bounding box is not 
a perfect outline of the table before adjustment: for the 
upper two corners, it is significantly off in terms of x-
coordinates. Thus, as we can see after adjustment, the 
width of the table is actually the difference between 
left and right bottom x coordinate value, but height is 
the difference between the right bottom and top y 
coordinate value. Errors occurred before making this 
change with the map showing a really “fat” and 
shifting to the right table, due to using only the top 
right and bottom left xy coordinates. 

 
 

2. Occupancy Calculation 
 
The problem with defining “occupied”, is that we can 
not differentiate between a standing and a sitting 
person. Thus, for a person to be defined as “sitting on 
a chair”, we have to have a way to define that the 
person is “close enough”. Since the conditions of the 
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camera differ room by room, we can not depend on the 
pixel values of the image. This is a problem that we 
have to deal with throughout this project.  
 
In calculating occupancy, we first find the closest seat 
to each person, with the coordinates after perspective 
adjustment. This ensures that a person can only sit on 
one chair. After that, we check whether or not the 
bounding box of the chair and person overlap, and this 
is our definition of “close enough”, or that the person 
is sitting on the chair.  
 
Thus, error will occur if a person is standing next to a 
chair, as the system will reckon it as sitting on the 
chair. 

 
Backend: The framework we chose is Django. There is not 
much difference between different frameworks, such as 
FLASK, an alternative to Django, thus we chose Django based 
on familiarity. Additionally, since we are transferring Data via 
JSON format, data will be stored in the form of a JSON file.  
 
The server is now much simpler will be only be responsible for 
2 things , after the systematic adjustment mentioned above: 
handle information sent by jetsons, and handle information 
requests sent by users. 
 

 
Figure 11: Web Application Server Diagram 

 
The room name will be provided when the information is sent 
to the server. This allows for the server to update information 
only relevant to that room. All room information will be sent 
back to the user, so that the user does not have to send a request 
to the server to acquire information on that specific room 
whenever the user switches rooms, also, this allows for the user 
to search/order the rooms according to a specific value without 
sending a request to the server for the server to do it. This is a 
trade off between scalability/speed and memory. 
 
Frontend: The frontend, namely the website including a html 
and css file, and a javascript file that , on loading, will send a 
request to the server side requesting the information of a certain 
room with a “GET” request. This is different from before as 
now the frontend will be requesting information of all rooms, 
instead of just that one room the website is looking at. All the 
information on the page will be updated with 
“AJAX”(Asynchronous JavaScript And XML). 

 
In the javascript file, there are mainly 3 functions: First, one that 
sends a request to the server, one that updates the map, and one 
that reorders the roomlist according to the ordering.  
 
The send request function will be called when the page is 
initialized, and then called every 45 seconds. When the server 
responds with all the data, the javascript will save the JSON 
data, and call the other 2 functions, namely update map and 
update roomlist. The update map function draws the map 
according to the coordinates of the seats and chairs, while the 
update roomlist function refreshes the room lists. 
 
The update map function will also be called when another room 
in the room list is clicked, showing the map of that specific 
room, with information acquired from the locally saved JSON 
response.  
 
The update room list function will also be called when the order 
function is called, as we reorder the rooms depending on what 
the ordering parameter is(number of seats/occupied 
seats/available seats etc.) 

 
Figure 12: Web Application Layout 

 

VII. TEST, VERIFICATION AND VALIDATION  

A. Tests for Use- Case: Object Accuracy 
 Table 6 at the end of the report shows comprehensive 
metrics across all training for the Yolov5L model. The overall 
goal metric was to achieve an overall accuracy of 90%.  

Through testing, we found that transfer learning 
becomes optimized when freezing 22 layers or the backbone of 
the YOLO architecture - with both producing the precision 
accuracy (mAP 0.5) after 50 epochs of training (0.69 and 0.70). 
Removing the backpack class once again produced a jump in 
accuracy of almost 17% when freezing 22 layers and 27% when 
freezing the backbone. 

However this also resulted in high confidence false 
positives during live testing. Training was redone by including 
on PASCAL VOC dataset  training to combat this,  however 
this resulted in a drop in mAP accuracy to 0.77. The Pascal 
VOC dataset was too general of dataset to effectively train out 
high confidence, false positives while also retaining overall 
accuracy. 
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Figure 13: Sample Output after PASCAL VOC Training 

 
One final change made was to switch from the custom 

class mapping to the original pretrained 80-class mapping.  
Doing this switch preserved the existing sensitivity of the model 
against false positives while also increasing detection 
confidence of the target classes: chairs, tables, people. Training 
just on the custom dataset with this mapping achieved the 
highest overall accuracy at 0.909 while also preventing high, 
confidence false positives in live testing. 

