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Abstract— Students waste time searching for study spaces, and
the goal of ScottySeat is to streamline this process. Our solution
is to capture images of study spaces and update a web application
in real-time to reflect the seat availability in a given room. To
accomplish this, we will be using YOLOv5, a pre-trained object
detection algorithm to identify people and chairs.

Index Terms—Computer vision, object detection, single board
computer

I. INTRODUCTION

Campus study spaces are a crucial commodity for
many students at CMU. Whether it be for individual or group
work - campus provides a reliable, safe location for students to
work at. However, CMU has limited study space and free
spots are hard to come by.

Looking at campus itself, popular areas tend to fill up
quickly while smaller spots aren’t widely known. With the
size and complexity of CMU’s campus, finding a single free
space can take upwards of 30-40 minutes and even longer for
group scenarios. Currently, classrooms/meeting rooms can be
reserved but this doesn’t account for open study areas that
make up the majority of student study areas. Room
reservations are usually restricted to organizations or students
of the school where the room is located. Reservations also fill
up quickly and don’t allow for time flexibility to book closer
to study time.

One potential solution is to work off-campus or at
home, this isn’t but this always isn’t the most viable option. At
home, students may have noisy roommates/neighbors.
Off-campus locations like the public library and cafes may
also be noisy or close early as well. Specifically for working
in the evening and late into the night, campus is the safest
option. For student groups as well, campus serves as the
common congregation point that all group members can
access if working at a teammate’s house isn’t possible or
teammates live too far apart.

Our project seeks to ease the struggle in and reduce
the time taken in finding campus study spots by providing
students with easily accessible, real-time information on study
spot availability. To do this, we will build a web platform
showing digital maps of study areas. Each study area will have
its own map indicating study spot locations and availability.
Real-time camera footage of the areas will be monitored using
computer vision to regularly update the site as well.

II. USE-CASE REQUIREMENTS

To meet our use case, we have created requirements for
numerical accuracy, speed and spatial accuracy. Numerical
accuracy in our use-case relates to the number of seats
available in a study space. This is arguably the most important
use-case requirement as low numerical accuracy can misguide
users meaning that there would be no speed up in finding a
study spot. Keeping this in mind, we aim to have 90%
accuracy in detecting available seats. Our second use-case
requirement relates to the update speed from capturing an
image to the results being displayed on our webpage. For our
solution to be useful, the data provided to the user should
reflect the study rooms current capacity. After polling some
potential end users and taking their feedback, we have decided
that changes in seat availability must be reflected within 45
seconds of them occurring. Our last requirement is regarding
the user interface. For users to be able to use our UI with ease,
the seat mapping needs to be easy to interpret. This means that
the seat mapping should closely reflect the positions of the
real positions. This spatial accuracy use-case requirement is
quantified as being able to map chair positions to seating
charts with a 20% error margin. This metric will be measured
by comparing the seat mapping with a camera with an
overhead view, meaning no perspective correction is needed.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system can be mainly divided into 3 subsystems,
including the hardware module, the computer vision module,
and the web application (UI) module, as shown in the diagram
below (Figure 1).

The sensing module consists mainly of TedGem USB
cameras. Such cameras will be deployed one for each study
space being monitored. Its main purpose is to provide input for
the CV algorithm for detection, and also provide training and
testing data that would be used for verification. There are 2
kinds of positions in which the camera would be placed: an
angled camera and an overhead camera (Figure 2).
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Figure 2: System Block Diagram
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The angled camera would be responsible for gaining input for
detection, the training data, which is used to train for further
training the weights of the CV model, and also the testing
data, which would be used to verify the accuracy of the model
output. Both the training and testing dataset would be
processed later with labeling tools such as the Computer
Vision Automated Tool (CVAT). The overhead head camera
would only be used for collecting testing dataset for
verification of the accuracy of the position of the seat after the
perspective adjustment on the server side of the webapp.

Figure 1: Overhead and Angled Cameras

The pipeline of our solution is that we will capture
images using our angle camera, sample a frame every few
seconds, preprocess it, run it through a custom trained version
of YOLOv5, an object detection algorithm. We will take 10-15
samples, and take the highest confidence samples, post
process them and update the web application.

IV. DESIGN REQUIREMENTS

To achieve our first use-case requirement, we will
need a single high quality camera per room and must have a
highly accurate object detection algorithm.

For the camera footage, we believe that a 1080p
resolution to be able to accurately detect objects and their
edges. The camera needs to have a large field of view to be
and be placed correctly so that it captures the entirety of the
room in a single shot. Our set-up must work in a variety of
lighting conditions so the camera should have automated
exposure adjustment.

To achieve our first use-case requirement, the object
detection algorithm must be able to identify chairs and people
sitting on chairs with 90% accuracy. To help aid with
achieving this accuracy. We plan to sample at least 20 times
over a minute and use the detected objects with the highest
confidence. If the highest confidence detected in an image is
less than 80% we will ignore the images taken in that minute.
The algorithm will need to be able to also discern clearly
between nearby objects with high accuracy and will also need
to have very high accuracy on occluded objects.

To achieve our second-use case requirement, speed,
we will need a relatively fast algorithm which does not
compromise accuracy for speed. The website should

automatically refresh every 45 seconds and we are giving 1
second for final changes to be reflected on the page. Given
that we have a 44 seconds window between a change
occurring and an update, and aim to have 20 samples/min, we
will have ~14 samples between the change and the update.
This means the algorithm needs to be able to run and complete
within 3 seconds.

To achieve our spatial accuracy requirement, we will
need to ensure that the bounding boxes placed around the
objects by the computer vision model are accurate.
Additionally, we will need to carry out perception correction
as a final post processing step before displaying the maps to
users.

V. DESIGN TRADE STUDIES

A. Hardware
The motivation for using hardware, instead of software for
running our computer vision model was due to privacy. Our
project captures images in a public space, and to help ensure
privacy of the users, we thought it was best to use a single
board computer. This way images will not have to be sent over
the network, reducing the possibility of hacking, and the
images can be easily deleted after use. The only data being
sent over the network will be the locations of chairs and tables
and so users can safely participate in our project while
remaining anonymous.

The choice of using a single board computer (SBC)
compared to an FPGA was that it would be much easier to
scale an SBC model versus an FPGA model. Additionally,
networking on an FPGA is non-trivial and translating the
computer vision models would be out of the scope for the
given project timeline.

The main difference between the NVIDIA Jetson
Nano 2GB Developer Kit and the Raspberry Pi is their
compute power. Since we intended on using machine learning
to identify objects, a larger GPU is preferred as it is able to
parallelize many of the matrix operations needed in machine
learning. While analyzing YOLOv5, researchers found that the
RPi, out of the box had an FPS of 1.6 FPS while the Jetson
Nano had an FPS of 5 FPS [1]. Considering that we are using
2 cameras for our MVP, and have some preprocessing and
postprocessing to do on our input image, using the RPi would
possibly become a limiting factor in our speed requirement. A
solution to this might be to use a smaller YOLO model but
scaling down the algorithm results in a reduced accuracy
according to benchmarks released by Ultralytics [2]. Another
possibility was to use the RPi along with the Intel Neural
Compute Stick 2. According to Feng et al., the RPi + NCS2
outperforms the Jetson Nano on both mean confidence and
FPS, when using YOLOv3 [3]. However, the Intel NCS2 is
out of stock, and for our project timeline, we needed our
hardware as soon as possible.
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B. Computer Vision Model
The motivation behind computer vision as opposed to

a physical method such as seat sensors was scalability.
Scalability is a simpler process with computer vision, by
adding a few new cameras to a space rather than individual
sensors to every chair in the area.

The main goal of our computer vision model is to
detect chairs, tables and people in a given room from a given
image. Chairs will be oriented in different positions and will
likely be partially or mostly occluded by a table or a person.
The images themselves will be given every three seconds and
the model will also run on a Jetson Nano. As such some
requirements we had for a given CV model were as follows:
● Classify and locate multiple objects in an image
● Scalable to multiple object classes
● Implementable on Jetson Nano
● Can be built to run in under 2-3 seconds
● Can handle object occlusion and orientation variability
● Optimally, have the highest starting accuracy with

lowest resource usage.
Overall, we considered a variety of object detection

architectures: namely neural network-based methods (Faster
R-CNN, Yolo) and feature detection-based methods (BRIEF,
SIFT, ORB). All the architectures noted can be implemented
in Python through the use of common libraries and thus can
run on the Jetson Nano. Specifically, the underlying libraries
used are OpenCV (BRIEF/SIFT/ORB feature descriptors are
built in), and Tensorflow/Pytorch for neural network models.
They all also run relatively quickly - in close to real time. .