 
Figure 14: Sample Output after Custom Training with COCO 

Class Mapping 
 

B. Tests for Use- Case: Occupancy Accuracy 
 

Table 2: Occupancy Testing 
Room 
Numbe
r 

Predicted 
Occupanc
y 

True 
Occupancy 

Predicted 
Seatcount 

True Seatcount 

A 1/8 1/8 8 8 

B 0/8 0/8 8 8 

C 2/8 1/8 8 8 

D 4/8 3/8 8 8 

E 2/8 2/8 8 8 

F 6/8 4/8 8 8 

G 4/8 4/8 8 8 

H 0/8 0/8 8 8 

I 2/7 0/7 7 7 

J 0/8 0/8 8 8 

 
As shown in the graph above, among the 10 images we have 
run, out of 79 chairs, the occupancy of 7 chairs was incorrectly 
noted. The accuracy this turns out to be around 91.1%. Having 
a deeper look into the reasons that cause the error, we found out 
that the only case where there is an error in occupancy is when 
a person is standing close enough to the chair(meaning that the 
building boxes of the chair and person are overlapping).  
 
Due to our limited testing conditions, however, we expect to 
have a different result for a different room, and the results may 
vary depending on the test images given(how many “standing 
near a chair” cases occur).  
 
Overall, our occupancy accuracy seems to meet the user-case 
requirements.  

C. Tests for Use-Case: Speed 
 

Table 3: Processing Time vs Architecture  

 Pre 
processing 

(s) 

Inference 
(s) 

Post 
Processing 

(s) 

Total Time 
(s) 

Quad-Core 
Intel Core i5 
with PyTorch 
inference 

0.02 1.59 0.01 1.62 

Jetson Nano 
2GB  
with PyTorch 
inference 

 0.05 0.80 0.05 0.94 

Jetson Nano 
2GB  
with 
TensorRT 
inference 

 0.05 0.33 0.05 0.44 

  
As seen by Table 2, though the preprocessing and 
postprocessing are faster on Mac, with Quad-Core Intel Core 
i5,  the speed up time on inference on the Jetson Nano means 
that the total time to process an image is much faster on a Jetson 
Nano. Switching from Pytorch inference to TensorRT  resulted 
in a ~2.5x speedup in inference time. The speedup was not 
needed to meet our update speed requirement but because 
running Pytorch out of the box on the Jetson maxes out the 
physical memory available on the Jetson. TensorRT optimizes 
the GPU’s memory and bandwidth by fusing nodes within the 
kernel [10], which enabled us to run 2 instances of inference at 
the same time. 
 
Our CV pipeline takes 10 samples before calculating the sample 
with the highest confidence. Once this is determined it is sent 
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as a POST request to the web server. Taking 10 samples, once 
every second, so the total time between taking the first sample 
and sending a POST request is ~10.5 seconds. 
Since it is a POST request, changes are immediately reflected 
in the webserver. Users receive updates to the front-end via a 
GET request which has been set to 10 seconds. This means in 
the worst case scenario that a change will be reflected in 
approximately 21 seconds after it has been observed which 
meets our use case requirement for update speed.   
 

D. Tests for Use- Case: Spatial Accuracy 
 To ensure sufficient Spatial Accuracy, we initially 
aimed for an average positional error of less than 20% amongst 
all objects in a room. To measure this, we aimed for an MAPE 
of the relative distance between the chairs and table of under 
20%. 
 
To achieve this, we took 13 images of approximately 100 chair 
positions with a secondary overhead camera, as shown in figure 
10, to act as a ‘ground-truth’ of the true positions of objects in 
the room. The chair/table positions were then calculated using 
hand-drawn bounding boxes on each image. 

 
Figure 15: Spatial Accuracy Testing Setup 

 
 
We then measured the difference in chair/table positions 
between this ground truth top-down view and our system output 
using MAPE, and compared how this value changed both 
before and after perception correction.  
 