From there, the feature detection methods tend to
have the lowest resource usage but also come with a number
of risk areas due to how object detection is ultimately done.
With feature detectors such as BRIEF/SIFT/ORB - object
detection is generally performed through image matching [5].
The feature descriptors detect various ‘features’ in a source
image (i.e. corner points, areas of high contrast and
variability) and a thresholding model such as KNN is used to
match those points to an object in a test image. Thus, it
operates essentially as a one to one image matching
architecture. This makes it difficult for these methods to
account for object occlusion if not enough points are present.
In our use case especially, chairs can’t be moved by a user to
help object detection so the system needs to account for heavy
object occlusion. The system also becomes difficult to scale to
multiple object classes. Different sets of descriptors and
models for each object class, that is for different types of
tables, different chair designs will be needed. Lastly, image
matching for object detection also makes this method unideal
for person detection as well, a separate system will be needed
to track people in the scene.

In contrast, the neural networks are pre-trained to
work on multiple object classes with multiple objects per
image. For example, YOLO in particular is trained to detect
80 different object classes. In testing we can see,
out-of-the-box YOLO is able to detect tables, chairs, people
and even some objects such as the TV and a backpack as well.
We can also note that YOLO is able to detect the chairs
despite heavy occlusion.

Figure 3: Sample Yolov5L output

It is possible to build a feature descriptor-based
architecture to work for our use case, however with the issues
that will need to be accounted for and the time that will be
taken for training of either system type - a neural network
based model is preferable for our case.

Of Faster-RCNN, YOLO - Faster R-CNN is noted to
have the highest precision and slowest time. The creators of
YOLO themselves found that a Faster R-CNN with VGG-16
architecture achieved a mAP of 73.2% with a speed of 7
frames per second as opposed to standard YOLO achieving
63.4 mAP and 45 FPS (both are when tested on COCO2007 -
a CV dataset) [6]. Here mAP refers to Mean Average
Precision, here it tells us the system with the highest true
positive to false positive ratio. To see whether Faster R-CNN
or YOLO will prove more accurate for our use case. We tested
Facebook’s Detectron 2 Faster R-CNN architecture and
Ultralytic’s YOLOv5L architecture locally using 6 iPhone test
images of our study space. Each image showed a single
human, one table and 7 chairs. Testing showed, YOLO was
able to accurately detect more objects than Faster R-CNN
even with lower resource use, though Faster R-CNN did
generally seem to have higher confidence in its results through
a qualitative analysis. Through this we determined we will
finally use YOLOv5L for our project.

Table 1: Detection Testing off Faster RCNN vs Yolov5L

Architecture
Human
Detected?

Table
Detected?

Chairs
Detected

Objects
Detected

Faster RCNN +
ResNet 50 6/6 6/6 18/42 30/54

Faster RCNN -
ResNext 101 6/6 6/6 25/42 31/54

Yolov5L 6/6 6/6 39/42 39/54
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VI. SYSTEM IMPLEMENTATION

A. Subsystem A - Computer Vision
The computer vision pipeline comprises three

sections: preprocessing, CV model and postprocessing
(sample consolidation), denoted with bold text for the start of
each section. Overall, the system will take in an image
sampled from the camera feed and output list of object
detected and confidence level for each object, and coordinates
for a bounding box around each box.

Preprocessing: For the preprocessing of the image, we will
perform some denoising and contrast increase, along with
brightness increase as well. These preprocessing steps were
determined based on a test image from the camera feed

Figure 4: Initial webcam test image retrieved by standing
on a chair to simulate camera angle

As can be seen in the test image, the image has some
graininess and many chairs tend to blend into the floor.
Denoising and contrast increase can help to mitigate these
factors. Beyond this, the brightness increase is to account for
differences in lighting conditions throughout the day. Further
testing will be done to see exactly how much
denoising/contrast/brightness will be helpful towards object
detection.

CV Model: From there, the sampled image will be run
through a pre-trained YOLOv5l model to retrieve bounding
boxes for objects detected, the classes of the objects detected
and the confidence level in the classifications made for each
object. Below is a visual representation of the data that will be
outputted - except through the form of a list.

Figure 5: Sample YOLOv5 output using iPhone test image

The YOLOv5 model will be trained further using a
combination of a custom dataset and the open-source
ImageNet dataset. Ultralytics Yolov5L is pre-trained to work
across 80 object classes on the open-source COCO image
dataset. So, initially the model will be trained further on a
different popular dataset ImageNet to be optimized for the
table, person and chair classes. Any further training needed
will be done using the custom dataset collected. The custom
dataset will be image data collected of the study space using
the webcam. Specifically, the dataset will contain images of
different numbers of chairs in the study space, with chairs
being occluded by the table, by people sitting in the chairs.
The dataset will be prepared for training by manually drawing
bounding boxes and tagging the boxes with the object
classification using CVAT.

Post-Processing: From here the post-processing of the CV
pipeline is centered around consolidating the 14 samples the
system takes for each update. Each processed image data will
be temporarily stored in a local folder until a batch of 14
samples are collected. From there the 14 images and their data
will be consolidated into a single image data JSON file that
will be sent for use by the web application. The folder will
then be emptied in preparation for the next batch of images.

The exact methodology for consolidating the 14
images will be tested; however, we do have a potential
algorithm to use. All 14 images will be thresholded to only
keep detected objects with at least high confidence. The ‘high
confidence’ threshold is yet to be determined, however we
only want objects with high confidence to increase accuracy
potential. From there objects from all 14 images are compiled
together. Objects appearing in at least 60% of images will be
kept. Specifically, if more than 60% of images have an object
where the bounding box overlaps significantly (at least 70% to
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account for minor position changes), then the object will be
kept and the bounding box of highest confidence used for that
object. The motivation behind this secondary step is that while
we do want high confidence detections, objects are sometimes
covered between frames - so we want to account for cases of
non-detection due to excess occlusion as well.

B. Subsystem B - Related Hardware Components
To run our computer vision algorithms, we will use a

NVIDIA Jetson Nano 2GB Developer Kit. Along with this, we
plan to use 2 1080p TedGem USB Cameras to capture our
images. The website will be hosted locally, and we will
connect to the CMU network using ethernet.

The Jetson will create two instances of a camera
object, and open the streams using the gstreamer library. The
gstreamer library will capture a frame from the camera and
feed each image into an instance of YOLOv5. The website
will be hosted using the python in-built library, http.server

C. Subsystem C -  Web Application
In order for the output of the CV algorithm to be

displayed in a user-friendly way, a web application interface
has been created. It consists of 2 parts: frontend and backend.

Backend:
The backend side, namely the server side, with every

45 seconds of update, is firstly responsible for parsing in the
output file by the CV module which contains position
information of chairs, people and tables, and the bounding box
sizes of chairs and tables. Then, the server will apply post
processing to the coordinates. This process involves cropping
the image so that the image mainly consists of the ground and
removing the walls from the image. Then, an algorithm to
adjust the perspective due to using an angled camera will be
applied to adjust for the position difference between an
overhead view and an angled view. After this, the occupancy
of each seat will be calculated thanks to the adjustment done
by the previous process. The next process is to store all that
information into the database, and assign all that information
to the corresponding room, so that any request the server
receives can be easily processed by extracting the
corresponding information from the database.

Frontend:
The frontend, namely the website, on loading, will

send a request to the server side requesting the information of
a certain room with a “POST” request since the name of the
room has to be sent along with the request. The server will
extract the response from the database and respond with json
format, and the website will be updated with the information
and display a map of the seats and tables of the requested
room. The total counts of availability and occupancy will also
be updated. When the user clicks into another room, another
request will be sent to the server side and subsequently update
the room with the information.

A layout of the frontend interface:

Figure 6: Web Application Layout

VII. TEST, VERIFICATION AND VALIDATION

A. Tests for Use- Case: Object Accuracy
The computer vision model must detect the total

number of seas with 90% accuracy. This test relates directly to
our use-case requirement on accuracy. To carry out this test,
we will take pictures of our study spaces we plan to use in our
MVP to verify this. We will capture 100 images of the study
space, using different lighting conditions, different chair
orientations and introducing other objects like books, laptops
and bags. We will label this data using a tool like the
Computer Vision Annotating Tool to assist us in the labeling
process. We will then feed this into our computer vision model
and compare the outputs with our labeled image.

B. Tests for Use-Case: Speed
To ensure we make our speed requirement, we need

the entire pipeline to run in under 30 seconds. As derived in
section IV, the computer vision model needs to run under 3
seconds with 2 cameras running. To test this, we will use the
python time library to verify this. We can reuse the dataset
used for testing our computer vision accuracy. Another larger
tes will involve verifying that the time between an image
being captured and an update being reflected on the website.
We can use the same timing libraries to check this, and can
artificially feed in an image where the number of chairs
occupied changes.