 
X*n : Ground-truth (True) distance of chair to centerline of 
the table in top down view                                           
Xn :  System’s predicted distance of chair to centerline of 
the table 
Ft : Xn /X*n  of a single chair 
At : Average Xn /X*n , simulating the true ratio                 (1) 

 
(1) shows how MAPE was calculated, we found the distances 
between the centerpoints of each chair and the table in an image, 
and then took a ratio (Ft ) between our system’s predicted 
distances (Xn ) and the ground truth distance (X*n ) for each 
chair. Using the average distance ratio (At ) of all chairs in the 
room as the ‘true ratio’, we calculated MAPE between the 
average distance ratio and the distance ratio of all chairs in the 

room. MAPE values were calculated for both the X-dimension 
(horizontal axis) and Y-dimension (vertical axis) as perception 
correction was done independently for each dimension. 

Table 4.  Average MAPE With and Without Perception Correction 

Dimensi
on 

Without  Perception 
Correction 

With Perception 
Correction 

Change in MAPE 

X 
(Width) 96.02% 104.88% +8.87% 

Y 
(Length)  82.12% 78.29% -3.83% 

 
In total, with perception correction, we found that we weren’t 
able to reach an MAPE of under 20%, but we were able to see 
considerable improvement in some MAPE in the Y-dimension. 
We saw an average drop of 3.83% MAPE in the Y-dimension 
and 8.87% increase in the X-dimension. A full table of all 
measured MAPE values can be found at the end of the report 
(Table ) Our perception correction algorithm did allow for some 
improvement in the X-dimension, but requires further tweaking 
overall to fully improve MAPE as intended.  
 
Two potential sources of error in our MAPE calculation come 
from the setup of the overhead camera and manually drawing 
the bounding box positions for the ground-truth images.  
 

 
Figure 16: Overhead camera mounting setup 

 
Mounting the overhead camera proved considerably difficult as 
a wire on the back of the camera prevented us from mounting it 
facing fully downward. The ceiling panels also pushed up 
easily, making it difficult to stick a camera to the ceiling as well. 
 

Commented [6]: There are 2 kinds of positions in 
which the camera would be placed: an angled camera 
and an overhead camera (Figure 2).  
 
 
 
Figure 1: System Block Diagram 
 
 
 
The angled camera would be responsible for gaining 
input for detection, the training data, which is used to 
train for further training the weights of the CV model, 
and also the testing data, which would be used to verify 
the accuracy of the model output. Both the training and 
testing dataset would be processed later with labeling 
tools such as the Computer Vision Automated Tool 
(CVAT). The overhead head camera would only be 
used for collecting testing dataset for verification of the 
accuracy of the position of the seat after the 
perspective adjustment on the server side of the 
webapp. 
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Figure 17: Top-down view of study room from overhead 

camera 
 
As can be seen from the sample photo, chairs were sometimes 
cut-off from view due to a low ceiling and camera angle. This 
made it difficult to draw bounding boxes that accurately 
reflected chair positions.  

VIII. ETHICAL ISSUES 
The largest ethical issue that comes up is regarding 

privacy and confidentiality. Data sovereignty is preserved by 
processing images from the location they are captured, on the 
Jetson Nano1. After data is processed it is deleted, meaning 
historical data cannot. This allows us to keep sensitive data 
safe by never transferring over a network, the only data being 
sent is the location of the seats and tables. Since we are 
calculating the occupancy before sending it to the web server, 
people are completely anonymized and cannot be tracked. 
Additionally, we have our website accessible only within the 
CMU network to ensure that our data is accessible to possible 
users of our application. A possible edge case is that users 
abuse the system if they understand how occupancy is 
calculated. Users who want more space could fool our 
algorithm to ensure others do not take their space. Anyone 
looking for seats would be affected by the issue. While these 
were not implemented for the scope of the project, encrypting 
JSON requests sent from the Jetson to the server and adding in 
firewall and cryptography protocols to our system can help to 
mitigate potential attacks  to our system. 

IX. PROJECT MANAGEMENT  

A. Schedule 
The major modifications to our project schedule were to do 

with model training, Jetson setup and restructuring. We had a 
lot of iterations of our model before finding one that met our 
requirements. A few weeks were lost trying to meet the 
software requirements for the rest of our pipeline, in the end we 
downgraded our libraries to be compatible with the Jetson. 

 
1 https://blogs.nvidia.com/blog/2022/01/05/difference-
between-cloud-and-edge-computing/ 

After meeting with the professors we found that our solution 
approach was not as planned out as it should be. After a few 
discussions, we changed some of the interactions between our 
components to be more modular and scalable. These 
implementation changes delayed us by a week or so 

A detailed copy of our final schedule is presented in Figure 
8.  

B. Team Member Responsibilities  
Team member responsibilities, primarily, are delegated 

based on each member’s expertise - Aditi: Hardware, Mehar: 
Computer Vision, Chen:Web Interface. Larger sections like CV 
and integration/interfacing tasks, are also split across members 
to make sure work is evenly split. Throughout our timeline as 
well, members will be working together for tasks that may need 
more hands. 

 
    Aditi: 

● Jetson Setup (YOLOv5, web server) 
● Converting PyTorch models to TensorRT 
● Sampling Algorithm 
● Planning and Team Status Report 

    Mehar: 
● Data Preparation: Data Augmentation, Cleaning 

and Relabelling 
● Data Collection 
● Yolov5 Model Training 
● CV Pipeline Integration 

    Chen: 
● Web Application Development 
● Data Post-Processing 
● Translating CV output for Seat Map 
● Interfacing from Jetson to Web App 

 
Mehar and Aditi: 

● Image Preprocessing 
● Custom Data Labeling 
● Object Classification Research 
 
Tasks were also split with final testing amongst team 

members as well. Chen worked on occupancy accuracy testing, 
Aditi on speed testing, and Mehar on object accuracy testing. 
The spatial accuracy testing metric methodology was developed 
by Chen, Aditi and Mehar, while final calculations and testing 
were carried out by Mehar. 
 

C. Bill of Materials and Budget 

○ The bill of materials and budget can be found in Figure 
7. 
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D. Amazon Web Services Usage  

○ Custom training of the Yolov5 model was made 
possible through AWS services. Specifically, $100 worth of 
credits and another $40 were used in training the Yolov5 model, 
and data preparation and storage. Credits were used for 180+ 
hours of p2 and p3 EC2 instance usage, and 7.7 GB of data 
storage on S3. We would like to thank AWS for providing us 
the resources to make training possible. 
 
 

E. Risk Management 
One of the risks we initially had was occlusion of the 

chair a person may be sitting on. In practice, we found that we 
were able to place the camera high enough and our dataset was 
robust enough to account for most cases of this. Instead, a 
problem that similar color clothing to the chair can cause the 
system to miss the chair entirely, thinking the chair is part of 
the person. We were able to mitigate this through our 
preprocessing by greatly increasing contrast and overall 
exposure of the image.  

Another risk we had was oversensitivity to changes - 
specifically, if someone were to leave the room to go to the 
bathroom for a few minutes. We decided to keep this case as 
further features once we reached MVP for our project. Due to 
delays in integration, we did not have enough time to fully 
implement this feature. However, our plan to mitigate this issue 
was to use an extra class to detect the presence of backpacks, 
laptops and other items to also tell us whether a chair is 
potentially occupied. If we detected a person or multiple school 
items by the chair, then the chair would be counted as occupied.  

X. RELATED WORK 
We are mainly aware of 4 projects that are similar to ours: 

Fall 2020 Team B4 Smart Library, Fall 2021 Team A3 
FreeSeats and Spring 2022 Team E4. Ours differs from Smart 
Library as we have dynamic seat mapping which accounts for 
more cases and situations, while FreeSeats are using sensors 
mounted on a chair to detect and monitor each chair and reflect 
it on an app.  

XI. SUMMARY 
 

With the implementation of our design, students no longer 
have to travel around campus to find a study space as they could 
do so just by a single click. Our solution is to place cameras in 
study rooms and use computer vision to identify available seats. 
We will display the available seats and where they are located 
on a web application. We hope to save users time, and more 
efficiently utilize all of the study spaces CMU has to offer.  

 
In terms of future work, we have found that our CV module is 
not as accurate in other spaces. Our custom dataset was limited 
and only had pictures of rooms within Hammerschlag. It would 

 
2 https://en.wikipedia.org/wiki/POST_(HTTP) 

be beneficial to train our machine learning model with different 
chairs, with different perspectives and with more variations in 
lighting. Additionally, it would be good to have our website to 
only be accessible to people signed into their CMU accounts to 
keep this information more confidential. Though we were able 
to scale our MVP to 2 cameras, to better utilize the Jetson, an 
expensive resource, it might be beneficial to use the third USB 
A to host a third room. This may require porting our inference 
to DeepStream. 
 
We have definitely learned the importance of communication. 
Making sure there are clearly defined and reachable deadlines 
are critical to having a successful project. Reaching out for help 
early is also an important lesson learned. We found that we were 
able to find solutions to our issues much faster.  