C. Tests for Use-Case: Spatial Accuracy
To ensure we meet the spatial accuracy requirements,

we need to be able to validate that our mappings accurately
reflect their real positions. To achieve this, we will take
images from directly overhead, and calculate the center points
of the chairs. We will then compare this with the final seat
mappings. We will calculate the error of all objects in the
room and aim to have an average of less than 20%.



7
18-500 Design Project Report: ScottySeat 14/10/22

VIII. PROJECT MANAGEMENT

A. Schedule
A detailed copy of our updated schedule is presented in

Figure 8. We are currently on the last steps of our design phase
for computer vision, while all other areas are in the building
phase. We plan to do an initial integration after break to make
sure pipeline components are working together. Overall we
will reach our MVP by Week 9. We will first work with one
room, having the initial system working by Week 7 (latest
mid-Week 8) and then scaling to two rooms by Week 9. Week
10 to 11 is left as slack time for any last improvements to the
system and for final documentation prep.

B. Team Member Responsibilities
Team member responsibilities, primarily, are delegated

based on each member’s expertise - Aditi: Hardware, Mehar:
Computer Vision, Chen:Web Interface. Larger sections like
CV and integration/interfacing tasks, are also split across
members to make sure work is evenly split. Throughout our
timeline as well, members will be working together for tasks
that may need more hands.

Aditi:
● Jetson Nano + Camera physical pipeline
● Interfacing from Jetson to Web App
● Packaging CV models for Jetson Nano
● Yolov5 Data Collection

Mehar:
● Image Preprocessing for Noise Reduction,

Contrast
● Image Postprocessing for Sampling

Consolidation
● Yolov5 Model Training + Data Collection

Chen:
● Web Application Development
● Translating CV output for Seat Map
● Interfacing from Jetson to Web App

C. Bill of Materials and Budget

The bill of materials and budget can be found in
Figure 7.

D. Risk Mitigation Plans
One of the risks we have is the occlusion of the chair

by a person when the person is sitting on the chair. This is the
one of the main reasons we are using an angled camera instead
of an overhead camera, just so that we have a better chance to
make more parts of the chair visible to the camera. In order to
mitigate this, we can:

1. Acquire/Build a custom dataset on mostly covered
chairs so that the algorithm could better recognize a
covered chair as a chair.

2. A backup plan to show only empty seats in the room,

as from the user standpoint, the most important
information is whether or not there are available seats
in the room.

Another risk we have is that we might be overly sensitive to
changes. Consider the case where a person leaves the room for
3 minutes for restroom, or stands up for 5 minutes to have a
rest, the change would be immediately updated on the map
and thus might be misleading to users who came all the way
just to find out that the seats are actually not available. This
can be mitigated by:

1. Adding an additional state besides “occupied” and
“available”, which holds the seat for 5 minutes after
the seat transitions from the “occupied” state.

2. Another way is to detect any items on the table close
to the area where the seat is located, and doing this
will require a lot more calculation power, and
possibility resulting in seats that are constantly
falsely occupied due to some object present on the
table.

IX. RELATED WORK

We are mainly aware of 2 projects that are similar to ours:
one 18500 Fall 2020 Team B4 Smart Library, and one from
Fall 2021 Team A3 FreeSeats. Ours differs from Smart
Library as we have dynamic seat mapping which accounts for
more cases and situations, while FreeSeats are using sensors
mounted on a chair to detect and monitor each chair and
reflect it on an app.

X. SUMMARY

With the implementation of our design, students no longer
have to travel around campus to find a study space as they
could do so just by a single click. Our solution is to place
cameras in study rooms and use computer vision to identify
available seats. We will display the available seats and where
they are located on a web application. We hope to save users
time, and more efficiently utilize all of the study spaces CMU
has to offer. Our largest challenge will be achieving our 90%
accuracy in identifying seats, there are known unknowns here
as we have some ways to mitigate this risk but we do not
know to what extent they will help us and whether they will
work as expected.

GLOSSARY OF ACRONYMS

AJAX - Asynchronous JavaScript And XML
CV– Computer Vision
R-CNN - Region-Based Convolutional Neural Network
ML - Machine Learning
RPi – Raspberry Pi
JSON - JavaScript Object Notation
XML - Extensible Markup Language
YOLO -You Only Look Once
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Figure 7: Table of Materials and Costs

Figure 8: Project Schedule With Major Benchmarks