GLOSSARY OF ACRONYMS 
AJAX - Asynchronous JavaScript And XML 
CV– Computer Vision 
CLAHE - Contrast Limited Adaptive Histogram Equalization 
R-CNN - Region-Based Convolutional Neural Network 
ML - Machine Learning 
RPi – Raspberry Pi  
JSON - JavaScript Object Notation 
XML - Extensible Markup Language 
YOLO -You Only Look Once 
CVAT - Computer Vision Annotation Tool 
POST -  request method supported by HTTP 2 
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Figure 18: Table of Materials and Costs

 

Figure 19: Project Schedule With Major Benchmarks 
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Table 5.  Spatial Accuracy MAPE with vs without Perception Correction 

 
Sample # 

X-dimension (Width) Y-dimension (Height) 

Without Perception 
Correction 

With Perception 
Correction Change in MAPE 

Without Perception 
Correction 

With Perception 
Correction Change in MAPE 

1 156.60% 160.08% 3.48% 72.58% 79.96% 7.39% 

2 37.04% 72.47% 35.43% 59.69% 44.89% -14.80% 

3 40.39% 66.73% 26.34% 94.68% 59.72% -34.96% 

4 48.60% 119.84% 71.24% 96.06% 68.06% -27.99% 

5 136.62% 144.17% 7.55% 103.97% 79.54% -24.43% 

6 159.33% 161.81% 2.48% 92.10% 95.85% 3.75% 

8 133.72% 118.19% -15.53% 124.19% 114.88% -9.32% 

9 133.81% 132.99% -0.81% 68.17% 83.14% 14.98% 

10 147.42% 136.43% -10.99% 93.02% 67.05% -25.96% 

12 47.14% 50.07% 2.93% 63.76% 69.36% 5.60% 

13 51.54% 59.63% 8.08% 74.97% 111.04% 36.07% 

14 34.40% 32.28% -2.12% 65.45% 39.57% -25.88% 

15 121.64% 108.81% -12.82% 58.92% 104.66% 45.74% 

Average 96.02% 104.88% 8.87% 82.12% 78.29% -3.83% 

 
 

Table 6.  Model Training Results 

Model Description Epochs mAP 0.5 mAP 0.5:0.95 Precision Recall 

Testing for Optimal Transfer Learning Configuration 

Custom Data, Freeze 24 layers 50 0.54103 0.28801 0.69936 0.50833 

Custom Data, Freeze 23 layers 50 0.61379 0.36274 0.84041 0.52138 

Custom Data, Freeze 22 layers 50 0.69160 0.41573 0.85648 0.64115 

Custom Data, Freeze Backbone 50 0.70822 0.44626 0.89579 0.67487 

Custom Dataset Training Without Backpack Class 

Custom Data with No Backpack Class, 
Freeze 22 Layers 50 0.87396 0.58691 0.85267 0.84129 

Custom Data with No Backpack Class, 
Freeze Backbone 50 0.97384 0.66036 0.90455 0.93743 

Custom Dataset Training  With Pascal VOC using Custom Labeling and No Backpack Class 

Pascal VOC w/Custom Labeling, 
Freezing 10 Layers + Custom Dataset, 50+10 0.53313 0.34305 0.94968 0.40855 
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Freezing 22 Layers 

Pascal VOC w/Custom Labeling, 
Freezing 10 Layers + Custom Dataset, 
Freezing 22 Layers 50+30 0.76944 0.47584 0.85187 0.72637 

Custom Dataset Training With Pascal VOC using COCO Labeling 

Custom Data w/ COCO Labeling, 
Freezing Backbone 50 0.90979 0.72143 0.97086 0.87832 

Custom Data w/ COCO Labeling, 
Freezing Backbone + Pascal VOC 
w/COCO Labeling, Freezing 22 Layers 50+10 0.82936 0.58633 0.77764 0.78755 

Pascal VOC w/COCO Labeling, Freezing 
Backbone 50 0.86833 0.66212 0.81220 0.80924 

Pascal VOC w/COCO Labeling, Freezing 
Backbone + Custom Data w/ COCO 
Labeling, Freezing 22 Layers 50+10 0.65957 0.40164 0.65979 0.63132 

Pascal VOC w/COCO Labeling, Freezing 
Backbone + Custom Data w/ COCO 
Labeling, Freezing 22 Layers 50+50 0.90029 0.72916 0.97410 0.87656 

 
 
 


